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1. REGIONS, INTERVALS, CONFIDENCE LIMITS

Let X = (X1; : : : ;Xn)T be a sample with realizationsx = (x1; : : : ;xn)T , x2 X � Rn.
Suppose thatXi has a densityf (x;θ); θ = (θ1; : : : ;θk)T 2 Θ � Rk,with respect to
the Lebesgue measure,

H0 : Xi � f (x;θ); θ = (θ1; : : : ;θk)T 2 Θ�Rk:
Let b= b(θ) be a functionb(�) : Θ) B�Rm, B0 is the interior ofB

Definition 1 A random set C(X); C(X) � B� Rm is called the confidence region for
b= b(θ) with the confidence levelγ (0:5< γ < 1) if

in f
θ2Θ

PθfC(X) 3 b(θ)g= γ:
This definition implies for allθ 2Θ

PθfC(X) 3 b(θ)g � γ:
In the case b(θ) 2 B�R1 the confidence region is often an interval in R1,

C(X) =]bi(X);bs(X)[� B�R1;
and it is called the confidence interval with the confidence levelγ for b. The statistics
bi(X) and bs(X) are called the confidence limits of the confidence interval C(X).
Definition 2 A statistic bi(X)(bs(X)) is called the inferior (superior) confidence limit
with the confidence levelγ1(γ2) (or inferior (superior)γ1(γ2) - confidence limit briefly),
if

in f
θ2Θ

Pθfbi(X)< bg= γ1

 
in f
θ2Θ

Pθfbs(X)> bg= γ2

! ; 0:5< γ j < 1

Theγ = 1�α confidence interval has the form]bi(X);bs(X)[, where bi(X) and bs(X)
are theγ1 = 1�α1 inferior and γ2 = 1�α2 superior confidence limits, respectively,
such thatα1+α2 = α, (0< αi < 0:5). If α1 = α2, then takeγ1 = γ2 = 1�α=2.

Definition 3 The intervalsfbi(X);+∞g and f�∞;bs(X)g
are called the superior and inferior confidence intervals for b. Both intervals are
unilateral.
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2. THEOREM OF BOLSHEV

Lemma (Bolshev) Let G(t) be the distribution function of the random variable T .
Then for all z2 [0;1]

PfG(T)� zg � z� PfG(T�0)< zg:(1)

If T is continuous, then

PfG(T)� zg= z; 0� z� 1:
Proof: First, we prove the inequality

PfG(T)� zg � z; 0� z� 1:(2)

If z= 1; then PfG(T) � 1g � 1: Fix z2 [0;1) and for this value ofz consider the
different cases.

1) There exists a solutiony of the equationG(y) = z. Note

y0 = supfy : G(y) = zg:
It can be:

a)G(y0) = z. In this case

PfG(T)� zg � PfT � y0g= G(y0) = z:
b) G(y0)> z. Then

PfG(T)� zg � PfT < y0g= G(y0�0)� z:
2) A solution of the equationG(y) = z does not exist. In this case there existsy such
that

G(y)> z et G(y�0)< z;
so

PfG(T)� zg � PfT < yg= G(y�0)< z:
The inequality (2) is proved.
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We prove now the second inequality in (1) :

z� PfG(T�0)< zg; 0� z� 1:(3)

Consider the statistic�T. Its distribution function is

G�(y) = Pf�T � yg= PfT ��yg= 1�G(�y�0g:
Replacing

T;z;G by �T;1�z and G�
in the inequality (2) we have:

PfG�(�T)� 1�zg � 1�z; 0� z� 1:
This implies

Pf1�G(T�0)� 1�zg� 1�z;
PfG(T�0)� zg � 1�z;

PfG(T�0)< zg � z; 0� z� 1:
If T is continuous, thenG(t�0) = G(t), and (2) and (3) implyPfG(T)� zg= z for
all z2 [0;1].
The lemma is proved. �
Theorem (Bolshev) Suppose that the random variable T= T(X;b); b2 B, is such
that its distribution function

G(t;b) = PθfT � tg
depends only on b for all t2 R and the functions

I(b;x) = G(T(x;b)�0;b) and S(b;x) = G(T(x;b);b)
are decreasing and continuous in b for all fixed x2 X . In this case:

1) the statistic bi(X) such that

bi = bi(X) = supfb : I(b;X)� γ;b2 Bg; if this supremum exists;(4)
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or

bi = bi(X) = in f B; otherwise(5)

is the inferior confidence limit for b2 B0 with confidence level larger or equal toγ ;

2) the statistic bs(X) such that

bs = bs(X) = in ffb : S(b;X)� 1� γ; b2 Bg; if this infimum exists;(6)

or

bs = bs(X) = supB; otherwise(7)

is the superior confidence limit for b2 B0 with the confidence level larger or equal to
γ;
3) if x 2 X ; is such that the functions I(b;x) and S(b;x) are strongly decreasing with
respect to b, then bi(x) and bs(x) are the roots of the equations

I(bi(x);x) = γ and S(bs(x);x) = 1� γ:(8)

Proof: DenoteD = D(X) the event

D = fthere exists b such that I(b;X)� γg:
Then for the true valueb2 B0 we have (using Bolshev’s lemma)

Pfbi < bg= Pf(bi < b)\Dg+Pf(bi < b)\ D̄g=
Pf((supb� : I(b�;X)� γ;b� 2 B)< b)\Dg+P

n(in f B< b)\D̄
o== Pf(I(b;X)< γ)\Dg+PfD̄g � Pf(I(b;X)< γ)\Dg+Pf(I(b;X)< γ)\ D̄g== PfI(b;X)< γg � γ:

The theorem is proved. �
Remark: Often, instead of the statisticT a sufficient statistic or some function of
a sufficient statistic for a parameterb can be taken. �
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3. EXAMPLES

1. Let X= (X1; : : : ;Xn)T be a sample and suppose thatXi has a Poisson distribution
with a parameterθ:

Xi � f (x;θ) = θ
x

x

!
e�θ; x2 X = f0;1; : : :g; θ 2Θ =]0;∞[:

Denote

T = X1+ : : :+Xn:
a) Show that the statistics

θi = 1
2n

χ2
1�γ1

(2T) andθs = 1
2n

χ2
γ2
(2T +2)

are the inferior and superior confidence limits forθ with confidence levels larger
or equal toγ1 and γ2 respectively;χ2

α(n) denotes theα-quantile of a chi-square
distribution withn degrees of freedom.
b) Find a confidence interval forθ with confidence level larger or equal toγ.

Solution. The sufficient statisticT follows the Poisson distribution with parameter
nθ. Then

G(k;θ) =PθfT � kg= k

∑
i=0

(nθ)i

i!
e�nθ = Pfχ2

2k+1� 2nθg= P (2nθ;2k+2); k= 0;1; : : :
and

G(k�0;θ) = PθfT < kg= k�1

∑
i=0

(nθ)i

i!
e�nθ = P (2nθ;2k); k= 1;2; : : : ;

G(k�0;θ) = 0;k= 0:
The functionsI andS are

I(θ;X) =� P (2nθ;2T); if X 6= 0;
0; if X= 0;

S(θ;X) = P (2nθ;2T +2):
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The functionS is strictly decreasing for allT, T � 0, andI is strictly decreasing for
all T 6= 0. In these cases the theorem of Bolshev implies (see (8)):

P (2nθi ;2T) = γ1 P (2nθs;2T +2) = 1� γ2;
from which it follows

θi = 1
2n

χ2
1�γ1

(2T); θs = 1
2n

χ2
γ2
(2T +2):(9)

If T = 0 thenI(θ;X) = 0. There is no suchθ that

I(θ;X) = γ1 > 1
2
:

The formula (5) implies

θi = inf
θ>0

θ = inf ]0;+∞[ = 0:
b) The interval]θi ;θs[ is the confidence interval forθ with a confidence level larger
or equal toγ = 1�α, if γ1 = 1�α1, γ2 = 1�α2, α1 +α2 = α. If α1 = α2, take
γ1 = γ2 = 1�α=2.

2. Let X = (X1; : : : ;Xn)T be a sample and suppose thatXi has an exponential
distribution with meanθ;θ > 0 :

Xi � f (x;θ) = 1
θ

expf� x
θ
g1(x>0):(10)

a) Findγ-confidence limits forθ.

b) LetX(r)
n = (X(1); : : : ;X(r))T be a type II censored sample from the distribution (10).

Find aγ-confidence interval forθ and the survival function

S(x;θ) = PθfX1 > xg:
Solution. a). Denote

T = X1+ : : :+Xn:
The sufficient statisticT follows a gamma distributionG(n; 1

θ ) with parametersn and
1=θ:

PfT � tg= 1(n�1)!θn

Z t

0
un�1e�u=θdu; t � 0;
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and henceT=θ follows the gamma distributionG(n;1), and

2T
θ

= χ2
2n:

In this example the functionsI andS can be taken as

I(θ;X) = S(θ;X) = 1�P

�
2T
θ
;2n

� :
These functions are decreasing inθ and the formula (8) implies

1�P

�
2T
θi

;2n

�= γ and 1�P

�
2T
θs

;2n

�= 1� γ;
from where we obtain

2T
θi

= χ2
γ (2n) and

2T
θs

= χ2
1�γ(2n);

and hence

θi = 2T
χ2

γ(2n) and θs = 2T

χ2
1�γ(2n) :

b) As it is well known the statistic

Tr = r

∑
k�1

X(k)+(n� r)X(r)
follows a gamma distributionG(r; 1

θ ), and hence theγ = 1�α-confidence interval for
θ is ]θi ;θs[, where

θi = 2Tr

χ2
1�α=2(2r) and θs = 2Tr

χ2
1�α=2(2r) :

Since the survival functionS(x;b) = e�x=θ; x > 0, is increasing inθ, we have the
γ-confidence interval]Si ;Ss[ for S(x;θ), where

Si = e�x=θi and Ss = e�x=θs:
3. Let X= (X1; : : : ;Xn)T be a sample from Bernoulli distribution with parameter

θ:
Xi � f (x;θ) = θx(1�θ)1�x; x2 X = f0;1g; θ 2 Θ =]0;1[:

Find the limits of confidence forθ with the confidence levels larger or equal to
γ1.
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Solution. It is clear that the sufficient statistic

T = n

∑
i=1

Xi

follows the binomial distributionB(n;θ) with parametersn andθ. Then

G(k;θ) = PθfT � kg= k

∑
i=0

�
n
i

�
θi(1�θ)n�i =

I1�θ(n�k;k+1) = 1� Iθ(k+1;n�k); k= 0;1; : : : ;n�1;
G(k;θ) = 1; if k= n;

whereIx(a;b) is the beta distribution function with parametersa andb, and

G(k�0;θ) = k�1

∑
i=0

�
n
i

�
θi(1�θ)n�i =

1� Iθ(k;n�k+1); k= 1;2; : : : ;n;
G(k�0;θ) = 0; if k= 0:

The functionsI andS are

I(θ;X) =� I1�θ(n�T +1;T); if T 6= 0
0; otherwise;

S(θ;X) =� I1�θ(n�T;T+1); if T 6= n
1; if T = n:

We remark thatS(θ;X) is strictly decreasing inθ for T 6= n, and I(θ;X) is strictly
decreasing inθ for T 6= 0, and hence from the formula (8) it follows that

I1�θi (n�T+1;T) = γ1 for T 6= 0

and
θi = 0; if T = 0;

I1�θs(n�T;T+1) = 1� γ1 for T 6= n

and
θs = 1; if T = n:

Hence,

θi =� 1�x(γ1;n�T +1;T); if T 6= 0
0; if T = 0;

θs =� 1�x(1� γ1;n�T;T +1); if T 6= n
1; if T = n;
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wherex(γ1;a;b) is theγ1-quantile of the beta distribution with parametersa andb.

4. Let X be a discret random variable with the cumulative distribution function

F(x;θ) = PθfX � xg= (1�θ[x])1]0;+∞[(x); x2R1; θ 2 Θ =]0;1[:
Find aγ-confidence interval forθ, if X = 1:
Solution. In this case

I(X;θ) = F(X�0;θ) and S(X;θ) = F(X;θ):
If X = 1 then

I(1;θ) = F(1�0;θ) = F(0;θ) = 0

and according to the formula (5) we have that the inferior confidence limit θi for θ
with confidence level larger or equal toγ1 is

θi = inf θ = inf ]0;1[ = 0:
If γ1 = 1 thenPfθi � θg= γ1, so θi = 0 is 1-confidence inferior limit forθ. On the
other hand the function

S(1;θ) = F(1;θ) = 1�θ

is decreasing inθ, and hence according to the formula (8) we have

S(1;θs) = 1� γ2;
from whereθs = γ2, so theγ1 = 1 andγ2 confidence limits forθ are 0 andγ2, and a
gamma-confidence interval forθ is ]0;γ[, since forγ1 = 1 the equalityγ = γ1+ γ2�1
is true whenγ2 = γ.

5. Let X1 andX2 be two independent random variables,

Xi � f (x;θ) = e�(x�θ)1[θ;∞[(x); θ 2Θ = R1:
Find the smallestγ-confidence interval forθ.

Solution. The likelihood functionL(θ) for X1 andX2 is

L(θ) = expf�(X1+X2�2θ)g1[θ;∞[(X(1));
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from where it follows thatX(1) = min(X1;X2) is the minimal sufficient statistic forθ
and θ̂ = X(1) is the maximum of the function

l(θ) = lnL(θ) = (2θ�X1�X2)1[θ;∞[(X(1));
which is increasing inθ on the interval]�∞;X(1)]. Since for anyx� 0

PθfX(1) > xg= PθfX1 > x;X2 > xg=0@ ∞Z
x

e�(t�θ)dt

1A2 = e�2(x�θ);
we have

PθfX(1) � xg= G(x;θ) = �1�e�2(x�θ)�1[θ;∞[(x); x2R1:
In this example the functionsI(θ;X(1)) andS(θ;X(1)) are

I(θ;X(1)) = S(θ;X(1)) = G(X(1);θ) = 1�e�2(X(1)�θ):
They are decreasing inθ and hence from the theorem of Bolshev we have

1�e�2(X(1)�θi) = γ1; and 1�e�2(X(1)�θs) = 1� γ2;
thus

θi = X(1)+ 1
2

ln(1� γ1); and θs = X(1)+ 1
2

lnγ2:
The interval]θi ;θs[ is theγ-confidence interval forθ if γ = γ1+ γ2�1.

The length of this interval is

θs�θi = 1
2
[lnγ2� ln(1� γ1)]:

We have to findγ1 and γ2 such thatγ1+ γ2 = 1+ γ, 0:5< γi � 1 (i = 1;2) and the
interval ]θi ;θs[ is the shortest. We considerθs�θi as the function ofγ2. In this case(θs�θi)0 = 1

2
[lnγ2� lnγ2� γ]0 =

1
2

�
1
γ2
� 1

γ2� γ

�< 0;
and henceθs�θi is decreading inγ2 (0:5< γ2� 1) and the minimal value ofθs�θi

occurs whenγ2 = 1 andγ1 = 1+ γ� γ2 = γ. Since in this case

θi = X(1)+ 1
2

ln(1� γ) and θs = X(1)
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min(θs�θi) =�1
2

ln(1� γ)� ln
p

1� γ:
6. Let X1 andX2 be two independent random variables uniformly distributed on[θ�1;θ+1], θ 2 R1. Find the shortestγ-confidence interval forθ.

Solution. It is clear thatYi � θ is uniformly distributed on [-1,1], from where it
follows that the distribution of the random variable

T = X1+X2�2θ =Y1+Y2

does not depend onθ. It is easy to show that

G(y) = PfT � yg=8>><>>: 0; y��2;
1
8(y+2)2; �2� y� 0;
1� (y�2)2

8 ; 0� y� 2;
1; y� 2:

The function
G(T) = G(X1+X2�2θ); θ 2 R1;

is decreasing inθ. From (8) it follows that the inferior and the superior confidence
limits with the confidence levelsγ1 andγ2 correspondingly (0:5< γi � 1) satisfy the
equations

G(X1+X2�2θi) = γ1 and G(X1+X2�2θs) = 1� γ2;
from where we find

θi = X1+X2

2
�1+p2(1� γ1) and θs = X1+X2

2
+1�p2(1� γ2):

It is easy to show that for givenγ = γ1+ γ2�1 the function

θs�θi = 2�p2(1� γ1)�p2(1� γ2)
has its minimal value (considered as function ofγ1, 0:5< γ1 � 1) when

γ1 = 1+ γ
2

:
In this caseγ2 = 1�γ

2 , so the shortestγ-confidence interval forθ is ]θi ;θs[ where

θi = X1+X2

2
�1+p1� γ and θs = X1+X2

2
+1�p1� γ:

7. Suppose thatT is the number of shots until the first success. Find theγ = 0:9
confidence intervals for the probabilityp of success, if
a). T = 1; b). T = 4; c). T = 10.
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Solution. The distribution ofT is geometric :

PfT = kg= p(1� p)k�1; k= 1;2; : : : :
The values of the distribution function ofT in the pointsk are

G(k; p) = k

∑
i=1

p(1� p)i�1 = 1� (1� p)k�1; k= 1;2; : : : :
The functionsI ansS are

I(p;T) = 1� (1� p)T�1; S(p;T) = 1� (1� p)T:
The functionsI(p;T) andS(p;T) are increasing inp if T > 1 andT � 1, respectively.
So they are decreasing inq= 1� p.

It follows from the formula (8) thatγ1 lower and upper confidence limits satisfy
the equations

1�qT�1
i = γ1 for T > 1;

1�qT
s = 1� γ1 for T � 1:

So

qi = (1� γ1) 1
T�1 for T > 1;qs = γ

1
T
1 for T � 1

and

pi = 1�qs= 1� γ
1
T
1 for T � 1; ps = 1�qi = 1� (1� γ1) 1

T�1 for T > 1:
If T = 1, thenqi = inf ]0;1[ = 0, ps = 1.

To find theγ = 1�α= 0:9 confidence interval we takeγ1 = 1�α=2= 1+γ
2 = 0:95.

So theγ = 0:9 confidence interval forp is (pi ; ps), where

pi = 0:05; ps = 1 for T = 1;
pi = 1�0:95

1
4 = 0:01274; ps = 1�0:051=3 = 0:6316 for T = 4;

pi = 1�0:95
1
10 = 0:005116; ps = 1�0:051=9 = 0:2831 for T = 10:

8. Let X= (X1; : : : ;Xn)T be a sample and suppose thatXi has the normal distri-
bution: Xi �N(µ;σ2). Find aγ confidence interval forµ.

Solution. The sufficient statistic is(X̄;S2)
X̄ = 1

n

n

∑
i=1

Xi ; S2 = 1
n�1

n

∑
i=1

(Xi � X̄)2:
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Consider the statistic

T(X;µ) = p
n(X̄�µ)

S
:

The random variableT(X;µ) has the Student distribution withn�1 degrees of free-
dom and distribution functionFtn�1. So

I(µ;X) = S(µ;X) = Ftn�1(T(X;µ)):
The functionsI andS are decreasing with respect toµ, so by the theorem of Bolshev

Ftn�1(T(X;µi)) = γ1 = 1+ γ
2

Ftn�1(T(X;µs)) = 1� γ1 = 1� γ
2

and

µi = X̄� Sp
n

tn�1

�
1+ γ

2

� ;
µs = X̄+ Sp

n
tn�1

�
1+ γ

2

� ;
where tn�1(α) is the α-quantile of the Student distribution withn� 1 degrees of
freedom.

Confidence intervals for the variance, for the difference of two means, for the
ratio of two variances, etc., can be obtained in a similar way.
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