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1. INTRODUCTION

One of the methods of comparing two preparations, where one preparation is known
(Standard) and the other is new (Test), is estimation of their relative potency. In the
case of parallel-line designs, the relative potency,ρ, is defined as the ratio of a dose of
the Test preparation to such a dose of the Standard preparation that produces the sa-
me average response. The relative potency allows us to indicate which dose of the Test
preparation produces the same response as one dose of the Standard preparation. This
problem concerning univariate and multivariate observations was considered by many
authors: Finney (1978), Meisner et al. (1986), Laska et al. (1985), Williams (1988),
Vølund (1980, 1982), Carter and Hubert (1985), Rao (1954), Hanusz (1995) and many
others. In the multivariate case, most of the authors considered the problem of point
and interval estimation of the relative potency of preparations administered on homo-
genous experimental units. A similar problem arises when weapply doses of the pre-
parations to units which are not homogenous. Especially, with agricultural experiments
involving herbicides, for example, the most suitable designs for experiments are blocks.
However, in the case where doses of two preparations are administered in blocks, then
the supplemented block design should be recommended. In literature, supplemented
block designs, also referred to as augmented or reinforced block designs were consi-
dered in papers: Nigam et al. (1988), Ceranka, Krzyszkowska, (1992, 1994), Calínski,
Ceranka (1974). Blocks of the supplemented block designs contain basic and additio-
nal treatments. In particular, these designs can be adoptedto bioassays if the doses
of the Standard preparation constitute the basic treatments and the doses of the Test-
additional treatments. In the paper we consider the multivariate setting where for each
dose of the preparations a multivariate response is measured. On the responses we ma-
ke basic assumptions: normality, the same covariance matrix for all responses, mutual
uncorrelation between the responses, and the linear relation between the responses and
the logarithm to base 10 of the doses. The formulae for testing hypotheses connected
with parallelism and relative potency according to the experimental plan are presented.
Finally, theoretical considerations are illustrated withan example involving a simulated
data set.

2. NOTATIONS AND LINEAR MODEL

To describe a model of responses to the doses of the preparations administered in the
supplemented block design let us introduce some notations.Let us consider a design
with b blocks which are divided into two subblocks where the doses of the Standard
preparation are applied on the first subblock and the doses ofthe Test preparation on
the second subblock of each block. LetkS , kT be the (b × 1) vectors of numbers of
plots in the subblocks in each block. Suppose that theith preparation is applied onνi

doses denoted byuij (i = S, T ; j = 1, . . . , νi). The doses of the preparations are
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replicated in the experiment, so letri be the (νi × 1) vector of dose replications of the
ith preparation. For example, let us consider the experimental plan with the doses of the
Standard and the Test preparations administered in four blocks in the following way:

(2.1)

B1 B2 B3 B4

uS1 uS1 uS1 uS2

uS3 uS3 uS2 uS1

uS2 uT1 uS3 uT3

uT2 uT2 uT1 uT2

uT1 uT3 uT3 uT1

uT3 uT2

The plan (2.1) is described by:b = 4, νS = νT = 3, kS = [3, 2, 3, 2]′, kT =
[3, 3, 3, 3]′, rS = [4, 3, 3]′, rT = [4, 4, 4]′. The above vectors fulfill the following rela-
tions:r′S1νS

= k′

S1b = nS = 10, r′T 1νT
= k′

T 1b = nT = 12, where1i denotes the
vector ofi ones andnS , nT are the total numbers of plots where the doses ofS and
T are applied. This experimental plan is also uniquely characterized by the incidence
matrixN, defined as:

N =

[
NS

NT

]
=




1 1 1 1
1 0 1 1
1 1 1 0
1 1 1 1
1 1 1 1
1 1 1 1




uS1

uS2

uS3

uT1

uT2

uT3

B1 B2 B3 B4

The matrixN shows that in the plan (2.1) the doses of the preparations appeared once
in each block, only the second and the third dose of the Standard did not appear in the
second and the fourth block. Moreover, the submatricesNS andNT fulfil the equalities:
NS1b = rS , NT 1b = rT , N′

S1νS
= kS , N′

T 1νT
= kT .

Let us assume that for each dose of the preparationsS and T a p-variate response
vector is observed. Let us denote this response byyijkl, wherei = S, T ; j = 1, . . . , νi;
k = 1, . . . , rij ; l = 1, . . . , b andrij is the jth component of the vectorri. In most
assays, the responses are linearly related to the logarithmof the doses (Finney, 1978).
Therefore, the response can be written as:

(2.2) yijkl = αi + βixij + τl + eijkl

whereτl denotes the(p × 1) vector of the effects of thelth block in which the dose
uij was applied,αi, βi are the (p × 1) vectors of intercepts and regression slopes,
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respectively,xij = log(uij) denotes the logarithm to base 10 of the doseuij , eijkl is
the vector of errors corresponding toyijkl. As the whole experiment involves the total
number of experimental unitsn = nS + nT so the matrix (n × p) of all observations,
Y, whose rows arey′

ijkl, can be written in the following form:

(2.3) Y = XB + E

andB =




τ ′

α′

β′


 is the ((b+4)×p) matrix of parameters, whereτ = [τ1, τ2, . . . , τb] is

the (p×b) matrix of blocks effects,α = [αS , αT ] , β = [βS , βT ] are the (p×2) matrices
of intercepts and slopes,X = [D1, D2, ∆] is the (n × (b + 4)) matrix connected with
the matrix of parametersB, whereD1 is an (n × b) matrix connected withτ , having
the entries equal to 1 if the considered dose appeared in the block or 0 otherwise,D2 =[

1nS
0nS

0nT
1nT

]
, ∆ =

[
xS 0nS

0nT
xT

]
, andxi is the (ni × 1) vector of logarithms

of all doses of theith preparation applied in (2.1) and located in the same orderas
responsesy′

ijkl in the matrixY, E is an (n × p) matrix composed of alle′ijkl. About
the model (2.3) we make assumptions that the rows ofY are independent and have
the p-variate normal distribution with the same (p × p) unknown, positively defined
covariance matrix,Σ.

3. TESTING HYPOTHESIS ABOUT THE SAME SLOPE

Two preparations can be compared by the relative potency if they similarly influence
the responses. This similarity exists when the vectors of slopes for the Standard and the
Test preparations in model (2.3) are equal. It means that foreach measured feature of
the observations, the regression coefficients (slopes) areequal, so the regression lines
of each feature of responses versus the doses of Standard andthe Test preparations
are parallel. Such models are called a parallel- line model.If the model (2.3) has this
characteristic, then the following hypothesis should be true:

(3.1) H0
β : L′B = 0′ versusH1

β : L′B 6= 0′

whereL′ = [0′

b,0
′

2,m
′], m′ = [1,−1], and0′

i is the (1 × i) vector of nulls. To test the
hypothesisH0

β in (3.1) we can useWilks′ lambda or Lawley- Hotelling trace statis-
tic and becauserank(L′) = 1 then both statistics are equivalent (see Appendix B). Let
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us take theWilks′ lambda statistic which is defined as the ratio of two determinants:

(3.2) Λ =
|SE |

|SE + SH |

where

SH =
(
L′B̃

)
′
(
L′ (X′X)

−

L
)
−1 (

L′B̃
)

,

B̃ = (X′X)
−

X′Y,

SE =
(
Y − XB̃

)
′
(
Y − XB̃

)
.

Using the transformation given in Meisner et al. (1986) we can writeΛ in the following
form:

(3.3) Λ =
1

1 + V

whereV =
(L′

B̃)(SE)−1(L′
B̃)

′

L′(X′X)−L
. In the formula forV the general inverse to the matrix

X′X appears, soSH , B̃ andSE depend on the general inverse(X′X)
−. As this inverse

we propose the matrix given in Appendix A1. Moreover, in the vectorL′, only the
subvectorm′ has not null elements, soV can be calculated using the formula:

(3.4) V =

(
m′B̃1

)
S−1

E

(
m′B̃1

)
′

m′H−1m

whereB̃1 = H−1∆′ΦY, and formulae forH, ∆, Φ are given in A1 of the Appendix.

Under the null hypothesisH0
β , n−b−p−2

p
· V hasSnedecor′s F distribution with (p,

n − b − p − 2) degrees of freedom.

4. ESTIMATION OF THE RELATIVE POTENCY

Assuming the hypothesis (3.1) to be true, the model (2.3) canbe reparametrized by
replacingβ consisting of two vectorsβS andβT with one vector called alsoβ. A new
model takes a form:

(4.1) Y =XB + E
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whereB =




τ ′

α′

β′


, andτ , α remain the same as in (2.3) butβ is the (p × 1) vector of

slopes and, consequently, in the matrixX = [D1, D2, ∆̃], D1, D2 remain the same but

∆̃ = ∆ · 12 =

[
xS

xT

]
becomes a column vector.

In parallel- line designs with the linear relation between the responses and the loga-
rithm of the doses we get the logarithm of the relative potency, µ = log(ρ), which is
the distance between the logarithms of doses of both preparations giving the same ave-
rage responses. LetαSj , αTj , βj denote thejth components of the vectorsαS , αT , β
correspond to thejth feature. Then the dependence ofµ on intercepts and slope can be
illustrated on Figure 1.

Figure 1. Logarithm of the relative potency in parallel-line design.

This figure shows that for thejth feature (j = 1, . . . , p), µ =
αSj−αT j

βj
and if for each

feature the sameµ satisfies the above equality then in multivariate case the equality
αS − αT − µβ = 0 should be true. In the matrix notation the equality takes a form:

(4.2) H0
µ : L′

µB =0′ versusH1
µ : L′

µB 6=0′

whereL′

µ = [0′

b,m
′,−µ]. To test (4.2)Wilks′ lambda statistic in the form (3.3) is

used:

Λ(µ) =
1

1 + V (µ)

with V (µ) defined in the same manner asV in (3.3), takingL′

µ instead ofL′ andX

instead ofX. Using the formula for the general inverse to the matrixX′X given in
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Appendix A2, we get the formula forV (µ) as the ratio of two quadratics onµ:

(4.3) V (µ) =
Aµ2 − 2B · µ + C

aµ2 − 2b · µ + c

whereA = β̃′S−1
E β̃, β̃ = ∆̃′ΦY, B = m′α̃′S−1

E β̃, α̃ = F2

(
Y − ∆̃

′

β̃
)

, C =

m′α̃′S−1
E α̃m, a = 1/h, b = m′F2, c = m′(C− + hb2b

∗

2)m, andh, F2, b2, b∗

2, Φ
andC are given in A1 and A2 of the Appendix.

The problem of testing the hypothesisH0
µ in (4.2) was discussed by Williams (1988),

Carter and Hubert (1985), Meisner et al. (1986) or Hanusz (1995). The test derived
by Carter and Hubert, improved by using Bartlett correctionfactor, comparesn∗ ·
ln (1 + mı́nV (µ)) with the χ2 distribution with (p − 1) degrees of freedom, where
n∗ = n − r(X) − p−1

2 − 1
máx V (µ) , ln is natural logarithm, min and max denote the

minimum and maximum. If the hypothesis (4.2) is true then we takeµ̂ as the estimator
of the logarithm of the relative potency, for which the test functionΛ(µ) achieves its
maximum. The (1 − α) confidence interval for the logarithm of the relative potency
is a set ofµ satisfying the following inequality (see, Williams (1988), Meisner et al.
(1986)):

(4.4) P
{
Λ(µ) > Λ(µ̂) exp

(
−χ2

p−1(α)/n∗
)}

= 1 − α

or:

P
{
V (µ) ≤ (1 + V (µ̂)) exp

(
χ2

p−1(α)Án∗
)
− 1

}
= 1 − α

where exp(·) denotes the exponential function.

5. NUMERICAL EXAMPLE

To illustrate the theoretical consideration in Sections 2,3 and 4 we consider a generated
data set corresponding to the experimental plan (2.1). Let us take: the number of blocks,
b = 4, the number of features in each observation,p = 3, the vectors of intercepts:
αS = [11, 21, 31]′, αT = [10, 20, 30]′, the vectors of slopes:βS = βT = [1, 1, 1]′, the

matrix of block effects:τ = 0,01




1 −2 5 −4
−1 2 −3 2

2 3 −1 −4


, the same number of doses:

νS = νT = 3 and the same doses for the Standard and the Test preparations: 1, 10,
100 applied according to plan (2.1). Moreover, we assume that the covariance matrices

431



are the same for the Standard and the Test, and are equal toΣ =




3 2 1
2 2 1
1 1 4


. Using

the MapleV packet we generate the data set from the normal distribution, having a null
expectation and unit variance. The data is allocated in a (22× 3) matrix, and after some
mathematical transformations, using Cholesky decomposition of Σ (see, Krzanowski,
1988, p.478) we obtain the matrix of the observationY satisfying (2.3). To calculate
the test function of the hypothesis about the same slopes in (3.1), the test functionV is
calculated using formula given in (3.4). We obtained :V = 0,227, SnedecorF statistic,
under the truthfulnessH0

β is equal toF 0 = 13
3 · V = 0,98 and the probability thatF is

smaller thenF 0 is equal to 0.57, so the hypothesis in (3.1) is not rejected, therefore the
model (2.3) describes a parallel- line design.

When we consider the model (4.1) and the hypothesisH0
µ in (4.2), we obtained:

(5.1) V (µ) =
0,095µ2 − 0,060µ + 0,049

15
221µ2 + 10

663µ + 370
1989

.

Figure 2. Shape ofWilks
′
lambda statistic for testing the hypothesis about the logarithm of

Figure 2. the relative potency.

andWilks′ lambda statisticΛ(µ) = 1
1+V (µ) , for V (µ) described in (5.1) has a plot

given on Figure 2:

Calculating the extrema ofΛ(µ) we obtain the minimum at pointµ = −2,36 and
the maximum atµ = 1,21. Moreover,χ2

0 = n∗ · ln (1 + mı́nV (µ)) = 2,43 and the
probability thatχ2 is smaller thenχ2

0 is equal to 0.70, so the hypothesis in (4.2) is also
not rejected. The point in whichΛ(µ) achieves its maximum is taken as the estimator of
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the logarithm of the relative potency, sôµ = 1,21. Using the inequality given in (4.4),
the 95 per cent confidence interval forµ is given by the interval(0,99, 1,46). Putting to
the equality:αS −αT −µβ = 0, the values ofαS , αT andβ, let us notice that the true
value ofµ is equal to1. Having the point and interval estimators for the logarithmof
the relative potency we obtain the suitable estimators for the relative potency, namely,
ρ̂ = 16,34 andρ ∈ (9,92, 28,82).

6. CONCLUSION

In the paper we present the method of estimation of the relative potency in parallel-
line assays. In literature, in the multivariate setting, the test functions using to test the
multivariate hypotheses about parallelism and relative potency are presented in the case
where the doses of preparations are administered to homogenous experimental units.
In the experiments with homogenous experimental units, in the test functions given
by (3.2) and (3.4) the inverse toX′X andX′X appeared and have unique forms. The
problem of testing the same hypotheses in the case where the data is obtained on non-
homogenous experimental units is more complicated. The matricesX andX in (2.3)
and (4.1) are not of full rank, so the general inverse matrices toX′X, andX′X have to
be known to get the test functions. This problem is solved in the case where doses of
both preparations are administered to units with one directional changeability of units
formed the supplemented block designs. The formulae given in (3.4) and (4.3) gives us
possibility to calculate the values of the test functions and as the result of estimating the
relative potency, which was the objective of the paper.
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APPENDIX

A1. Formula for the general inverse of the matrixX′X used in Section 2

The matrixX′X of the model (2.3) has the following form:

X′X =




D′

1D1 D′

1D2 D′

1∆

D′

2D1 D′

2D2 D′

2∆

∆′ D1 ∆′ D2 ∆′ ∆


 =




kδ K D′

1∆

K′ nδ D′

2∆

∆′D1 ∆′D2 ∆′ ∆




where
D′

1D1 = kδ = diag(k) andk = kS + kT ,
D′

1D2 = K =[kS ,kT ],
D′

2D2 = nδ = diag(nS , nT ).

Using the formula given in Rao and Mitra (1971, p.41), the general inverse toX′X has
the following form:

(X′X)
−

=




k−δ(Ib + KC−K′k−δ) + b1Hb∗

1, −k−δKC− + b1Hb∗

2, b1

−C−K′k−δ + b2Hb∗

1, C− + b2Hb∗

2, b2

b∗

1, b∗

2, H−1




where

H = ∆′Φ∆, Φ = In − D1k
−δD′

1 − F∗

2CF2,

b1 = −F1∆H−1, b∗

1 = −H−1∆′F∗

1,

b2 = −F2∆H−1, b∗

2 = −H−1∆′F∗

2

F2 = C−(D′

2 − K′k−δD′

1), F∗

2 = (D2 − D1k
−δK)C−,

F1 = k−δ(D′

1 − KF2), F∗

1 = (D1 − F∗

2K
′)k−δ,

C = nδ − K′k−δK

andC− denotes the general inverse to(2 × 2) matrix C. Let us notice that only in
the case when the general inverse toC is symmetric thenb∗

1, b∗

2, F∗

1, andF∗

2 are the
transposition ofb1, b2, F1 andF2, respectively.
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A2. Formula for the general inverse of the matrixX′X used in Section 4

The general inverse to the matrixX′X from the model (4.1) has the following form:

(X′X)
−

=




k−δ(Ib + KC−K′k−δ) + hb1b
∗

1, −k−δKC− + hb1b
∗

2, b1

−C−K′k−δ + hb2b
∗

1, C− + hb2b
∗

2, b2

b∗

1, b∗

2,
1
h




whereh = ∆̃′Φ∆̃, is a constant now, and the others formulae remain the same as in
A1 taking the constanth instead of (2 × 2) matrixH.

B. Equality of Wilks′ lambda and Lawley − Hotelling trace statistics

When we test the hypothesisL′B = 0′, where the rank of the matrixL is equal to 1
thenWilks′ lambda statistic andLawley − Hotelling trace statistic are equivalent.
To show this, let us considerWilks′ lambda statistic:

(5.2) Λ =
|SE |

|SE + SH |

where|A| denotes the determinant of a matrixA, SH =
(
L′B̃

)
′
(
L′ (X′X)

−

L
)
−1

(
L′B̃

)
, B̃ = (X′X)

−

X′Y, SE =
(
Y − XB̃

)
′
(
Y − XB̃

)
. Meisner et al. (1986)

showed thatΛ can be transform to the following form:

Λ =
1

1 +
(
L′ (X′X)

−

L
)
−1 (

L′B̃
)
S−1

E

(
L′B̃

)
′
.

On the other hand,Lawley − Hotelling trace statistic is equal to:

T 2 = trace(S−1
E SH).

Using the trace property we can write:

T 2 = trace

(
S−1

E

(
L′B̃

)
′
(
L′ (X′X)

−

L
)
−1 (

L′B̃
))

= trace

((
L′B̃

)
S−1

E

(
L′B̃

)
′
(
L′ (X′X)

−

L
)
−1

)

=
(
L′ (X′X)

−

L
)
−1 (

L′B̃
)
S−1

E

(
L′B̃

)
′

.

Moreover in the case whererank(L) =1, and the hypothesisL′B = 0′ is true then
n−r(X)−p+1

p
· 1−Λ

Λ and n−r(X)−p+1
p

· T 2 haveF Snedecor distribution with(p, n −

r(X)−p + 1) degrees of freedom (see, Ahrens, Läuter, 1974). One can see that1−Λ
Λ =

T 2.
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