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and/or the quota is modified. Nevertheless, some of these modifcdtio

not change the game. In the present work we shall estimate themalaxi
percentage variations in the weights and the quota which may beved
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strict representations of weighted majority games.

Keywords: Simple games, weighted majority games, strict representa-
tions, linearly separable function, tolerance, amplitude.

AMS Classification (MSC 2000): 90D12, 90B25, 94C10

*Department of Applied Mathematics Ill. Polytechnic Unisity of Catalonia. Av. Bases de Manresa 61-73.
08240 Manresa (Espanya).

Research partially supported by projects PB96-0493 of D&#t5PR98-06 of U.P.C.

—Received May 1996.
—Accepted November 1998.

43



1. INTRODUCTION

Shareholder societies, political models and even electronical applications daadre
bed by means of weighted majority games, which can be modified if the weightsran
the quota which define them are modified.

For instance, the increase of capital in a shareholder society makes investarease
or decrease their shares, at the same time that it provokes a change oftthquiapt
it to the new situation, previous consensus. To assure that theliséwbution does
not interfere in the fight for the control of the company it is necessagstimate the
maximum percentage in the variations of weights and quota which leaagantthe
game associated to the initial situation.

Analogously, in the realization of a linearly separable switching fomdtiy means of

an electronic device, the components used to fix the weights and the tlireahoot

be completely accurate. Hence, in determining the required accuracy of these compo-
nents, it is necessary to estimate the maximum percentage errors in thésvegidithe
threshold which may be allowed without disturbing the functionegodrlized.

In the reliability of systems it is interesting to know which subsdtsomponents make
an additive system to work when these subsets work, and which of them tmake
system to fail when all of them fail. The additive system is characterizedeoywéight
of each component and the threshold of fail. This problem can be natuallsférred
to the game theory. To do thisitis only necessary to consider the campmas players,
and the subsets of components as coalitions. So, the additive rgfiapgtems become
weighted majority games.

In this paper we start from the tolerance, solution obtained by Hu imebalution of
this problem assigned to the field of electronics, and we improve it thenamplitude
when we transfer such a problem to the field of game theory.

The paper is organized as follows: In Section 2 we explain the basical aefsithat

permit the pursuit of the work. In Section 3 we summarize the resmtslerance
obtained by Hu and, at the same time, we improve them. In Section 4 we tedine
amplitude for strict representations of weighted majority games, whitlhethe ma-

ximum percentage in the variation of the weights and the quota whick bagame
unchanged. As an immediate consequence we deduce that such a value improves the
tolerance. In Section 5 we obtain the simplified expression for the ardplfor strict
representations of monotonic weighted majority games. Section 6 isedkteofind the

quota which allows us to find the maximum value for the amplitude vihemweights

are given. Finally, Section 7 includes two examples to illustrate theqating results.
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2. BASIC NOTATIONS AND DEFINITIONS
Let () be the sef0, 1}. For any given positive integer, consider the cartesian power
Q=Qx - xQ.
Thus, the elements @” are the2” ordered n-tuples
(z1,...,Ty).
By aswitching functiorof n variables, we mean a function

f:Q"— Q

from then-cube@™ into Q.
A switching functionf : Q™ — @ is linearly separabléf it admits asystem

[T;wy,...,wy)

such that for an arbitrary point

T = (.’1’31,... 7'7:71)

of then-cube@™ we have

wmT o+ wpr, > T)0f f(z) =1
wry + o+ wpr, < T,0f f(z) =0
Then real numbers,, ... ,w, in this system are called theeights and the first real

number? is referred to as thi#resholdor quota

Itis always possible to modify the quota in such a way that the puswilefinition could
be rewritten using strict inequalities. In this case, the system is cadigitt separating
systenfor the linearly separable functioh

We will see the way in which we can transfer this concept to the field of gaeweyth

A simplen-person gamés a pair(N,v) whereN is described a&v = {1,2,... ,n}
and is called the set gflayers EveryS C N is acoalition, C(N) is the set of all
coalitions andy : C'(N) — {0, 1} such thaty(f)) = 0 is thecharacteristic function
We will suppose that is not identically equal to zero. A coalitio8 is winning if
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v(S) = 1 andlosingo therwise. The set of winning coalitions is denoted®yand the
set of losing coalitions by.

Asimple gamé N, v) is aweighted majority gamif there are real numbefB, w., . .. ,

wy, such thaw(S) = 1if w(S) > T andv(S) = 0 otherwise, wherev(S) = > w;.
i€S
Then[T;w, ... ,w,] is called arepresentatiorof the weighted majority gamgV, v).

If Tissuchthat(S) = 1if w(S) > T andv(S) = 0if w(S) < T, then[T;wn, ... ,wy,]
is called astrict representatiof (N, v).

As is obvious, every weighted majority game admits a strict representati
Fromuv (@) = 0 itis clear thatl’" > 0.

A simple game isnonotonidf all subcoalitions of the losing coalitions are losing. If
each proper subcoalition of a winning coalition is losing, this wiigrgoalition is called
minimal It should be noted that a monotonic simple game is completely detedmi
by its minimal winning coalitions. The set of minimal winning coialits is denoted by
W™ For monotonic simple games a playes N isnullif i ¢ Sforall S € W™.Ina
weighted majority game, we will denote iy the set of null players with non-positive
weight (if any).

Throughout this paper, 161; w, ws, . .. ,w,] be a strict representation of a weighted
majority game

Formally, a switching functiorf with f(0,...,0) = 0 is equivalent to a simple game
and a strict separating system is a strict representation of a weightedtynggme
without condition” > 0.

Gambarelli (1983) studied the effects on the game when a player increasesigdiis w
in perjudice of others, or decreases in favour. This situation can be gerdrial case
that there exist variations in each one of the weights and the quota, vghidiat we
want to study. Carreras (1993) studied the effects on the Shapley Vaueaighted
majority game in which weights are given and the quota is modified. Hépkarly
studied those effects on the European Parliament. These two articles hale¢ian
with our paper in the sense that in both of them we can see variations eitiverghts
or in the quota.

3. TOLERANCE

Throughout the section, let : @™ — @ be an arbitrarily given linearly separable
switching function ofn variables and lefT"; w, ... ,w,] be a given strict separating
system forf.
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For each point = (z1,... ,x,) INQ™, let

w(r) = w1z + -+ Wy

Then it follows from the definition of a strict separating system that
w(x) > T,if f(z) =1,
w(x) < T,if f(z) =0.

Let A denote the maximum of the functiem(z) for all z € ' (0) and letB denote
the minimum of the functionv(z) for all z € f~1(1). If f7(0) is empty, we set
A =-o00;if f71(1) is empty, we se3 = oc. Then we havel < T' < B.

Adapting the definitions for strict representations of weighted nmgjgames we have
the following results.

Let A denote the maximum ab(S) for all S € £ and letB denote the minimum of
w(S) forall S € W. Then, we havel < T' < B andA > 0.

Now letm denote the smallest of the two positive numbErs A andB — T. On the
other hand, let

M =T+ |w|+ -+ |wn].

LetA;,..., A\, andA ben + 1 arbitrary real numbers and let

w;, = (1+XN)w;, i=1,...,n

T = (1+A)T.
Then, the real numberk,, ... , A, and A represent the relative variations if we use
the numbersv,, ... ,w, andT" instead of the original numbets,, ... ,w, andT as

weights and quota. In this paper we are going to find the maximum oé thositive
real numbers such that if

Al <d, [Ni|<d i=1,...,n

then[T"; w,,w,,... ,w,] is still a representation to the given game. Such a positive
real number was given by Hu (1965) for strict separating systems. He defined the
number3; (taking|T| in M instead ofT"), which is completely determined by the set
of real numbers$T’; wy, ... ,wy].

Theorem 3.1. (Hu, 1965) Letf : Q™ — (@ be an arbitrarily given linearly separable
switching function of n variables and IgF; w,, ... ,w,] be a given strict separating
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system for f. If\;| < % foreachi=1,... ,nandif|A| < 2, then[T ;w),... ,w,]is
a strict separating system for the given linearly separable switchinction.
He called this positive number theleranceof the system and denoted

m

T[T we,. .. ,w,] = U

Theorem 3.2. (Hu, 1965) Letf : Q" — (@ be an arbitrarily given linearly separable
switching function of n variables and Igf; w,,. .. ,w,] be a given strict separating
system for f. Then:

a) 7[T;wi,... ,w,] <L
b) T[T; w1, ... ,w,] < 7[Ciwi,... ,w,], whereC stands forA£E If T # C the
inequality is strict.

Adapting Hu’s results for strict representations of weighted majgatyes we have the
following theorem.

Theorem 3.3. Let [T;wy,... ,w,] be a strict representation of a weighted majority
game. Then

a) T[T;wy,... ,wy] <1

b) r[T;wy,... ,w,] < 7[Ciwq,... ,w,], whereC' stands forAfTB. If T # C the

inequality is strict.

Our main objetive is to find the greatest value d@uch that if

A <9, [N <8 i=1,...,n
then[T";w,,... ,w,] is still a representation to the given game. We will distinguish
the monotonic case from the non-monotonic case.
First we will see how the bound given by Hu for the tolerance can bedugar when
we are restricted to strict representations of weighted majority games.
Theorem 3.4. Let [T;wy,... ,w,] be a strict representation of a weighted majority

game. Then,

T[T wr,. .. ,w,] <

W =
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Proof: From Theorem 3.3 the tolerance reaches its maximum Whisrthe arithmetic
mean
_A+B

T
2

of the real numberd andB. Then it follows thatn = 254 andM = 458 + |, | +
.-+ |wy| . Due to the fact that is not identically equal to zero it exists a coalitiSn
such thats(S) > B and, consequentlyw, | + - - - + |w,| > B.

Theorefore, we obtain
B-A
2 <
+|wi |+ -+ |wy

m

T[T wy,...,w,] = MSA—FB
2

B-A B 1

< < —.

- A+ B+2B ~ A+3B — 3

The following result proves th@ is reached and it characterizes the strict representa-
tions of monotonic weighted majority games which reach it.

Proposition 3.5. The set of strict representations of monotonic weighted majority ga

. 1.
mes with tolerance?: IS

[T;2T,0,...,0].
Proof: Let[T;wy,...,w,] be a strict representation of a weighted majority game. Its
tolerance is:
m
T[T wy,...,w,] = [T

wherem = min{T — A,B —T}andM =T + |wy| + - - + |wy].

We want to determine which are the strict representations of monotaighted ma-

L . 1
jority with toIeranceg.

From Theorem 3.3 we must consider= #.
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B B-A
A+ B+ 2(Jwi| + -+ |wa)
B —2A=wi|+ -+ |wy].

=

1
T[T wr,...,w,) 3

Becausew, |+ - -+|w,| > BandA > 0, we obtainthatd = 0 and|w: |+ - -+|w,| =
B.

Therefore fromd = 0, B = 2T and|w; | + - - - + |w,| = 2T, we can deduce that the
game is:

[T;w,...,w,] =[T;2T,0,...,0].

|
For the set of non-monotonic games this maximum is smaller.
Theorem 3.6. Let[T";wy, ... ,w,] be a strict representation of a non-monotonic weigh-
ted majority game. Then,
1
T[T wy, ... ,w,] < 5

Proof: The tolerance reaches its maximum when

T o A+B.
2

Then it follows thatn = 254 andM = 438 + |w;| + - - - + |w,|. Due to the fact that
the game is non-monotonic there exist coalitidhs S such thav(R) = 1, v(S) =0

andw; < 0Vi € S — R. Hence,

Zwi ZBandZwi §A7

iER i€S

and therefore

Z|wi| = Z|wi| + Z |lw;| > B+ (B — A) =2B — A.

i€S iER iES—R

We obtain

B—A
. = . B-A .
ALE §Jwy| + - - + [w) A+B+QZS|wz'|
i€

T[T wy,. .. ,w,] =

SE
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_ B-A _B-4A _
=~ A+B+22B-A4) 5B—A -

(S

Analogously to Proposition 3.5, we characterize the strict represamsadif non-mo-
. . L . 1
notonic weighted majority game with toIerange

Proposition 3.7. The set of strict representations of non-monotonic weighted ntgjori
. 1.
games with tolerancg is

[T;2T,0,...,0,—2T].

Proof: Let[T;ws,... ,w,]be astrict representation of a non-monotonic weighted ma-
jority game. We want to determine which representations of this type twd&rance
1

g .

From Theorem 3.3 we must consider= 45,

T ] B—A
T s Wi, ... Wy | = =
b B+ A+2(Jwi| + - + [wy])

2B —3A = |wi|+ -+ |wn|.

=

(S

In the proof of Theorem 3.6 we showed that | + - -- + |w,| > 2B — A, and since
A > 0 we obtain thatd = 0 and|w: | + - - - + |w,| = 2B.

Therefore fromd = 0, B = 2T and|w,| + - - - + |w,| = 4T we can deduce that:
[T;ws,...,w,] =[T;2T,0,...,0,-2T.

4. AMPLITUDE FOR STRICT REPRESENTATIONS OF WEIGHTED
MAJORITY GAMES

Our main objetive in the present section is to find, for strict repregentadf weighted
majority games, the greatest positive real nundbguch that if

Al <8, [N]<di=1,2,...,n
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then[T";wy,... ,w,] is equivalent tqT; ws, . .. ,w,].

We will call this constant amplitude of the representation and we willtkagit is
the maximum of rate one in the variation of weights and in the quotasgbe game
remains invariant. As the tolerance provides a bound which guaranteebdlgdarne
remains invariant, the tolerance has to be smaller than, or equal to, thituaiapl

Given a strict representation of a weighted majority gdffvav, ... ,w,], for each
coalitionS C N let
a(S) = |w(S)-T|
b(S) = T+ ) |wi.
i€s

Note that these are positive numbers. Take

We call this number thamplitudeof the representatiofl’; wy, .. . , w,] and denote

wTiws, ... ,w,] = P.
The minimum P is attained for, at least, some coalition, namely from mo# o

Theorem4.1. If |\;| < P foreachi =1,2,... ,nand|A| < P,then[T ;wy,... ,w,]
is equivalent td7"; wy, ... ,w,] and P is the greatest upper bound for the constants
A, An, Al

Proof: First of all, we observe that, from the definitiod? < 1 and because
T = (1+A)T,if |A] < P we obtain tha” > 0.

For each coalitiors C N, let

w (S) = Zw; .

i€S

!

For the first part it suffices to prove that(S) > T" for everyS € W andw (S) < T
foreveryS € L.

First, let us assume thate Y. Then we have

a(S) =w(S) —T.
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By definition ofw’ (S), we have

w (S)—T = .qu; ~T = Z‘;(l + X)w; — (1+ AT = [w(S) — T+
s 1€ S

+[>° Nw; — AT).
i€S

Sincew(S) — T = a(S) and

a(SO
b(So

~

b(S) < a(S),

Z /\iwi — AT

i€S

<Y il fwil + AT < P |wi| +T] =
i€S €S

~

1

it follows thatw' (S) — T > 0 and hencev' (S) > T
Next, let us assume thate £. Then we have

a(S) =T —w(S) .

As above, we have
T —w (S)=(1+AT — Z(l + Xi)w; = [T —w(S)] + [AT — Z Aiw;].

ieS i€S

SinceT — w(S) = a(S) and

AT — Z A w;

i€eS

<IAT 4 Nl jwil < PIT+ > |wi]] = b(S) < a(S)

ic€S €S

it follows thatT" — w'(S) > 0 and hencev' (S) < T'.

For the second part we will suppoéke > P, and then we will demonstrate that the
game given by

is not equivalent td7; wy, ... ,w,] for all A and); with |A| < @ and|\;| < @ for
eachi=1,... n.

Let Sy C N such that% = P.If Sy € W, taking

—€ if w; >0

A=e and /\i_{e if w; <0
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with P < € < ), we will obtain a contradiction concernirfy.

w'(Sy) — T = [w(So) — T — €[T + EZ;; lwi]] = a(So) — eb(So) < a(Sp) —
a(So)

and henceS, ¢ W.

Analogously, isSy € £, taking

e ifw;>0

A = —¢ al"ld AZ = { —€ If w; < O

with P < € < @, we will obtain a contradiction concernirfy.
T — w'(So) = [T — w(So)] — €[T + > |wi|]] = a(So) — €b(So) < a(Sy) —

i€Sp
(So
b(So

and hences, ¢ L.

s

~—

b(So) = 0

~—

As a consequence of the maximality of the amplitude, we can deduce thalettante
is smaller than, or equal to, the amplitude.

5. AMPLITUDE OF MONOTONIC WEIGHTED MAJORITY GAME STRICT
REPRESENTATIONS

When we are restricted to strict representations of monotonic weighteatitpaja-
mes, the weight of each no null player is positive (we only have to coergarinimal
winning coalition, which possesses this no null player, with the semaétion without
him; the resulting inequality tells us the weight must be positiféus, a weight may
only be non-positive if it belongs to a null player. Taking into aauthese facts, for
monotonic games we are going to find a simpler expression for thetaomgl

Theorem 5.1. If [T;wy, ... ,w,] is a strict representation of a monotonic weighted
majority game with amplitud®, then

P:min{ B-T TA}

B+T—2w(D)' T+ A

whereD is the set of null players with negative weight (if any).
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Proof: First we are going to demonstrate that

. B-T T-A
P > min ,
- {B+T2’U}(D) T+A}
Taking into account thaP = mm ((2)) , it suffices to prove fo5 € £ that
a(S) _T-A
>
b(S) T+ A
and forS € W that
a(S) S B-T

b(S) = B+T —2w(D)’

For this purpose we have to check fore £ that

2AT + A (Z |w;i| — w( ) (Z |w;| + w( )

€S i€S
Since |w;|—w(S) = —2w(SND), > |w;|+w(S) = 2w(S— D) and by definition

i€S i€S
of null playerw(S — D) < A, it follows that

2[T(A—w(S—D))—Aw(SND)] > 0.

Next, let us assume tha& € W. Then, taking into accound_ |w;| — w(S) =
i€S
—2w(SND)and} |w;| +w(S) =2w(S — D), we have to check
i€S

2[—BT + Tw(D) — w(D)w(S) + Bw(SN D)+ Tw(S — D)] >0

Regrouping terms it is clear that we have to check

2[T(w(D) + w(S — D) — B) —w(D)w(S) + Bw(SND)] > 0.

Taking into accounty(S) > B, itis enough to check

2[T(w(D) +w(S — D) — B) + B(w(SN D) —w(D))] > 0.
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The first member of the sum is positive because for any winning caal&iove have
that (S — D) U D is also winning The second member of the sum is non-negative
becauses(S N D) > w(D). So, itis clear that:

2[T(w(D) +w(S — D) — B) + B(w(SN D) —w(D))] >0.

Therefore,

B-T T-A
szin{ }

B+T-2w(D) T+ A

Now, we are going to demonstrate tiat min { BH?:;}(D) g } .
LetSy € W be such thatv(Sy) = B. ThenDN Sy = D and

(I(S(]) _ B-T
b(So) T+ B—2w(D)’

N
I
AE.
B
IN

LetSy € £ such thatw(Sg) = A. ThenD N Sy = () and
a(S) _a(Sy) T - A

P = mi < - ,
SENDS) S (S, T+ A
Therefore,
b B-T T- A
S BT —20w(D) T+AS

Shareholder societies and most models in political science can be describetity sp
ying non-negative weights for the voters and a positive quota.eT$iasations give rise

tow(D) = 0 and therefore the amplitude 1% = min {%, %} .

Notice that from the definition of the amplitude satisfie® < © < 1, and for each
numberz € (0, 1) it exists a 2-game

Ltz (142"
1—-2'\1-z2)

whose amplitude is.
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6. MAXIMUM AMPLITUDE

In this section we want to determine the maximum value that the amelfarda strict
representation of a weighted majority game can reach, when the weights ofspdager
invariable.

For a given strict representation of a weighted majority géfne , . . . , w,], the quota
T may be any real number betwedrandB. Let us supposd > 0, thisis,

0 <maxw(S) = A <T < B = min w(S).
SeL Sew

We define the function

_a(S,T) .
f(S’T)fb(S,T) if SCN and T € (A, B),
wherea(S,T) = |w(S) —T|,b(S,T) =T+ > |w;| and let
i€S
) = minf(S.7)
G(I) = minf(S,T).

Thenf(S,T) < 1, andusingd > 0 it follows that F'(T') < 1.

It turns out that the amplitude[T’; w1, ... , w,] reaches its maximum whéh is the
unique number such that

Precisely, we have the following theorem.

Theorem 6.1. For every strict representation of a weighted majority game

[T;ws,...,w,]With0 < A < T < B we have

wlTwy, . wp] < plT* 5w, ... wy]

whereT™ stands for the unique number such th&tT") = G(T). If T # T* the ine-
quality is strict.

Proof: For every coalitionS, the functionf(S,T') is continuous and derivable with
respect tdl' in (A4, B), and consequently'(7') andG(T') are continuous too. Fixing
S, the derivative off (S, T') with respect tdl" is
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S Jw;| 4+ w;
i€eS

— >0 if SecL,
<T+ > w,;)
i€S
Z \wz\ + w;
S —— if Sew.

2
<T + > |wi|>
i€S

Then,F(T') is a nondecreasing function att{7") is a strictly decreasing function. To
obtainT € (A, B) which defines the maximum amplitude for the given representation,
we consider the function

P(T) = min{F(T),G(I)}for A< T < B

and we demonstrate there is just one nuniewhich reaches then}ix )P(T). The
Te(A,B
uniqueness is due to the above considerations about nondecreasingbebfki and

decreasing behaviour 6f. The existence can be proved using Bolzano’s Theorem:

and due to the fact that > 0, it follows thatT limA+F(T) = 0. Then

li FT)-GT)= 1 - G(T .
 lim, F(T) —G(T) = im, = G(T) <0

In particular, for monotonic games the amplitude= min { BH’?:;}(D), ;;Q } rea-
B-T _T= 4 hd therefore
T -2wD) T+ A

ches its maximum when
B+

w(D) + /(w(D))? + 4AB — 4Aw(D)
5 :

T =

If w(D) =0, T is the geometric mean of the real numbgdrandB.
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7. APPLICATIONS

To illustrate the ideas of this paper, two examples of amplitude icf sépresentations
of weighted majority games are presented.

Example 7.1. A town signed a biannual agreement with three gas companies, X, Y and
Z for which the supply of gas to the town is guaranteed by the collaloorafiat least

two of them. The first year the needs of the town were of75?, and each one of the
firms offered a fixed quantity of 68'm?, 30 Km? and 60K m?, respectively.

This situation can be described by the strict representation of the \edigiajority
game

[75; 60, 30, 60).

As it can be seen any coalition made by two or more of the firms is sufficberihé
town needs, that’s to sayV™ = {{1,2},{1,3},{2,3}} andA = 60, B = 90.

Apart from the coalition formed, the amplitude of the representasion i

_ (T-AB-T) 1
=M\ A By~ 11

From this, we can assure that for the second year, bearing in mind thatthaéces-
sities and the disponibilities of the companies will slightly vamg can describe this
situation as follows:

[75(1 4 A);60(1 + A1), 30(1 + X2), 60(1 + A3)].

From the amplitude which we obtain, we can assure that the maximum pegeait
such variations is 8.09% so as to guarantee the fulfilment of the agreement.

: 1 . . .
But, if we had used the tolerance,— R the maximum estimated percentage in the

possible modifications would have been just 6£@6%.
0

Example 7.2.We suppose that a shareholder society is formed by three majority sha-
reholders (each one of them has respectively 50.000, 25.000 and 25.08¢) stratt an
ocean of small shareholders which possess a total of 5.000 shares. Ath#l cdm-
pany is passed if the sum of the shares belonging to the holders whielinviavour

is more than 60.000 shares. It can be foreseen that at the end of the yearitheee w

a variation of the capital which will affect the distribution of the an8as well as the
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quota. If we exclude the possibility of the entry of new investtiie situation can be
described with the following game:

[60000(1 + A);50000(1 + A1),25000(1 + A2),25000(1 + As),wa(l + Ag)
wn(1+ An)],

where the subindices 4,. , n represent the smaller playejs, w; = 5.000 andw; > 0
i=4
fori =4,... ,n.

As the amplitude is;, any variation such gs\| < =, |A;| < 5 for each

i = 1,2,...,n, assures that the process of taking decisions in the company will not
vary.

For example, the distribution

[62.500; 47.916,26.041, 23.958, wa(1 + Ay), ..., wy (1 + Ap)]

represents the same situation as the first game.
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