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1. INTRODUCTION

One of the methods of comparing two preparations, where oggapation is known
(Standard) and the other is new (Test), is estimation of ttedative potency. In the
case of parallel-line designs, the relative potepcys defined as the ratio of a dose of
the Test preparation to such a dose of the Standard prepatatt produces the sa-
me average response. The relative potency allows us taaitedichich dose of the Test
preparation produces the same response as one dose of nidar8tareparation. This
problem concerning univariate and multivariate obseovetiwas considered by many
authors: Finney (1978), Meisner et al. (1986), Laska et188%), Williams (1988),
Vglund (1980, 1982), Carter and Hubert (1985), Rao (1954judz (1995) and many
others. In the multivariate case, most of the authors censtithe problem of point
and interval estimation of the relative potency of preparet administered on homo-
genous experimental units. A similar problem arises wherapmy doses of the pre-
parations to units which are not homogenous. Especialty agricultural experiments
involving herbicides, for example, the most suitable desifgpr experiments are blocks.
However, in the case where doses of two preparations arenadered in blocks, then
the supplemented block design should be recommended.ehatlitre, supplemented
block designs, also referred to as augmented or reinforkmeak llesigns were consi-
dered in papers: Nigam et al. (1988), Ceranka, Krzyszkowdle®92, 1994), Cafiski,
Ceranka (1974). Blocks of the supplemented block designtaoobasic and additio-
nal treatments. In particular, these designs can be adaptbtbassays if the doses
of the Standard preparation constitute the basic treasramd the doses of the Test-
additional treatments. In the paper we consider the muiéitesetting where for each
dose of the preparations a multivariate response is mehd0rethe responses we ma-
ke basic assumptions: normality, the same covariancexfatrall responses, mutual
uncorrelation between the responses, and the linearaelaétween the responses and
the logarithm to base 10 of the doses. The formulae for @s$typotheses connected
with parallelism and relative potency according to the expental plan are presented.
Finally, theoretical considerations are illustrated vathexample involving a simulated
data set.

2. NOTATIONS AND LINEAR MODEL

To describe a model of responses to the doses of the preperaiiministered in the
supplemented block design let us introduce some notatlatsus consider a design
with b blocks which are divided into two subblocks where the dogeabe Standard
preparation are applied on the first subblock and the dosteedfest preparation on
the second subblock of each block. let, kr be the § x 1) vectors of numbers of
plots in the subblocks in each block. Suppose thatth@reparation is applied o
doses denoted by;; (: = S, 7T;j = 1,...,1;). The doses of the preparations are
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replicated in the experiment, so bgtbe the {; x 1) vector of dose replications of the
ith preparation. For example, let us consider the experiahpten with the doses of the
Standard and the Test preparations administered in fookslio the following way:

By By Bs By
usi usi us1 us2
uss3 us3 Us2 usi

(2.1) Us2 ur ug3 urs3
ur2 ur2 uri ur2
uri urs urs uri
urs ur2

The plan (2.1) is described by: = 4, vg = vr = 3, ks = [3,2,3,2), kpr =
(3,3,3,3),rs = [4,3,3), rr = [4,4,4]". The above vectors fulfill the following rela-
tions:ris1,, = ki1, = ng = 10, r;r1,, = k-1, = np = 12, wherel; denotes the
vector ofi ones andchg, nr are the total numbers of plots where the doses$ aind
T are applied. This experimental plan is also uniquely chareed by the incidence
matrix N, defined as:

1 1 1 17 us

1 0 1 1 | use

1 1 1 0 | uss

N = [ ES ] = |1 1 1 1| upm
T 1 1 1 1 Urs

1 1 1 1 urTs

By By Bz By

The matrixIN shows that in the plan (2.1) the doses of the preparationsaapg once
in each block, only the second and the third dose of the Stdrdid not appear in the
second and the fourth block. Moreover, the submatiéesandIN - fulfil the equalities:
Nslb =Trg, Nle =rr, Nfgl,,s = ks, NlTl,jT = kT.

Let us assume that for each dose of the preparatibasid 7' a p-variate response
vector is observed. Let us denote this responsg;hy, wherei = S, T j =1,...,v;;
E=1,...,r;: 1 =1,...,bandr;; is the jth component of the vectar;. In most
assays, the responses are linearly related to the logaothhe doses (Finney, 1978).
Therefore, the response can be written as:

(2.2) Yijkt = 0 + Bixij + 71 + €5

where7; denotes th€p x 1) vector of the effects of théh block in which the dose
u;; was appliedq;, 8; are the  x 1) vectors of intercepts and regression slopes,
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respectivelyz;; = log(u;;) denotes the logarithm to base 10 of the dosg e;;; is
the vector of errors correspondingg;x;. As the whole experiment involves the total
number of experimental units = ng + nr so the matrix ¢ x p) of all observations,
Y, whose rows arg;,,, can be written in the following form:

(2.3) Y=XB+E
,7_/

andB = | o | isthe (b+4) x p) matrix of parameters, where= 11, 72, ..., T3] iS
6/

the (p x b) matrix of blocks effectsqy = [ag, ar|, 8 =[Bs, Sr] are the p x 2) matrices
of intercepts and slopeX = [D,, D, Al is the (2 x (b + 4)) matrix connected with
the matrix of parameterB, whereD; is an (. x b) matrix connected withr, having
the entries equal to 1 if the considered dose appeared iridble @ 0 otherwiseD, =
Lus Ong , A= Xs  Ons , andx; is the @; x 1) vector of logarithms
0., 1., 0,, Xr
of all doses of theth preparation applied in (2.1) and located in the same cader
responsey; ., in the matrixY, E is an (2 x p) matrix composed of ak;,,,. About
the model (2.3) we make assumptions that the row¥ adre independent and have
the p-variate normal distribution with the samg & p) unknown, positively defined
covariance matrixy.

3. TESTING HYPOTHESIS ABOUT THE SAME SLOPE

Two preparations can be compared by the relative potendyeif similarly influence
the responses. This similarity exists when the vectorsopfes for the Standard and the
Test preparations in model (2.3) are equal. It means thagdoh measured feature of
the observations, the regression coefficients (slopes3@ueal, so the regression lines
of each feature of responses versus the doses of Standaithed@st preparations
are parallel. Such models are called a parallel- line mdtighe model (2.3) has this
characteristic, then the following hypothesis should be:tr

(3.1) Hj:L'B =0'versusHj; : L'B # 0’

whereL’ = [0, 05, m’], m" = [1, —1], and0; is the (L x ¢) vector of nulls. To test the
hypothesing in (3.1) we can us&ilks’ lambda or Lawley- Hotelling trace statis-
tic and becauseank(L’) = 1 then both statistics are equivalent (see Appendix B). Let
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us take thdVilks' lambda statistic which is defined as the ratio of two determinants:

82) s ts
where )
Sy = (L’E)/ (L’ (X'X)~ L) B (L'E) ,
B = (X'X) X',
Sp = (Y—Xf’,)/(Y—Xf’,).

Using the transformation given in Meisner et al. (1986) we wate A in the following
form:

(3.3) A=—

(L'B)(8p) *(L'B)’
L'(X'X) L
X'X appears, s8 5, B andS i depend on the general inver@€’X) . As this inverse
we propose the matrix given in Appendix AlMoreover, in the vectol/, only the

subvectom’ has not null elements, 96 can be calculated using the formula:

(m’]~31) S;Jl (m’ﬁl)/

m'H-1m

whereV =

. In the formula forV' the general inverse to the matrix

(3.4) V=

whereB; = H!A’®Y, and formulae foH, A, ® are given in Al of the Appendix.

Under the null hypothesng, % -V hasSnedecor’s F distribution with (,
n —b— p — 2) degrees of freedom.

4. ESTIMATION OF THE RELATIVE POTENCY

Assuming the hypothesis (3.1) to be true, the model (2.3)bsaneparametrized by
replacings consisting of two vectorgs and 3y with one vector called als@. A new
model takes a form:

(4.1) Y =XB +E
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7_/

whereB = | &' |, andr, a remain the same as in (2.3) biis the ¢ x 1) vector of
ﬁ/
slopes and, consequently, in the maix= [D;, Do, A], D, D, remain the same but

~ X
A=A 1,= { XS ] becomes a column vector.
T

In parallel- line designs with the linear relation betwebn tesponses and the loga-
rithm of the doses we get the logarithm of the relative pogepc= log(p), which is
the distance between the logarithms of doses of both prépasagiving the same ave-
rage responses. Leis;, ar;, §; denote thejith components of the vectorss, ar, 5
correspond to thgth feature. Then the dependenceuadn intercepts and slope can be
illustrated on Figure 1.

Log(dose)

Figure 1. Logarithm of the relative potency in parallel-line design.

This figure shows that for thgth feature { = 1,....,p), u = % and if for each
J

feature the samg satisfies the above equality then in multivariate case thmléy

ag — ar — pf = 0 should be true. In the matrix notation the equality takesanfo

(4.2) H)) : L, B =0 versusH, : L, B #0’

whereL;, = [0, m’, —u]. To test (4.2)Wilks' lambda statistic in the form (3.3) is

used:
1

AW =T Vi)

with V(1) defined in the same manner Hsin (3.3), takingL;, instead of’ andX
instead ofX. Using the formula for the general inverse to the maiiX given in
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Appendix A2, we get the formula fdr () as the ratio of two quadratics @n

Ap? —2B-p+C
4.3 =
(4.3) V() P S

whereA = 3'S;'3, 3 = A'®Y, B = m'a’S;'3, & = F, (Y - A’B) L C =
m’&’S;&m7 a=1/h,b = m'Fy, ¢ = m'(C~ + hbyb})m, andh, Fy, by, b}, &
andC are given in A1 and A2 of the Appendix.

The problem of testing the hypothesﬁé} in (4.2) was discussed by Williams (1988),
Carter and Hubert (1985), Meisner et al. (1986) or Hanus23)1L9The test derived
by Carter and Hubert, improved by using Bartlett correctiactor, compares.* -
In (1 +min V(x)) with the x? distribution with ¢ — 1) degrees of freedom, where
n* =n—rX) - % — m In is natural logarithm, min and max denote the
minimum and maximum. If the hypothesis (4.2) is true thenak@fi as the estimator
of the logarithm of the relative potency, for which the tastdtion A(x) achieves its
maximum. The [ — «) confidence interval for the logarithm of the relative potenc
is a set ofu satisfying the following inequality (see, Williams (1988)leisner et al.
(1986)):

(4.9) P{AG) > A exp (—xp1(@)/n")} =1-a
or.

P{V(p) <(1+V(@)exp (x;_1(a)/n*) =1} =1-a

where exp() denotes the exponential function.

5. NUMERICAL EXAMPLE

To illustrate the theoretical consideration in Section3 @nd 4 we consider a generated
data set corresponding to the experimental plan (2.1). $ &tke: the number of blocks,
b = 4, the number of features in each observatipns= 3, the vectors of intercepts:
ag = [11,21,31], ar = [10, 20, 30]’, the vectors of slopesis = 5r = [1,1, 1], the
1 -2 5 —4
matrix of block effectsr = 0,01 | —1 2 -3 2 |,the same number of doses:
2 3 -1 —4
vs = vy = 3 and the same doses for the Standard and the Test preparatidiis
100 applied according to plan (2.1). Moreover, we assume tleatdivariance matrices
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3 2 1
are the same for the Standard and the Test, and are egtiaktg 2 2 1 |.Using
1 1 4
the MapleV packet we generate the data set from the normtalbdison, having a null
expectation and unit variance. The data is allocated #2 & (3) matrix, and after some
mathematical transformations, using Cholesky decomipasitf 3 (see, Krzanowski,
1988, p.478) we obtain the matrix of the observatidrsatisfying (2.3). To calculate
the test function of the hypothesis about the same slop&sii, the test functiofy” is
calculated using formula given in (3.4). We obtainéd = 0,227, Snedecof statistic,
under the truthfulnes&’j is equal toF® = 1 . V' = 0,98 and the probability thak" is
smaller thenF° is equal to 0.57, so the hypothesis in (3.1) is not rejectextefore the
model (2.3) describes a parallel- line design.

When we consider the model (4.1) and the hypothH%jsin (4.2), we obtained:

10,0952 — 0,060 + 0,049
- 370

(5.1) V() 5
327 H% + G i+ 1050

0.25

0

075

Figure 2. Shape ofiVilks’ lambda statistic for testing the hypothesis about the logarithm of
the relative potency.

andWilks' lambda statisticA(u) = ﬁ(u), for V(u) described in (5.1) has a plot
given on Figure 2:
Calculating the extrema aof(;:) we obtain the minimum at point = —2,36 and

the maximum ap = 1,21. Moreover,x2 = n* - In(1 + min V(u)) = 2,43 and the
probability thaty? is smaller thenZ is equal to 0.70, so the hypothesis in (4.2) is also
not rejected. The pointin which(u) achieves its maximum is taken as the estimator of
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the logarithm of the relative potency, go= 1,21. Using the inequality given in (4.4),
the 95 per cent confidence interval fois given by the interval0,99, 1,46). Putting to
the equalityvs — ar — uf = 0, the values ofvs, ar and, let us notice that the true
value of 1 is equal tol. Having the point and interval estimators for the logaritbim
the relative potency we obtain the suitable estimatorsHerrelative potency, namely,
p = 16,34 andp € (9,92, 28,82).

6. CONCLUSION

In the paper we present the method of estimation of the velgtotency in parallel-
line assays. In literature, in the multivariate setting tbst functions using to test the
multivariate hypotheses about parallelism and relatitemey are presented in the case
where the doses of preparations are administered to horoogexperimental units.
In the experiments with homogenous experimental unitshintéest functions given
by (3.2) and (3.4) the inverse &’'X andX'X appeared and have unique forms. The
problem of testing the same hypotheses in the case wherathésdbtained on non-
homogenous experimental units is more complicated. TheiceatX andX in (2.3)
and (4.1) are not of full rank, so the general inverse mario&X’X, andX’X have to
be known to get the test functions. This problem is solvedhédase where doses of
both preparations are administered to units with one doeat changeability of units
formed the supplemented block designs. The formulae givéd.4) and (4.3) gives us
possibility to calculate the values of the test functiond asthe result of estimating the
relative potency, which was the objective of the paper.
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APPENDIX

Al. Formula for the general inverse of the matrix X’X used in Section 2

The matrixX’X of the model (2.3) has the following form:

DD, D'D, D)A K’ K DA
X'X=| D)D; D)D; D)A | =| K n’ D,A
A'D, A'D, A'A A'D; A'D, A'A
where
D/D;, = k°=diag(k)andk = kg + kp,
D/D;, = K =[kg, kr],
D,D, = n’=diag(ns,nr).

Using the formula given in Rao and Mitra (1971, p.41), theggahinverse t&X’X has
the following form:

k°(I, + KCTK'k™?) + b;Hb], -k °KC~ +b;Hbj, b,

(X'X)” = —~C K’k + byHb], C~ + byHb}, by
b1, by, H!

where

H=A'®A, ® =1, - Dk °D} — F5CFy,

b, = -FAH !, b = —H 'A'F?,

by = —F,AH !, bs = —H 'A'F}

F, = C (D), - K’k D)), Fj=(Dy;—Dk°K)C,

F, =k 9D} — KF,), F; = (D, - F;K))k°,

C=n’-Kk K
and C~ denotes the general inverse ( x 2) matrix C. Let us notice that only in

the case when the general inversgitas symmetric therby, b3, F7, andF} are the
transposition oby, by, F; andF,, respectively.
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A2. Formula for the general inverse of the matrixX’X used in Section 4

The general inverse to the matiX from the model (4.1) has the following form:

kI, + KC"K'k™°) + hb;b%, —kKC~ + hb;b}, b,
(X'X)™ = ~C~K'k™° + hbybi, C~ + hbybs, by
b}, b3, +

whereh = A’®A, is a constant now, and the others formulae remain the sanme as i
Al taking the constani instead of £ x 2) matrix H.

B. Equality of Wilks' lambda and Lawley — Hotelling trace statistics

When we test the hypothesigB = 0’, where the rank of the matrik is equal to 1
thenWilks’' lambda statistic andLawley — Hotelling trace statistic are equivalent.
To show this, let us considéVilks’ lambda statistic:

ISkl
5.2 A= ——"—F—
(-2 ISE + Su|

—1

~\/
where|A| denotes the determinant of a matdx Sy = (L’B) (L’ (X'X)~ L)

~ ~ ~\/ ~
(L’B), B = (X'X) XY, Sp = (Y - XB) (Y - XB) . Meisner et al. (1986)
showed that\ can be transform to the following form:
1

T (L/ (X/X)~ L) B (L/fa) sy (L/fa)

7"

On the other hand,awley — Hotelling trace statistic is equal to:
T? = trace(S,'Sh).
Using the trace property we can write:

T2 = trace Sz (L'E)/ (L’ (X'X)~ L) B (L’B
= trace (L’fs) S;! (L’ﬁ)/ (L' (X'X)~ L)_l
- (L’ (X'X)~ L) B (L’f;) St (L/E)/ .

Moreover in the case whereink(L) =1, and the hypothesit’B = 0 is true then
nerX)mptl L A2 gng 2=t X=PEL T2 have F' Snedecor distribution with (p,n —
r(X)—p + 1) degrees of freedom (see, Ahrengilter, 1974). One can see tHgt* =
T2
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