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1. INTRODUCTION

A simple game is a cooperative game in which every coalition is either winning or
losing, with nothing in between. These games covers direct majority rule, weighted vo-
ting, bicameral or multicameral legislatures, committeesand veto situations. For simple
games it is generally assumed that there are no restrictionson cooperation and hence,
every subset of players is a feasible coalition. However, inmany social and economic
situations, this model does not work. Axelrod (1970) definesa linear order relation,
policy order, in the set of players and introduces the axiom of formation of connected
coalitions, which are really convexes with respect to the order. Faigle and Kern (1992)
proposed a model in which cooperation among players is restricted to some family
of subsets of players, thefeasiblecoalitions of the game. Their idea is to restrict the
allowable coalitions by using underlying partially ordered sets. The purpose of this pa-
per is to study the existence of winning and connected coalitions in situations where
the preferences for communication among the players are modeled by a partial order.
Furthermore, we study in a finite topological space, thedominationsituations given by
Peleg (1981) and Einy (1985).

2. TOPOLOGY AND ORDER

Alexandroff (1937), has studied spaces endowed with the finest topology compatible
with an order. In a poset(P,≤), the topology of Alexandroff A(P,≤) is the set of all
upper sets ofP. That is,U ⊆P is open if and only ifU =↑U , where↑U := {y∈P : ∃x∈
U, x≤ y}. Then,A(P,≤) is the finest topology where the sets↓ (x) := {y∈ P : y≤ x},
are closed.

Moreover, there exists the lowest topology such that the down sets↓(x) are closed, and
it is the upper interval topologyΦ(P,≤) (see Johnstone (1982)).

Thespecialization orderingon a topological spaceX is defined byx≤ y if and only if
x∈ {y}, i.e.,{x}⊆ {y}. This relation is a partial order if and only if the spaceX satisfies
the axiomT0, that is,{x} = {y} impliesx = y.

Definition 2.1.

A topology in the poset(P,≤) is compatible with the order if the specialization ordering
induced by the topology coincides with the partial order of the poset.

A topologyΩ in (P,≤) is compatible if and only ifΦ(P,≤)⊆ Ω ⊆ A(P,≤). If the poset
(P,≤) is finite, thenA(P,≤) = Φ(P,≤) and is the uniqueT0 topology compatible with
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the order (see Johnstone, p. 248). In what follows, we assumethat every finite poset is
endowed with thisT0 topology and we denote this topological space byFTS.

A subspaceS of a topological space isconnectedif there do not exist a partition ofS
into two disjoint nonempty open sets inS.

Let (P ≤) be a poset and letx,y ∈ P, with x ≤ y. We consider the interval[x,y] :=
{z∈ P : x≤ z≤ y}. Thecover relationis defined by:y≻ x if and only if the interval
[x,y] = {x,y}.

For a poset(P,≤) we denote byC(P) its covering graph, that is, the graph whose
vertices are the elements ofP and whose edges are those pairs{x,y} for whichx≻ y or
y≻ x. Then, the covering graph is the undirected Hasse diagram of(P,≤).

The comparability graphof the poset(P,≤) is the graphG = (P,E) with {x,y} in E
wheneverx < y or y < x. Note that the transitive closure of the covering graph ofP is
its comparability graph. We consider the following subsets:

Γ+(x) = {y∈ P : y≻ x}, Γ−(x) = {y∈ P : y≺ x}, Γ(x) = Γ+(x)∪Γ−(x).

Proposition 2.1.

Let (P,≤) be an FTS. Then:

1. A⊆ P is open if and only ifΓ+(x) ⊆ A, for all x ∈ A.

2. B⊆ P is closed if and only ifΓ−(x) ⊆ B, for all x ∈ B.

3. C⊆ P is closed and open (clopen) if and only ifΓ(x) ⊆C, for all x ∈C.

Proof

(1) Letx∈ A be any element. SinceA is open we have↑(A) = A hence↑(x) ⊆ A. Then
Γ+(x) ⊆↑(x) ⊆ A.

Conversely, we only need to show that↑A⊆ A. If y∈↑A then there existsx∈ A with
x≤ y. Assume thatx < y, we can obtain a path fromx to y,

x≺ z1 ≺ ·· · ≺ zp ≺ y.

Thusz1 ∈ Γ+(x) and soz1 ∈ A and by inductiony∈ Γ+(zp) ⊆ A.

The proofs of properties (2) and (3) are similar.
¤
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Some notable elements in a poset can be characterized using their topological proper-
ties.

• x∈ P is maximal⇔ Γ+(x) = /0 ⇔{x} is open.

• x∈ P is minimal⇔ Γ−(x) = /0 ⇔{x} is closed.

• x∈ P is maximal and minimal⇔ Γ(x) = /0 ⇔{x} is clopen.

A subsetC of a poset is achain if {x,y} ⊆ C, x 6= y imply x < y or y < x. Then, the
subsetC ⊆ P is a chain if and only if for every pairx,y ∈ C, the subspace{x,y} is
connected.

A subsetA of a poset is anantichainif {x,y} ⊆ A, x≤ y if and only if x = y. Then, the
subsetA ⊆ P is an antichain if and only if the only connected subspaces are the sets
{x}, x∈ A.

The following theorem summarizes the properties of the connected subspaces in a finite
topological space. This result was showed for the comparability graph of a poset by
Khalimsky et al. (1990) and by Préa (1992).

Theorem 2.2.

Let (P,≤) be an FTS. Then:

1. P is a connected topological space if and only if the covering graph C(P) is connec-
ted.

2. S is a connected subspace of P if and only if the covering graph C(S) of the induced
subposet S is connected.

3. The components of the finite topological space P coincideswith the components of
the covering graph.

Proof

(1) Givenx∈ P, we consider the set

C(x) := {y∈ P : there is a pathx−y}.

Let us show thatA = C(x)∪{x} is a clopen set. First, by the definition

Γ(x) ⊆C(x) ⊆ A.
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Next, giveny∈ A with x 6= y, there is a path fromx to y. Moreover, there is a path from
x to any of the elements ofΓ(y) obtained by adding the vertex ofΓ(y) or deletingy.
Finally,

Γ(y) ⊆C(x) ⊆ A.

ThereforeA 6= /0 is clopen andP is a connected topological space, and soA = P.

Conversely, suppose thatP is not connected and|P| > 1. ThenP = P1∪P2, whereP1

andP2 are nonempty clopen disjoint sets. Takex1 ∈ P1 andx2 ∈ P2, since the covering
graph is connected, there is a path fromx1 to x2. This path must contain two adjacent
vertices

y1 ∈ P1, y2 ∈ P2, such thaty1 ≺ y2 or y2 ≺ y1.

Then, we have
y1 ∈ {y2} ⊆ P2 = P2 or y2 ∈ {y1} ⊆ P1 = P1.

It follows thaty1 ∈ P1∩P2 or y2 ∈ P1∩P2, which is a contradiction.

Equivalences (2) and (3) follows from (1).
¤

A graph is arooted tree(see Aigner, (1988)) if it is connected, there is a vertexxr such
thatΓ−(xr) = /0 and for each vertexx 6= xr we have|Γ−(x)| = 1.

A bijective mapf : (P,≤)→ (P′,≤′) between finite topological spaces is a homeomorp-
hism if and only if for allx,y∈ P, x≤ y⇔ f (x) ≤′ f (y) (see Johnstone (1982)).

A topological spaceX is strongly connectedif every nonempty closed subset is connec-
ted (see Hoffmann (1981)). IfX is aT0-space, then this definition is equivalent to the
specialization ordering is down-directed. Therefore,(P,≤) is a strongly connected FTS
if and only if P =↑(xr), wherexr is the infimum ofP.

Proposition 2.3.

Let (P,≤) be an FTS. The following assertions are equivalent:

1. The covering graph of P is a rooted tree.

2. (P,≤) is strongly connected and for every x∈ P, the closed set{x} is homeomorphic
to a chain.
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Proof

(1) ⇒ (2) If P is a rooted tree, there is a vertexxr such thatx 6= xr impliesxr < x, and
soP =↑ (xr). Moreover, the closure of any elementx∈ P is the unique path fromx to
xr and it is homeomorphic to a chain.

(2) ⇒ (1) If P =↑ (xr), thenxr is the infimum ofP, soΓ−(xr) = /0. It suffices to show
|Γ−(x)|= 1 if x 6= xr . We assume that|Γ−(x)|> 1. Then, there are two distinct elements
{y,z} ⊆ Γ−(x), hence the pair

{y,z} ⊆↓(x) = {x}.

But {x} is homeomorphic to a chain, thusy≤ z or z≤ y. Both cases lead toy = z, so
|Γ−(x)| = 1.

¤

To characterize the FTS whose covering graph is a tree, we introduce the following
concepts due to Khalimsky et al. (1990).

Definition 2.2.

A finite connected ordered topological space (COTS) is a poset, with at least three
points, whose specialization ordering is a zigzag, endowedwith the compatible topo-
logy.

Figure 2.1. Covering graph of a finite COTS

Definition 2.3.

A digital arc in a topological space is the range of a homeomorphism from a finite
COTS. A topological space X is digitally arc-connected if for every x, y∈ X, there is a
digital arc from x to y.

Proposition 2.4.

If (P,≤) is an FTS with|P| ≥ 3, then the following are equivalent:
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1. The covering graph(P,E) is a tree.

2. (P,≤) is connected, and given{x,y} ⊆ P, there is a unique digital arc C with end-
points x and y which contains the supremum and the infimum (if they exist) of their
subsets of points.

Proof

(1)⇒ (2) Since the covering graphC(P) is connected, it is also digitally arc-connected
(see Khalimsky et al., Theorem 3.2). Then, there is a digitalarcC from x to y, for any
{x,y} ⊆ P. The definition of finite COTS implies thatC contains the supremum and the
infimum when they exist. Finally, the covering graph is acyclic soC is unique.

(2) ⇒ (1) If the FTS(P,≤) is connected, then its covering graph is connected. Assume
that the covering graph has a cycleCk, k > 3. Then there are two different digital arcs
(which are obtained deleting intermediate chains) and we obtain a contradiction.

¤
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Figure 2.2. Covering graph with a cycle

3. TOPOLOGICAL SIMPLE GAMES

A simple game on a finite setN is a functionv : 2N → {0,1}, with v( /0) = 0, and such
thatv(S)≤ v(T) wheneverS⊆T. The elements ofN are called players and the elements
of 2N coalitions. Any coalitionS⊆ N is winning if v(S) = 1 or losing if v(S) = 0. A
simple game isproper if v(S) = 1 impliesv(N\S) = 0, for all S⊆ N, i.e.,

v(S)+v(N\S) ≤ 1 for all S⊆ N.
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Definition 3.1.

Let (N, t) be a finite topological space satisfying the axiom T0 and let v be a simple
game on N. The associated topological simple game(N,vt), denoted TSG, is

vt(S) := máx{v(T) : T is a connected subspace of(S, t)}.

Note that(vt)t = vt , and so a simple game is a topological simple game if and only if
vt = v.

If G= (N,E) is the comparability graph of the specialization ordering of (N, t) andS⊆
N, the subgraph ofG induced byS is the comparability graph of the induced subposet
S. Therefore, the following statements are equivalents:

1. The subspaceS is connected in the topologicalT0-space(N, t).

2. The covering graph of the induced subposetS is connected.

3. The comparability graph of the induced subposetS is connected.

We note that ifv is a proper simple game the its associated topological simple gamevt

is proper and hence

vt(S) = ∑{v(T) : T ⊆ Sis a maximal connected subgraph ofG}.

Remark 3.1.

Let G be the comparability graph of the specialization ordering of t. Thus, the topolo-
gical simple gamevt is aΓ-component additive game by Potters and Reijnierse (1995).

Example

Let N = {1, . . . ,n} and consider the collectionFn of all the connected subspaces of a
finite COTS(N, t), that is,

Fn = {[i, j] : 1≤ i ≤ j ≤ n}∪{ /0} ,

where[i, j] = {i, i +1, . . . , j −1, j}. We introduce a special class of simple games called
weighted voting games. The symbol[q; w1, . . . ,wn] will be used, whereq is the quota
needed for a coalition to win, andwi is the number of votes of playeri. Then, the above
symbol represents the simple gamev defined by

v(S) =

{

1, if w(S) ≥ q
0, if w(S) < q,
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wherew(S) = ∑i∈Swi . Then(N,vt) is a topological simple game which corresponds to
a voting situation in a unidimensional policy order.

Thecoreof a game(N,v) is the set

C(v) = {x∈ Rn : x(N) = v(N) , x(S) ≥ v(S) for all S⊆ N} ,

wherex(S) = ∑i∈Sxi andx( /0) = 0. A simple game has a nonempty core if and only if
the set

V =
⋂

{S⊆N :v(S)=1}

S 6= /0.

First, we obtain a characterization of the core ofvt by using only connected coalitions.

Proposition 3.1.

Let (N,v) be a simple game and let(N, t) be an FTS with comparability graph G=
(N,E). If F is the collection of the connected subgraphs of G, and v(N) = vt(N) then

C
(

vt) = {x∈ Rn : x(N) = v(N), x(S) ≥ v(S) for all S∈ F } .

Proof

If x∈C(vt) thenx(N) = vt(N) = v(N) andx(S) ≥ vt(S), for all S⊆ N. Hencex(S) ≥
vt(S) = v(S), for all S∈ F .

Conversely, letx∈ Rn such thatx(N) = v(N), andx(S) ≥ v(S), for all S∈ F . Then, for
all S⊆ N,

x(S) = ∑
i∈S

xi = ∑
k

x(Tk) ≥ ∑
k

v(Tk) = máx
k

v(Tk) = vt(S),

where{Tk} is the partition ofS in its maximal connected subgraphs.
¤

The vectors{ei}
n
i=1 are the vectors of the canonical basis ofRn. The indicator function

1S : N →{0,1} for the subsetS⊆ N is given by

1S(i) =

{

1, if i ∈ S
0, otherwise.

In the following theorem, we will give results concerning the structure of the core for
topological simple games. LetG = (N,E) be the comparability graph of the specializa-
tion ordering of(N, t) and letF be the collection of the connected subgraphs ofG. We
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consider now the set
VF =

⋂

{S∈F :v(S)=1}

S.

Theorem 3.2.

Let (N,vt) be a TSG with vt(N) = 1 and letF be the collection of the connected sub-
graphs of its comparability graph. ThenVF 6= /0 if and only if C(vt) 6= /0. Furthermore,

C
(

vt) =
{

x∈ Rn : x≥ 0, x(N) = x(VF ) = 1
}

.

Proof

If VF 6= /0 we takeei ∈ Rn such thati ∈ VF . For all S∈ F such thatv(S) = 1 we
havei ∈ S, and henceei (S) ≥ v(S) for all S∈ F . Moreover, sinceei (N) = 1 = vt (N) ,
Proposition 3.1 implies thatei ∈C(vt) .

We observe now that{i} ∈ F , and then

C
(

vt) =
{

x∈ Rn : x≥ 0, x(N) = x(S) = 1 for all S∈W F
}

,

whereW F = {S∈ F : v(S) = 1}. To obtain the converse, ifC(vt) is nonempty we have
that the linear system

n

∑
j=1

x j = 1, Ax= 1, x j ≥ 0, j = 1, . . . ,n

whereA= (1S)S∈W F
has a solutionx 6= 0. We claim thatVF 6= /0, because

⋂

S∈W F S= /0
implies that every column of the matrixA has at least one entry equal to 0. We take the
sum of equations〈1S,x〉 = 1, for all S∈W F and obtain

α1x1 + · · ·+αnxn =
∣

∣W F
∣

∣ , with α j <
∣

∣W F
∣

∣ , 1≤ j ≤ n.

Therefore,
(∣

∣W F
∣

∣−α1
)

x1 + · · ·+
(∣

∣W F
∣

∣−αn
)

xn = 0, and this is a contradiction.
¤

Corollary 3.3.

If (N,vt) is a TSG with vt(N) = 1, then

C
(

vt) = conv
{

ei : i ∈ VF
}

.
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Proof

Sinceei ∈ C(vt) for all i ∈ VF , the convexity of the core implies that the convex hull
of these vectors is a subset of the core. To prove the reverse inclusion, letx be a vector
of C(vt). If i /∈ VF thenxi = 0, since there is at least oneS∈W F such thati /∈ Sand
x(S) = x(N) = 1.

¤

Example

Let N = {1, . . . ,n} be a set of players. Let us consider the weighted voting gamev =
[q; w1, . . . ,wn], given by

w1 = · · · = wn = 1 and q =

⌈

n+1
2

⌉

,

where⌈x⌉ is the least integer≥ x. If (N, t) is a finite COTS then the collection of the
connected subspaces isFn = {[i, j] : 1≤ i ≤ j ≤ n}∪{ /0}. We observe that

VFn =

{⌊

n+1
2

⌋

,

⌈

n+1
2

⌉}

,

and hence we may apply Corollary 3.3 and obtain

C
(

vt) =

{

{ek+1} if n = 2k+1,
conv{ek,ek+1} if n = 2k.

Note the power of the central players with respect to the policy order.

Given a game(N,v) and a coalitionS⊆ N, thesubgame(S,v |S) is obtained by restric-
ting v to 2S. Propositions 2.3 and 2.4 imply the next properties of topological simple
games.

Proposition 3.4.

Let (N,vt) be a TSG whose covering graph of specialization ordering of tis a rooted
tree. Then:

1. Every coalition containing the root is connected.

2. For all i ∈ N, the subgame
(

{i}, vt |{i}

)

satisfies vt |{i} = v |{i}.
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Proposition 3.5.

Let (N,vt) be a TSG whose covering graph of specialization ordering of tis a tree.
Then:

1. For every{i, j} ⊆ N with i < j, the subgame
(

[i, j], vt |[i, j]
)

satisfies vt |[i, j] = v |[i, j].

2. If {i, j} ⊆ N is an antichain, there is a subgame C such that it is a COTS with the
induced topology.

Note that under the respective hypothesis, ifi < j then we obtain topological subgames
which are ordinary games in the intervals[i, j]. For an antichain, the subgame is defined
in the connected coalitions of a COTS, and these coalitions coincide with the convex
coalitions for linear orderings studied by Axelrod, Peleg and Einy (see Einy, Definition
3.2).

Now, we analyze the relation between domination and connectivity. We need the follo-
wing concepts by Einy and Peleg.

Definition 3.2.

Let (N,v) be a simple game and let S⊆ N. A player i∈ S weakly dominates S if
v(B∪ (S\{i})) = 1 implies v(B∪{i}) = 1, for every B such that B∩S= /0.

In this case, we denote{i} ⊣ S\ {i}. Let (N,vt) be a topological simple game and we
define:

H i = {S⊆ N : i ∈ S, v(S) = 1, and{i} ⊣ S\{i}} .

C i = {S⊆ N : i ∈ S, v(S) = 1, andSis connected in(N, t)} .

Einy (Propositions 5.8 and 5.9) studied the compatibility of Axelrod’s hypothesis (only
connected coalitions with respect to a linear order are formed) with several hypot-
hesis about winning coalitions which are dominated by a player. We obtain sufficient
conditions for the existence of topological simple games with winning and connected
coalitions containing a player such that this player weaklydominates these coalitions.
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Theorem 3.6.

Let (N,v) be a proper simple game with|N| ≥ 3 and let(N, t) be an FTS such that its

covering graph is a tree. If there is a player i∈N such that v
(

{i}
)

= 1and v({i, j}) = 1

for some j/∈ {i}, then H i ∩C i 6= /0.

Proof

Given {i, j} ⊂ N, there is a unique connected coalitionS′ homeomorphic to a COTS
with endpointsi and j. Then,S′ \ { j} and{i} are connected containingi, henceS=
(S′ \{ j})∪{i} is connected andv(S) = 1 sincev is monotone. Therefore,S∈ C i . If we
prove thati weakly dominatesS, we haveS∈ H i , and H i ∩C i 6= /0. Thus, givenB⊆ N
with B∩S= /0 andv(B∪ (S\{i})) = 1, it is enough to show thatv(B∪{i}) = 1. If we
assume thatj ∈ B, then{i, j} ⊆ B∪{i} and the hypothesisv({i, j}) = 1 implies that
v(B∪{i}) = 1. Note that if j /∈ B, thenB∪ (S\ {i}) ⊆ N \ {i, j}. But v is proper and
v({i, j}) = 1, thusv(B∪ (S\{i})) = 0, which contradicts the hypothesis.

¤

The condition of Theorem 3.6 is not necessary, as the following example shows:

Example

Let v = [6; 3,2,2,3] be a voting game with four players. In the COTS with covering

graphÂÁÂ player 1 satisfiesv
(

{1}
)

= v({1,2}) = 0. But S= {1,2,3} ∈ C1 and

{1} ⊣ S\{1}. HenceS∈ H 1∩C1.

The Dilworth’s chain decomposition can be interpreted as a Ramsey theorem:Any or-
dered set P of size at least ab+1 contains either a chain of length a+1 or an antichain
of size b+1 (see Bogart et al.(1990)). We apply the Dilworth’s theoremto a societyN,
with a partial ordering of its members. The minimal (by set inclusion inN×N) ordering
is the trivial ordering, i.e.,x≤ y in N impliesx= y and the maximal ordering is the linear
ordering. We suppose that every coalition of three members has got at least one rela-
tion and obtain winning chains (coalitions with total cooperation) for majority games.

Theorem 3.7.

Let (N,vt) be a TSG whose covering graph has no antichain of size three and v(S) = 1
if and only if |S| ≥ ⌊n/2⌋+ 1, where n= |N|. Then, if n= 2k+ 1 there is a minimal
winning chain and if n= 2k, k ≥ 2, there is a minimal winning chain or N= C1∪C2,
where the chains have exactly k elements.

329



Proof

If n = 2k+ 1, and takea = k, b = 2, then there is a chainS⊆ N with a+ 1 = k+ 1
elements. Therefore,|S|= k+1= ⌊n/2⌋+1, soSis a minimal winning chain. Ifn= 2k,
takea= k−1, b= 2, thenab+1= 2k−1 and|N|= 2k > ab+1. Thus, there is a chain
Swith a+ 1 = k elements. IfS is not maximal, then there is a minimal winning chain
with k+1 = ⌊n/2⌋+1 elements. Otherwise,N is the union of two disjoint chains ofk
elements.

¤
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worth theorems, Birkhäuser, Boston, pp. 19-29.

Dilworth, R.P. (1950).«A decomposition theorem for partially ordered sets», Annals
of Math., 51, 161-166.

Einy, E. (1985).«On connected coalitions in dominated simple games», Intern. J. Ga-
me Theory, 14, 103-125.

Faigle, U. and Kern, W. (1992).«The Shapley value for cooperative games under pre-
cedence constraints», Intern. J. Game Theory, 21, 249-266.

Hoffmann, R.E. (1981).«Continuous posets, prime spectra of completely distributive
complete lattices, and Hausdorff compactifications». In: Banaschewski, Hoffmann
(Eds.),Continuous lattices, Springer-Verlag, Berlin, pp. 159-208.

Johnstone, P.T. (1982).Stone spaces, Cambridge University Press, Cambridge.

Khalimsky, E.D., Kopperman, R. and Meyer, P. (1990).«Computer graphics and con-
nected topologies on finite ordered sets», Topology and its Applications, 36, 1-17.

Peleg, B. (1981).«Coalition formation in simple games with dominant players», In-
tern. J. Game Theory, 10, 11-33.

330



Potters, J. and Reijnierse, H. (1995).«Γ-component additive games», Intern. J. Game
Theory, 24, 49-56.
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