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1. INTRODUCTION

A simple game is a cooperative game in which every coalit®rither winning or
losing, with nothing in between. These games covers dire@rity rule, weighted vo-
ting, bicameral or multicameral legislatures, commiti@ed veto situations. For simple
games it is generally assumed that there are no restriabiore®operation and hence,
every subset of players is a feasible coalition. Howevemany social and economic
situations, this model does not work. Axelrod (1970) defiadmear order relation,
policy order, in the set of players and introduces the axiom of formatiboomnected
coalitions, which are really convexes with respect to thieorFaigle and Kern (1992)
proposed a model in which cooperation among players isicesirto some family
of subsets of players, thfeasiblecoalitions of the game. Their idea is to restrict the
allowable coalitions by using underlying partially ordésets. The purpose of this pa-
per is to study the existence of winning and connected ¢oditin situations where
the preferences for communication among the players areleddy a partial order.
Furthermore, we study in a finite topological space,dbminationsituations given by
Peleg (1981) and Einy (1985).

2. TOPOLOGY AND ORDER

Alexandroff (1937), has studied spaces endowed with thetfitmpology compatible
with an order. In a posetP, <), the topology of Alexandroff @, <) is the set of all
upper sets oP. ThatisU C Pis openifand only it =TU, wherefU :={ye P: Ix¢
U, x <y}. Then,A(P,<) is the finest topology where the sét&) := {y e P:y < x},
are closed.

Moreover, there exists the lowest topology such that thendests| (x) are closed, and
it is the upper interval topolog (P, <) (see Johnstone (1982)).

The specialization orderingn a topological spack is defined byx <y if and only if
xe {y}, i.e., {x} C {y}. This relation is a partial order if and only if the spa¢esatisfies
the axiomTy, that is,{x} = {y} impliesx =Y.

Definition 2.1.

A topology in the poséP, <) is compatible with the order if the specialization ordering

induced by the topology coincides with the partial ordertaf poset.

AtopologyQ in (P, <) is compatible if and only ifp(P, <) C Q C A(P, <). If the poset
(P, <) is finite, thenA(P, <) = ®(P, <) and is the uniquéy topology compatible with
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the order (see Johnstone, p. 248). In what follows, we asshat@very finite poset is
endowed with thiSp topology and we denote this topological spacd-iys

A subspaces of a topological space isonnectedf there do not exist a partition @
into two disjoint nonempty open sets$

Let (P <) be a poset and let,y € P, with x <y. We consider the intervgk,y] :=
{ze P : x< z<y}. Thecover relationis defined byy > x if and only if the interval

Xy = {xy}.

For a poset(P, <) we denote byC(P) its covering graph that is, the graph whose
vertices are the elementsBfand whose edges are those pdig/} for whichx >y or
y > X. Then, the covering graph is the undirected Hasse diagrd gf).

The comparability graphof the posetP, <) is the graphG = (P,E) with {x,y} in E
wheneverx < y or y < x. Note that the transitive closure of the covering grapl® ig
its comparability graph. We consider the following subsets

FrMx)={yecP:y=x}, I (xX)={yeP:y=<x}, TX)=r"(x)ur—(x.

Proposition 2.1.

Let(P, <) be an FTS. Then:

1. ACPisopenifandonlyiff*(x) CA forallx € A
2. BC Pisclosed if and only if" ~(x) C B, for all x € B.

3. CC Pisclosed and open (clopen) if and onlyfifx) C C, for all x € C.

Proof

(1) Letx € Abe any element. Sinckis open we havé (A) = Ahence| (x) C A. Then
r(x) CT(x) CA.

Conversely, we only need to show tHah C A. If y € T A then there exists € A with
x <y. Assume thak < y, we can obtain a path fromtoy,

X<21 < <=Zy=<Y.

Thusz € I'"(x) and saz; € Aand by inductiory € ' (z,) C A

The proofs of properties (2) and (3) are similar.
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Some notable elements in a poset can be characterized bsingapological proper-
ties.

e x € Pis maximals I (x) =0« {x} is open.

e X € Pisminimals ' (x) = 0« {x} is closed.

e x € Pis maximal and minimat I (x) = 0 < {x} is clopen.

A subsetC of a poset is a&hainif {x,y} CC,x#yimply x <y ory < x. Then, the

subsetC C P is a chain if and only if for every paix,y € C, the subspacéx,y} is
connected.

A subsetA of a poset is amntichainif {x,y} C A, x <yifand only if x=y. Then, the
subsetA C P is an antichain if and only if the only connected subspacedtsr sets
{x},xeA.

The following theorem summarizes the properties of the eoted subspaces in a finite
topological space. This result was showed for the complitsabraph of a poset by
Khalimsky et al. (1990) and by Ba (1992).

Theorem 2.2.

Let(P,<) be an FTS. Then:

1. Pis aconnected topological space if and only if the coxgegraph GP) is connec-
ted.

2. Sis aconnected subspace of P if and only if the coveringrg@S) of the induced
subposet S is connected.

3. The components of the finite topological space P coincidésthe components of
the covering graph.

Proof
(1) Givenx € P, we consider the set

C(x) :={ye€ P : thereis a path —y}.

Let us show tha® = C(x) U {x} is a clopen set. First, by the definition

r(x) CC(X) CA
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Next, giveny € Awith x =y, there is a path fromtoy. Moreover, there is a path from
x to any of the elements df(y) obtained by adding the vertex 6fly) or deletingy.
Finally,

F(y) CC(x) CA

ThereforeA # 0 is clopen andP is a connected topological space, andise P.

Conversely, suppose thBtis not connected anfP| > 1. ThenP = P UP,, whereP;
andP, are nonempty clopen disjoint sets. Takec P; andx, € P, since the covering
graph is connected, there is a path freto x,. This path must contain two adjacent
vertices

y1 € P1,y2 € Po, suchthaty; <y, or yo <.

Then, we have o o
yie{y} CPo=Pory,e{yi1} CP =Py
It follows thaty; € PLN P, ory, € PN P,, which is a contradiction.

Equivalences (2) and (3) follows from (1).
O

A graph is arooted treg(see Aigner, (1988)) if it is connected, there is a vexreguch
thatl" ~ (%) = 0 and for each vertex # x, we have|l~ (x)| = 1.

A bijective mapf : (P, <) — (P, <) between finite topological spaces is a homeomorp-
hism if and only if for allx,y € P, x <y < f(x) <’ f(y) (see Johnstone (1982)).

A topological spac is strongly connected every nonempty closed subset is connec-
ted (see Hoffmann (1981)). X is a Tp-space, then this definition is equivalent to the
specialization ordering is down-directed. Theref¢Re<) is a strongly connected FTS
if and only if P =1 (X, ), wherex; is the infimum ofP.

Proposition 2.3.

Let(P, <) be an FTS. The following assertions are equivalent:

1. The covering graph of P is a rooted tree.

2. (P,<) is strongly connected and for every, the closed sefx} is homeomorphic
to a chain.
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Proof

(1) = (2) If P is a rooted tree, there is a vertexsuch thatx # x, impliesx, < x, and
soP =7 (x;). Moreover, the closure of any elemeng P is the unique path from to
% and it is homeomorphic to a chain.

(2)= (1) If P=1 (%), thenx is the infimum ofP, sol" ~(x) = 0. It suffices to show
[T~ (X)] = 1if x# %.. We assume thak ~— (x)| > 1. Then, there are two distinct elements
{y,z} €T~ (x), hence the pair

{y.2} L (0 ={x}

Butm is homeomorphic to a chain, thys< z or z < 'y. Both cases lead tp= z, so
()| =1.
O

To characterize the FTS whose covering graph is a tree, wedinte the following
concepts due to Khalimsky et al. (1990).

Definition 2.2.

A finite connected ordered topological space (COTS) is atpogth at least three
points, whose specialization ordering is a zigzag, endowitid the compatible topo-

logy.
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Figure 2.1. Covering graph of a finite COTS

Definition 2.3.

A digital arc in a topological space is the range of a homeophism from a finite
COTS. A topological space X is digitally arc-connectediifdeery x y € X, there is a
digital arc from x to y.

Proposition 2.4.

If (P,<)is an FTS withP| > 3, then the following are equivalent:
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1. The covering grapliP,E) is a tree.

2. (P <) is connected, and givefx,y} C P, there is a unique digital arc C with end-
points x and y which contains the supremum and the infimurheyf ¢xist) of their
subsets of points.

Proof

(1) = (2) Since the covering grafgl(P) is connected, it is also digitally arc-connected
(see Khalimsky et al., Theorem 3.2). Then, there is a digitaC from x to y, for any
{x,y} C P. The definition of finite COTS implies th&t contains the supremum and the
infimum when they exist. Finally, the covering graph is aysbC is unique.

(2) = (1) If the FTS(P, <) is connected, then its covering graph is connected. Assume
that the covering graph has a cy€lg k > 3. Then there are two different digital arcs
(which are obtained deleting intermediate chains) and vi&iola contradiction.

o A

"

c o

Figure 2.2. Covering graph with a cycle

O

3. TOPOLOGICAL SIMPLE GAMES

A simple game on a finite sét is a functionv: 2N — {0,1}, with v(0) = 0, and such
thatv(S) < v(T) whenevelSC T. The elements dfl are called players and the elements
of 2N coalitions. Any coalitionS C N is winning if v(S) = 1 or losing ifv(S) = 0. A
simple game iproperif v(S) = 1 impliesv(N\S) =0, forallSCN, i.e.,

V(S)+Vv(N\S) <1 forall SCN.
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Definition 3.1.

Let (N,t) be a finite topological space satisfying the axiognahd let v be a simple
game on N. The associated topological simple géwe'), denoted TSG, is

VH(S) :=max{v(T) : T is a connected subspace(&t)}.

Note that(V')' =\, and so a simple game is a topological simple game if and only if
V=V

If G=(N,E) is the comparability graph of the specialization orderifgh,t) andSC

N, the subgraph ofs induced bySis the comparability graph of the induced subposet
S Therefore, the following statements are equivalents:

1. The subspac8is connected in the topologic@}-spaceN,t).

2. The covering graph of the induced subpdsistconnected.

3. The comparability graph of the induced subp&istconnected.

We note that ifv is a proper simple game the its associated topological simggne/

is proper and hence

vt(S) = Z{V(T) : T C Sis a maximal connected subgraph®f.

Remark 3.1.

Let G be the comparability graph of the specialization orderihg dhus, the topolo-
gical simple game' is al -component additive game by Potters and Reijnierse (1995).

Example

Let N = {1,...,n} and consider the collectios, of all the connected subspaces of a
finite COTS(N,t), that is,
gn={[i,i]:1<i<j<nju{o},

whereli, j]={i,i+1,...,j—1,j}. We introduce a special class of simple games called
weighted voting game3he symbolq; wa, ..., wy] will be used, where is the quota
needed for a coalition to win, amd is the number of votes of playerThen, the above
symbol represents the simple gamndefined by

1, if wS>q
v(S) :{ 0, if w(S) <aq,
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wherew(S) = Ticswi. Then(N,\!) is a topological simple game which corresponds to
a voting situation in a unidimensional policy order.

Thecoreof a game(N, V) is the set
C(v) ={xeR": x(N) =V(N), x(S) > v(S) forall SC N},

wherex(S) = SicsX andx(0) = 0. A simple game has a nonempty core if and only if
the set

v= (] S#0

{SEN:v(S)=1}

First, we obtain a characterization of the core/fdby using only connected coalitions.

Proposition 3.1.

Let (N,v) be a simple game and I¢N,t) be an FTS with comparability graph &
(N,E). If 7 is the collection of the connected subgraphs of G, aiz) v= Vi (N) then

C (V) ={xeR": x(N) =Vv(N), Xx(S) > v(S) forall Se  }.

Proof

If x € C(V) thenx(N) = V(N) = v(N) andx(S) > V}(S), for all SC N. Hencex(S) >
V(S) =Vv(9), forall Se 7.

Conversely, lek € R" such thax(N) = v(N), andx(S) > v(S), for all S€ # . Then, for
all SCN,
X9 =S x=SxT)>S V(T = maxv(Ty) = V(S),
g1~ XM= M=

where{T} is the partition ofSin its maximal connected subgraphs.
O

The vectorse }[._, are the vectors of the canonical basisf Theindicator function
1s: N — {0,1} for the subseS C N is given by

. 1, ifiesS
15(')_{ 0, otherwise.

In the following theorem, we will give results concerning tstructure of the core for
topological simple games. L& = (N, E) be the comparability graph of the specializa-
tion ordering of(N,t) and let# be the collection of the connected subgraph&ofve
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consider now the set

‘Vj == ﬂ S.
{Sc7 :v(9=1}
Theorem 3.2.

Let (N,V}) be a TSG with§N) = 1 and let¥ be the collection of the connected sub-
graphs of its comparability graph. Them, # 0if and only if C(\) # 0. Furthermore,

C(V) ={xeR": x>0, x(N) =x(¥;) =1}.

Proof

If V5 # 0 we takeg € R" such thati € ¥;. For all Se # such thatv(S) = 1 we
havei € S and hence (S) > v(S) for all S€ 7 . Moreover, since (N) = 1 =V (N),
Proposition 3.1 implies thag € C(\!).

We observe now thdti} € 7, and then
C(V) ={xeR":x>0, x(N)=x(S)=1 forall Se w, },

wherew; ={Se€ ¥ :v(S) = 1}. To obtain the converse,@(\!) is nonempty we have
that the linear system

n
ijzl, Ax=1, x;>0, j=1,...,n
=1

whereA= (15)36% has a solutiox 7 0. We claim thaty’; # 0, becaus€s.,,, S=0
implies that every column of the matrihas at least one entry equal toWe take the
sum of equationgls,x) = 1, for all Se %, and obtain

CaXe + -+ OnXn = [ Wy |, With aj < |wy |, 1<j<n.

Therefore,(|wy | — a1) X1+ + (|5 | — on) Xa = 0, and this is a contradiction.
O

Corollary 3.3.
If (N,W) is a TSG with {N) = 1, then

C(V')=conv{e i€ vy }.
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Proof

Sinceg € C(V) for all i € v, the convexity of the core implies that the convex hull
of these vectors is a subset of the core. To prove the reveckesion, letx be a vector
of C(V). If i ¢ 7, thenx = 0, since there is at least oi®< w, such thai ¢ Sand
X(S) =x(N) =1.

O
Example

LetN = {1,...,n} be a set of players. Let us consider the weighted voting game
[Q; Wi, ..., Wy, given by

wp=--=W,=1 andq= ’Ver_l-"

where[x] is the least integer x. If (N,t) is a finite COTS then the collection of the
connected subspacesjig = {[i, ] : 1 <i < j <n}U{0}. We observe that

n+1 n+1
s ]
and hence we may apply Corollary 3.3 and obtain

[ {eq1} if n=2k+1,
C(V) —{ convie,eq1}  if n=2k.

Note the power of the central players with respect to thecpaider.

Given a gaméN, v) and a coalitiorS C N, thesubgamé&S v |s) is obtained by restric-
ting v to 25. Propositions 2.3 and 2.4 imply the next properties of togimal simple
games.

Proposition 3.4.

Let (N,V') be a TSG whose covering graph of specialization orderingisfa rooted
tree. Then:

1. Every coalition containing the root is connected.

2. ForallieN, the subgamém, v |W) satisfies V|y = v |-
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Proposition 3.5.

Let (N,V') be a TSG whose covering graph of specialization ordering isfd tree.
Then:

1. Forevery{i,j} C N withi< j, the subgamé[i, j|, V! | ;;) satisfies V|; jj = v/j .

2. If{i,j} € N is an antichain, there is a subgame C such that it is a COTB thi
induced topology.

Note that under the respective hypothesisxifj then we obtain topological subgames
which are ordinary games in the intervélg]. For an antichain, the subgame is defined
in the connected coalitions of a COTS, and these coalitioirscile with the convex
coalitions for linear orderings studied by Axelrod, Peled &iny (see Einy, Definition
3.2).

Now, we analyze the relation between domination and coivigctVe need the follo-
wing concepts by Einy and Peleg.

Definition 3.2.
Let (N,v) be a simple game and let SN. A player i€ S weakly dominates S if
v(BU(S\{i})) =1impliesBU{i}) = 1, for every B such that BS= 0.
In this case, we denotfi} - S\ {i}. Let (N,W) be a topological simple game and we
define:

7 {SCN:ieSVv(§ =1 and{i} 4S\{i}}.

Gi = {SCN:ieS v(S =1 andSis connected ifiN,t)}.

Einy (Propositions 5.8 and 5.9) studied the compatibilitArelrod’s hypothesisgnly

connected coalitions with respect to a linear order are fednwith several hypot-
hesis about winning coalitions which are dominated by agiaye obtain sufficient
conditions for the existence of topological simple gamethwiinning and connected
coalitions containing a player such that this player wealklgninates these coalitions.
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Theorem 3.6.

Let (N,v) be a proper simple game withN| > 3 and let(N,t) be an FTS such that its
covering graphis atree. If there is a playez N such that \(W) =1land ({i,j})=1

for some j¢ {i}, then #; N ¢ # 0.

Proof

Given{i, j} C N, there is a unique connected coalitiSnhomeomorphic to a COTS
with endpointsi and j. Then,S\ {j} and{i} are connected containirighenceS =
(S\{j})uU{i} is connected and(S) = 1 sincev is monotone. Therefor§< ;. If we
prove that weakly dominate§, we haveS e #j, and #; N ¢ # 0. Thus, giverB C N
with BNS=0andv(BU (S\{i})) =1, itis enough to show tha{BU {i}) = 1. If we
assume thaj € B, then{i, j} C BU{i} and the hypothesig({i, j}) = 1 implies that
v(BU{i}) = 1. Note that ifj ¢ B, thenBU (S\ {i}) C N\ {i,j}. Butv s proper and
v({i,j}) =1, thusv(BU (S\ {i})) = 0, which contradicts the hypothesis.

O

The condition of Theorem 3.6 is not necessary, as the fafigexample shows:

Example

Letv = [6; 3,2,2,3] be a voting game with four players. In the COTS with covering
graph\_"\_player 1 satisfiey (m) =v({1,2}) =0. ButS= {1,2,3} € ¢; and
{1} 4S\ {1}. HenceS e #1N 1.

The Dilworth’s chain decomposition can be interpreted asm$ey theoremAny or-
dered set P of size at least atll contains either a chain of length4al or an antichain
of size b+ 1 (see Bogatrt et al.(1990)). We apply the Dilworth’s theotera societyN,
with a partial ordering of its members. The minimal (by setusion inN x N) ordering

is the trivial ordering, i.ex<yin N impliesx =y and the maximal ordering is the linear
ordering. We suppose that every coalition of three membassgiot at least one rela-
tion and obtain winning chains (coalitions with total comgien) for majority games.

Theorem 3.7.

Let(N,V') be a TSG whose covering graph has no antichain of size three(@ = 1
if and only if|S > |n/2| 4+ 1, where n= |N|. Then, if n= 2k + 1 there is a minimal
winning chain and if n= 2k, k > 2, there is a minimal winning chain or N- C; UCy,
where the chains have exactly k elements.
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Proof

If n=2k+1, and takea = k, b = 2, then there is a chai8C N with a+1=k+1
elements. Therefor¢y = k+1= |[n/2] +1, soSis a minimal winning chain. Ih = 2k,
takea=k—1, b=2, thenab+1=2k—1 and|N| = 2k > ab+ 1. Thus, there is a chain
Swith a+ 1 =k elements. IfSis not maximal, then there is a minimal winning chain
with K+ 1= |n/2] + 1 elements. Otherwis# is the union of two disjoint chains &
elements.

(]
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