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This paper describes the Post Randomisation Method (PRAM) as a method
for disclosure protection of microdata. Applying PRAM means that for ea-
ch record in the data file according to a specified probability mechanism
the score on a number of variables is changed. Since this probability me-
chanism is known, the characteristics of the latent true data can unbiasedly
be estimated from the observed data moments in the perturbed file.
Hola
PRAM is applied to categorical variables. It is shown that both cross-
tabulation and standard multivariate analysis techniques can easily be
adapted to account for PRAM. It only requires pre-multiplication bythe
transpose of the inverted Markov transition matrix, specifying therando-
misation process. Also, estimates for the additional variance introduced by
PRAM are given. By a proper choice of the transition probabilities, PRAM
can be applied in such a way that certain chosen marginal distributions
in the original data file are left invariant in expectation. In thatcase the
perturbed data can be used as if it were the original data. We describehow
to obtain such an invariant PRAM process. Finally, some consequencesof
using PRAM in practice are discussed. The present paper is a shortened
version of Kooiman et al. (1997).
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1. INTRODUCTION

This paper investigates a suggestion by Särndalet al.. (1992), pp. 572-3, to protect
microdata files against disclosure by randomisation of individual record data, using
the methodology of randomised response techniques due to Warner (1965). This met-
hodology is employed when interviewers have to deal with highly sensitive questions,
on which the respondent is not likely to report true values in a face-to-face interview
setting. By embedding the question in a pure chance experiment the true value of
the respondent is never revealed to the interviewer. By knowing the probabilities in-
volved in the chance experiment, the analyst can nevertheless make inferences about
the population frequencies of the characteristic investigated, be it withsome loss in
precision. The suggestion of Särndalet al. amounts to applying the same randomisa-
tion technique to reported individual scores, prior to their release as microdata files.
Thus, true individual scores will not be revealed, whereas an analyst, by taking the
(known) randomisation model into account, can still make valid inferences from the
data set as a whole.

The methodology advocated in this paper represents an alternative to data swapping
as a technique for disclosure protection of microdata (see Dalenius and Reiss, 1982).
In data swapping individual scores on certain variables are interchanged between
records in such a way that second order moments are kept more or less intact (first
order moments are unchanged automatically).

In this paper we take another approach. We no longer require the perturbed file to
mimic the original one. Instead we require that data moments of the original file
can unbiasedly be estimated from the perturbed file. This is achieved as follows.
For each record in the original microdata file, the score on one or more variables
is replaced by an other score according to some probability mechanism. Because of
this the moments of the data will change, the true data moments of the original file
become latent. Since the probability mechanism that is used for perturbing the scores
is completely known to the data protector, it can be shipped to the analystjointly with
the perturbed file. This allows the analyst to reconstruct the latent truedata moments
to the extent that these moments can unbiasedly be estimated from the observed data
moments in the perturbed file. This method for disclosure protection of microdata
will be called the Post Randomisation Method (PRAM).

In order to make valid inferences from the perturbed file the analyst has to account
for the fact that the true data patterns are hidden behind a veil of errors delibera-
tely introduced to protect the individual records. Thus, he has to applysomewhat
more complicated types of statistical analyses, which is a drawback of the method
in comparison with other disclosure control techniques as for example recoding or
suppression of values. However, in this paper we show that this drawback is minor
when PRAM is applied to categorical variables. Most disclosure protection analysis
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of microdata involves categorical variables. Due to the fact that the analyst knows the
complete distribution of the errors, simple corrections that can be routinely applied
using standard statistical software are sufficient. As compared to data swapping, the
method has the important advantage that it is soundly statistical, not mechanical. This
allows us to invoke the complete apparatus of statistical modelling and inference, both
to make probability statements about disclosure risks at the individual record level
and to calculate the loss in precision of aggregate statistics, due to PRAM.

The remainder of this paper is organised as follows. In Section 2, PRAM isintroduced
by an example. In Section 3, the technique is worked out for the most elementary
type of analysis: cross-tabulation of categorical variables. The probability mechanism
used for PRAM can be chosen in such a way that the distribution of the variables in
the perturbed file equals that in the original file, in which case the perturbed file can
be used directly for analysis. Section 4 describes how to construct such a probability
mechanism. In Section 5 the consequences of using PRAM in practice are discussed
and finally Section 6 contains some conclusions and topics for further research.

2. DISCLOSURE PROTECTION BY RANDOMISATION

Consider af0; 1g�variable, e.g. gender with 0 = male, 1 = female. Scores are
randomised, independently for each record, by using the following (known) probability
matrix Px = fpklg:

Px = θ0 1�θ0

1�θ1 θ1

! ;
wherepkl represents the probability that the reported randomised score equalsl given
that the latent true score equalsk. In the sequel we denote the true score withξ, and
the randomised score withx. Assume that a data file representing a simple random
sample ofn records is available. We want to estimate the true population fractions of
both categories. From the original file this would be achieved by calculating T ξ=n,
T ξ being the total ofξ in the data file. From the perturbed file we can similarly
calculateTx. The relation between both totals can be computed as:

E (Txjξ) = Tξ θ1+ �n�Tξ
� (1�θ0) ;

where E(:j:) denotes the conditional expectation. An unbiased estimator forTξ is
directly obtained as

T̂ξ = Tx�n(1�θ0)
θ1+θ0�1

:(2.1)
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Clearly

V
�
T̂ξjξ�= V (Txjξ)(θ1+θ0�1)2 ;(2.2)

whereV(:j:) indicates the conditional variance. Note that we have to assume that
θ1 6= 1�θ0, since otherwise the denominator in (2.1) as well as (2.2) becomes 0. In
practice, it is desirable thatθ1 is not too close to 1�θ0, since a value ofθ1 close to
1�θ0 would lead to a large variance as can be seen from formula (2.2).

Formula (2.2) can be rewritten as follows. Note thatTxjξ is distributed as the sum of
two independent binomially distributed random variables with parameters(Tξ;θ1) and(n�Tξ θ0) respectively. ConsequentlyV(Txjξ) = Tξ θ1(1�θ1)+ (n�Tξ)θ0(1�θ0),
so that

V
�
T̂ξjξ�= Tξ θ1(1�θ1)+ �n�Tξ

�
θ0(1�θ0)(θ1+θ0�1)2 ;

which for θ0 = θ1(= θ) reduces to

V
�
T̂ξjξ�= nθ(1�θ)(2θ�1)2 :

This demonstrates that under the assumptions stated the standard deviation does
not depend on the true proportionTξ=n. Consequently the coefficient of variation

V
�
t̂ξjξ�1=2=Tξ is inversely proportional withTξ. Thus, the distortion is relatively

large when the true scoreTξ (or n�Tξ) is (very) low. This fits nicely into our general
purpose to protect rare scores, since these are the most vulnerable to disclosure.

We conclude this section with an example indicating the effect of PRAM on protecting
the individual scores. Consider a microdata file of n records, representing a simple
random sample of a population of size N. The data set contains exactly onesurgeon,
whose gender is given asfemale. PRAM has been applied to the gender variable,
though. Independently for each record, the gender score has been kept intact with
probability 0.9, and has been changed to the opposite score with probability 0.1.
Other variables in the file are not perturbed. Suppose an intruder knowsthat the
population contains 1 female surgeon and 99 male surgeons. He can derive that the
(posterior) odds are 11:1 in favour of a perturbed male surgeon in thedata file. When
the population contains 9 male surgeons besides the one female surgeon,the odds
are 1:1. So without additional information, the intruder can not conclude that he has
identified the female surgeon.

148



3. CROSS-TABULATION

We now turn to the problem of derivingvalid cross-tabulations from a perturbed data
file with categorical variables. The example of Section 2, which refers to the simplest
non-trivial tabulation possible, i.e. a(2�1) table, will be generalised step by step.
First consider a categorical variableξ, with categoriesξ(k); k= 1; : : : ;K. To protect
a data file containingξ, we perturb the scoresξ(k). In particular,ξ(k) is transformed
into a scorex(k) = ξ(l) with probability pkl , for k; l = 1; : : : ;K. The matrixPx = fpklg
is a Markov matrix, i.e.Px ι = ι; ι being a(K�1) vector of ones. Since in practical
situations we only want to change a small minority of the true values the diagonal
elements ofPx dominate strongly (these will in general be in the range of 0:9�1:0),
so thatPx certainly has full rank. Now letTξ be the(K�1) vector of frequencies of
the K categories ofξ, observed in the original data file, and similarly, letTx be the
vector of frequencies in the perturbed file. It is easy to verify that

E (Txjξ) = PT
x Tξ;(3.1)

where the superscript
0T 0

indicates transposition.

ThusTξ can unbiasedly be estimated by

T̂ξ = �P�1
x

�T
Tx:

Note that the matrixPx has to be non-singular in order forT̂ξ to be well defined. This
implies that the matrixPx can not contain two equal rows, which means that each
value ofξ corresponds uniquely with a distribution of the perturbed variableover the
categories, as determined by the rows ofPx. The conditional variance of̂Tξ is given
by

V
�
T̂ξjξ�= �P�1

x

�T
V (Txjξ) P�1

x :
Due to the recordwise independence of the multinomial transition process we obtain
the covariance matrix ofTx as

V (Txjξ) = K

∑
k=1

Tξ(k)Vk;
where, fork = 1; : : : ;K, Vk is the (K �K) covariance matrix of the outcomesx(l),
l = 1; : : : ;K, of the multinomial transition process of an element with true scoreξ(k):

Vk(l ; j) =( Px;kl (1�Px;kl) if l = j�Px;kl Px;k j if l 6= j
; for l ; j = 1; : : : ;K:(3.2)

Substituting the estimator̂tξ for the unknown true frequenciesTξ we obtain an esti-
mator for the uncertainty introduced by the noise process:

V̂ (Txjξ) = K

∑
k=1

T̂ξ(k)Vk:(3.3)
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The derivations show that univariate frequencies can straightforwardly be corrected
for the noise added to the file. It just requires pre-multiplication with the transpose
of the inverted transition probability matrix. This matrix can be supplied with the
(perturbed) data file so that analysis only requires a matrix multiplication as an extra
step in the tabulation. Using the same information it is also possible to estimate
covariances of the estimated true frequencies. This result generalises to multivariate
distributions (see Kooimanet al., 1997).

A problem related to cross-tabulation that is of practical importance is thefollowing.
Some users of statistical microdata sets want to match extra variables to thedata set
supplied. We give a simplified example. Suppose the data set supplied to a client
contains the dichotomous variable carownershipC (0: does not possess a car; 1: does
possess a car) and the highly detailed geographical classification indicatingplace of
living G (say, 1000 localities). The client wants to analyse the relationship between
car ownership and the presence of a railway station in the place of living. For each of
the 1000 localities of the geographical classification the client knows whether there is
a railway station or not. When the file is not perturbed it is easy to match this data to
the file and add a thirdvariable railway stationR (0: has no direct access to railway
facilities; 1: does have direct access to railway facilities). Then, the analysiscould be
done by studying the 2 ( 2 cross classification of the variables C and R. The variable
G is only used as an intermediate variable; it does not play a role in the subsequent
analysis.

The question arises whether this process, which occurs frequently in practice, is still
feasible when the microdata file supplied to the client has been perturbed. The answer
is: yes, it is still possible, but not by matching the new variable to the (perturbed)
microdata file itself. What can be done is the following. First estimate the(2�1000)
tableTCG. Then an unbiased estimate of the true table is

T̂CR= �P�1
C

�T
T̃CGP�1

G TGR;
whereT̂CG= �P�1

C

�t
T̃CGP�1

G is the estimatedC�G table.

In fact the TGR table acts as an aggregator of the rows ofTCG. The process of
matching additional variables as indicated above, therefore amounts to the addition of
specific aggregation keys for detailed classificatory variables present in the data set.
A similar example is occupation, which could for instance be aggregated according
to the distinction between white collar and blue collar work.

So far we have demonstrated that tabular analysis of perturbed microdata setscon-
sisting of categorical variables poses no fundamental problems. The frequency tables
summarise all available information in the data set. Multivariate analysis for catego-
rical data, like loglinear modelling or correspondence analysis, can therefore proceed
from the estimates of the latent true tables. The presence of a small bit ofextra va-
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riance in these estimates will generally pose no problems to the analyst, asthe extra
variance just adds to the sampling variance that is present in the data anyhow.

A somewhat more serious problem might be that for small frequencies in the original
table the estimated frequencies can turn out to be negative. Indeed, when a true
frequency is zero and its estimate is unbiased, positive and negative estimates are
equally likely to occur. When the analyst is interested in the cross-tabulation per se,
he might truncate estimated frequencies at zero: although a biased estimate results,
the mean squared error of the cells involved decreases by the truncation. However,
this procedure introduces an upward bias in the row and column totals associated with
these cells.

A final problem is that subdomain analysis can not proceed as usual, as subdomains
can no longer be properly identified when the domain indicator involved hasbeen
affected by PRAM. The solution is simple, though. We add the domain indicator
to the set of variables under analysis, and (re)construct the relevant tables,including
the domain indicator as an extra variable in the tabulations. The table entries pertai-
ning to the subdomain of interest give unbiased estimates of the original subdomain
tabulations.

4. INVARIANT PRAM

So far, it was seen that applying PRAM implies that the perturbed tables haveto be
pre-multiplied by(P�1

x )t . In this section, it will be demonstrated that the analysis of
the perturbed data file can be simplified ifPx is chosen to be invariant with respect to
the distribution of the variable that is to be perturbed. Here distribution can refer to the
distribution in the data file (the sample) as well as the distribution in the population.
The consequence of this choice ofPx will be discussed in this section.

First consider the case where the data file contains one categorical variableξ with
categoriesξ(k), k= 1; : : : ;K. As before,ξ(k) is transformed into a scorex(k) = ξ(l)
with probability pkl for k; l = 1; : : : ;K. The matrixPx = fpklg now should be chosen
in such a way that the distribution ofξ over the different categories in the original
data file is invariant with respect toPx, i.e. Px should satisfy .

PT
x Tξ = Tξ:(4.1)

The K�K identity matrix I always satisfies this equation, but this is not very inte-
resting, since the perturbed data file will be the same as the unperturbed data file. In
general, there will be at least one other solutionPx for this set of equations (since
there areK(K�1) unknowns andK equations). For example,Px can be chosen as
follows. Assume without loss of generality that the categories are ordered in such a
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way thatTξ(k) > Tξ(K) > 0 for k= 1; : : : ;K
pkl =8>><>>: 1� �0:1Tξ(K)=Tξ(k)� if l = k

0:1Tξ(K)=Tξ(k) if l = (k+1)modK

0 otherwise

(4.2)

Then a simple computation shows that this matrixPx satisfies

PT
x ι = ι and PT

x Tξ = Tξ:
There are other choices ofPx possible.

Now suppose thatPx is chosen such that (4.1) is satisfied. In that case

E (Txjξ) = PT
x Tξ = Tξ:

Here the first equality follows from formula (3.1) and the second equality follows
from the choice ofPx. This means thatTξ can unbiasedly be estimated by

T̂ξ = Tx:
Note that a transformation satisfying (4.1) is indeed invariant withrespect to the (sam-
ple) distribution ofξ. However this invariance does not entail that the transformation
is invariant with respect to crossings ofξ with other variables in the file.

5. APPLICATION OF PRAM

Now that we have introduced PRAM, the question that remains to be considered is
how to apply this technique in practice. This essentially means that a choice should
be made for the Markov matrices to be applied. This involves several aspects that
are discussed in separate subsections.

5.1. Markov Matrix Classes

For practical purposes it is important to study a few special classes of Markov matrices
that might be considered for use in PRAM. Below we study three types ofsuch
matrices. Other choices are also possible, however. What type of Markov matrix to
choose for a variable or set of variables in a particular application of PRAMdepends
on such things as the initial distribution to be left invariant (if any) and requirements
implied by the acceptability of certain combinations of values (only if combinations
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of variables have to be considered in the light of integrity checks). In factit takes
some further study into the structure of these matrices so as to inform the practitioner
who wants to make a motivated choice among the various possibilities.

5.1.1. Type I: two different non-zero values per row

Suppose that the number of categories for a variable on which PRAM is applied, is
K. A type I Markov matrixP is one that has nonzero values on the main diagonal
and for each row there is at least one other nonzero entry. Nonzero entries outside
the main diagonal are all the same within a row (they may differ among rows) and
they will in general not be equal to the entry on the diagonal in the same row. In
fact if in row i there areki �1 nonzero off-diagonal elements, they are all equal to(1� pii )=(ki � 1), where pii is the i�th diagonal element. Furthermore we require
that P is non-singular, so that the inverse ofP exists. Note that each row inP has
two unknowns, implying that, because the row entries should add to 1,there areK
unknowns. Note that the matrix that is defined in formula (4.2) is a type I matrix. In
this caseki = 2 for all i.

Special cases of Type I matrices are given in (5.1) below. In both caseski does not
depend oni. In the first caseki = 2, and in the second caseki = K.0BBBBBBBB@ p1 p1 0 : : : : : : 0

0 p2 p2 0 : : : 0
...

...
...

...
...

...
...

...
...

...
... 0

0 : : : : : : 0 pk�1 pk�1
pk 0 : : : : : : 0 pk

1CCCCCCCCA 0BBBBB@ p1 p̃1 : : : : : : p̃1

p̃2 p2 p̃2 : : : p̃2
...

...
...

...
...

p̃k�1 : : : p̃k�1 pk�1 p̃k�1

p̃k : : : : : : p̃k pk

1CCCCCA
(4.3)

wherepi = (1� pi), in the first matrix, and ˜pi = (1� pi)=(K�1) in the second matrix,
for i = 1; : : : ;K:
5.1.2. Type II: more than two different non-zero values per row

In this case we assume well-defined functional relationships between diagonal ele-
ments and the nonzero off-diagonal elements in the same row as the respectivediago-
nal element. In this light the Type I matrices are a subclass of the Type IImatrices:
each off-diagonal element is a linear function of the corresponding diagonalelement,
and besides these linear relationships are the same for the off-diagonal elements in the
same row. This removes the tight constraint for the Type I Markov matrices namely
that of the equality of the nonzero off-diagonal elements in the same row.
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5.1.3. Block matrices

This is not a new type in the sense of the previous two cases, but rather atype that
can be used with the blocks of e.g. Type I or of Type II. A block matrix hasblocks
Pj on the diagonal and all off-diagonal blocks have only zero entries. A block matrix
can be used in case the vector of probabilities to be left invariant can be split into
two or more parts that can, or should, be considered independent from each other. A
motivation for this could be derived from the values in the probability vector to be
left invariant. It might be more attractive to group these value into blocks consisting
of categories for whom the associated probabilities of the probability vector to remain
invariant are (almost) equal.

5.2. Disclosure Risk

We discuss the disclosure risk criterion that can be used to judge the effectiveness
of a PRAM procedure. The idea behind the risk measure that we propose isbased
on the paradigm used by Statistics Netherlands (see Willenborg and De Waal,1996).
Suppose that we consider a particular combination of key values in a record in the
perturbed file, given the PRAM techniques that have been applied to the variables
whose values are considered in the combination. For this combination the set of
original values that could yield it can be determined, as well as their probabilities. In
fact, we may consider the combination observed in the perturbed file equivalent to
the set of original combinations, together with their probabilities.To judge whether
this set of combinations is safe we apply a reasoning borrowed from thecase of
data without measurement errors. In that case one can apply the principle that the
frequency of a particular combination in the population is used to decide about the
safety or unsafety of that combination. If the combination occurs more frequently
than a threshold value it is considered safe, otherwise it is considered unsafe.

Instead of considering the expected frequency of the observed scores, the effectiveness
of PRAM can also be judged by considering the posterior odds, as was donein
the example at the end of Section 2. With posterior odds, we mean the (relative)
probability that a rare score in the perturbed file corresponds with a rare score in
the original file. These posterior odds should be small, so as to confuse a potential
intruder. How small these odds have to be, is a topic of further research.

5.3. Information Loss

In this subsection we consider a method to quantify the information loss due to the
application of PRAM. A straightforward measure is the increase of varianceof the
estimates due to the measurement error introduced by PRAM. Appropriate variance
formulas have been derived in Sections 3 and 4. Another approach that could be used
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for this purpose is by considering the concept of entropy, as introduced by Shannon in
communication theory in the 1940’s (see Shannon and Weaver, 1949). In information
theory it is assumed that a message is to be transmitted across a noisy channel, that
is a communication channel that may perturb part of the message. As a result ofthe
noisiness of the channel the message received at the other end of the channel may
be distorted. The problem then is to restore the original message from the received
message.

We can use the paradigm of the noisy channel through which a message is sent, to
calculate the information loss in case of the application of disclosure control techni-
ques such as PRAM1. It is a reasonable approach to produce a safe microdata file
from an unsafe one by applying disclosure control techniques in such a way to the
original microdata set that the resulting file is safe (according to the criteria applied)
while the amount of information loss due to the modification is minimised.

6. CONCLUDING REMARKS

In this paper, PRAM was introduced for categorical variables. It was shown how
cross-tabulations for the unperturbed variables could be unbiasedly estimated from the
perturbed file and how the additional variance introduced by the PRAM process could
be estimated. Furthermore, it was shown that the analysis could be simplified if an
invariant matrixPx was used for PRAM. However it remains to be studied whether it
is possible to choosePx in such a way that all cross-tabulations are (nearly) preserved.
A difficulty with the PRAM method is the preservation of consistency inthe data.
Inconsistent data are undesirable for statistical purposes. Moreover inconsistencies in
the data might give a potential intruder a clue about the values that havepossibly
been perturbed in a record. This knowledge might help such a person to (partly) undo
the protective effect of PRAM applied to a microdata file.

A number of topics remain for further research. For instance it should be clear what
Markov matrices should be used to apply PRAM: how should the entries bechosen,
especially in the case wherePx is invariant with respect to the distribution of some
variables: if a block matrix is used, how should the blocks be constructed. This issue
is, of course, directly related to the degree of safety that one tries to achievewith a
particular PRAM method applied to a microdata file, and also with the information
loss that one is willing to accept.

1The information theory description is mainly colourful imagery. One can just as well assume that the
measurement error is specified so that the observed measurements can be used to estimate the underlying,
latent values. Contrary to the usual situation encounteredwhen dealing with measurement errors in statistics,
the error process in PRAM is exactly known.
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Furthermore it remains to be studied what is more convenient in practice: general
PRAM or invariant PRAM. The first method is easier for the data protectorto apply
but it requires extra work on the part of the user, whereas for the second method
things are reversed. It is also possible to use a mixture of these two: a matrix which
is invariant for a number of combinations in the perturbed data file, butnot for all.
Some cross-tabulations can then directly be derived from the perturbed data file, and
for some a matrix multiplication has to be performed. In that case it is not possible
to reconstruct the original microdata file fromPx.

An important topic for further research is to check which standard statistical analysis
techniques survive PRAM, and how these techniques could be modified to account
for the PRAM process. Techniques that can be framed in terms of second momentsof
the data, like regression analysis, can easily be adapted to yield consistent estimation
results. However, many more statistical techniques still have to be considered.
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