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EMPIRICAL SIGNIFICANCE TEST OF THE
GOODNESS-OF-FIT FOR SOME PYRAMIDAL
CLUSTERING PROCEDURES

CARLES CAPDEVILA MARQUES" and ANTONI ARCAS PONS*

Through a series of simulation tests by Monte Carlo methods, some aspects
related to the inference concerning pvramidal trees build by the maximum
and minimum methods are considered. In this sense, the quantiles of the
Y-Goodman-Kruskal statistic allow us to tabulate a significance test of the
goodness-of-fit of a pyramidal clustering procedure. On the other side, the
pyramidal method of maximum is observed to be clearly better (more effi-
cient) than that of the minimun in terms of the expected value for the gamma
statistic. Both for the maximum and minimum methods, a relation between
the number of objects to classify and the gamma distribution is observed.

Key words: Goodnes-of-fit, Pyramidal Clustering, Sample distribu-
tion of the y-statistic, Simulation test.

1. INTRODUCTION

Ultrametric trees are the most studied representations using discrete models. The
aim of this model is to achieve a family of partitions that can be interpreted as a set
of “natural” classifications of the population to classify, €.

Pyramidal trees, introduced by E. Diday, are a logical generalization of ultrame-
tric trees. They are less restrictive structures where recovering replaces the concept of
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partition, obtaining a representation which bears more information and is closer to the
initial dissimilarities. Diday (1986), Fichet (1984), Durand (1986, 1988) have studied
some interesting topics about this model.

The pyramidal-representation models intend to detect the presence of a pyramidal
structure of the population, starting from a dissimilarity matrix concerning the popula-
tion. The process having this aim consist in transforming the initial dissimilarity into
a pyramidal dissimilarity by means of some known pyramidal clustering procedure
algorithm; this pyramidal dissimilarity is equivalent to an indexed pyramid.

In applied problems it is necessary to measure the fitting between the pyramidal
tree obtained from some algorithm and the initial structure. In this sense, the most
used parameters are the y-Goodman—Kruskal coefficient (1954) and the cophenetic
correlation coefficient p (Farris J.S., 1969).

In spite of having these coefficients as a measure of the fitting between the initial
structure and the pyramidal tree obtained, it is difficult to determine exactly up to
which point these coefficients are really significant for some particular case.

For example, let Q = {®),... ,®¢} and let & be a dissimilarity on Q given by the
matrix
0

1
0

=3 SIS

O W= W
o WA
B W= B W

o]

If we now carry out a pyramidal clustering procedure by the methods of the minimum
and the maximum and calculate the value of the gamma and rho coefficients, we
obtain: y=10.92 and p = 0.89 in the case of the maximum, and Y= 0.80 and p = 0.59
in the case of the minimum. Although these values are near to unity, there is nothing
allowing us to assure whether they are really significant, i.e. up to which point
they reflect the fitting between the initial structure and the pyramidal tree obtained.
Nevertheless, it is necessary to find an objective criterion showing if the fitting is
good. This becomes a characteristic problem in Statistical Inference.

On the other side, it would be also convenient to be able to evaluate the power
of the pyramidal representation methods.

Generally, it is very difficult to find the exact distribution function for yand p. The-
refore, we shall develop our study from an empirical point of view, using some
simulation techniques by means of Monte Carlo methods. For this purpose, it was
necessary to programme a pyramidal clustering procedure algorithm and to create
a simulation programme which made possible to obtain the sample distribution of
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gamma and to tabulate a goodness-of-fit test of the pyramidal representation with
regard to the 7 statistic, using the methods of the maximum and the minimum.

Also, the vy distribution as a function of the number of objects to classify is being
studied. Finally, some results refering to the power—efficiency of the methods of the
maximum and the minimum, and no commented in this paper, are obtained.

2. SIMULATION TESTS

Two simulation tests have been carried out, which we have called S1 and S2,
by means of the programmes SIMULU and SIMULN respectively, made up for this
purpose.

Basing on a value n, which represents the number of objects in the population to
classify, Q = {®y,...,m,}, the S1 test consists in generating N random dissimilarities
U(0,1), 8! with i = 1, ..., N. Starting from each one of them, a pyramidal repre-
sentation is carried out using the methods of the maximum and the minimum. By
this means, we shall obtain N pyramidal dissimilarities dy, ; and dy, ; for each one of
both methods; we shall then compare each pyramidal dissimilarity with the respective
initial dissimilarity through the gamma coefficient and obtain N gamma values Yy ;
in the case of the maximum method, and other N gamma values Y, ; in the case of
the minimum method. From these N values the mean My, the standard deviation Sy
and the quantiles Qg (o0 = 0.05, 0.10, 0.50, 0.75, 0.90, 0.95) of the vy statistic are
-calculated. This results are shown in Table 1 and Table 3.

In our study we have considered populations with n =4,5,... 18,10,25 objects.
The number of simulations carried out was N = 200 for n = 25, and N = 1000 for
the other values of n.

The S2 test was set out in the same terms as the S1 test, but replacing the random
dissimilarities U(0,1) by values with a distribution N(0,1) adding the constant 10 in
order to avoid negative values in the dissimilarity matrix. The results obtained in this
test are shown in Table 2 and Table 4.

The aim of setting out a second test was mainly to see whether the distribution of
the dissimilarities generated randomly had an effect anyhow on the results. As it can
be seen from Tab. 1 and Tab. 2 as well as in Tab. 3 and Tab. 4, the results obtained
in both cases (uniform or normal distribution) for the means, standard deviations
and quantiles of gamma are virtually the same. As a conclusion, these results seem
to point out that in case of a random assignation of dissimilarities, the relationship
between the number of objects and the expected value of gamma does not depend
on the distribution used for generating the random dissimilarities. Anyway, in order
to confirm this result, which we are just suggesting here, it would be convenient to
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carry out further tests with other distributions for the initial dissimilarities, which we
leave for a later work.

3. GOODNESS-OF-FIT TEST IN A PYRAMIDAL CLUSTERING PROCE-
DURE

Table 1 and Table 2, show that the sample means of gamma and its standard
deviations decrease as n increases. In addition, the results obtained by the minimum
pyramidal clustering procedure coincide with those obtained by L. Hubert (1974),
where a relationship between n and the sample mean of gamma, as well as between
n and the standard deviation of gamma, in the case of the minimum hierarchical
clustering procedure.

From theoretical hypothesis about Q and I1 (algorithm), it is very difficult to find
the exact distribution function for y and p. We have found an approximation of these
functions by means of the quantiles obtained in the simulation (Tab. 3 and Tab. 4).

In a more concrete way, if Q = {®,...,w,} and A= {dq}, i.e. the dissimilarities
family defined on Q, we can consider IT the algorithm that transforms a dissimilarity
defined on Q into a pyramidal form.

Let the function Y A — R
g —  Yy(8q)

where v,(8q) is the Goodman-Kruskal coefficient between 8g and the pyramidal
dissimilarity obtained from [1.

If dq is pyramidal, then I1(8q) is pyramidal too and coincides with 8q, so
Y:(8q) = 1. On the contrary, if 8q is obtained by random generation, ¥, (3g) would
be close to zero. In this way, if we consider a population A with random distances

generated by some method, it could be possible to tabulate the distribution function
for y.

If we want to know if some dissimilarity obtained could be represented by a
pyramidal structure, we are forced to consider a null hypothesis Hy that represents
randomness in the sense that A contains pyramidal dissimilarities obtained using the
process IT from random distances generated by some method. In this way, from the
quantiles table of y (n=4,...,18,20,25 objects), we obtain a goodness—offit test of
the pyramidal representation using the minimum method and the maximum method.

We also obtain that maximum method works better than minimum method in the
above sense.

In practice, if the gamma value after applying a pyramidal clustering procedure is
greater than the quantile Qy, we can reject the randomness hypothesis for the initial
dissimilarity at a significance level of 1 — ..
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Relationship between the number n of objects of € and the sample mean (My)
and sample standard deviation (Sy) for gamma, for the methods of the minimum and
the maximum. Mean and Standard Deviation based on a sample of N = 200 for n =
25 and N=1000 for n =4,...,18,20.

Table 1
Initial random dissimilarity U(0,1)
Maximum Minimum
n My Sy M, Sy

4 0.96 0.07 0.78 0.21
5 0.85 0.10 0.63 0.19
6 0.74 0.10 0.54 0.17
7 0.66 0.09 0.47 0.14
8 0.59 0.09 0.40 0.13
9 0.53 0.08 0.36 0.11
10 0.49 0.07 0.33 0.10
11 0.45 0.07 0.30 0.09
12 0.42 0.07 0.28 0.09
13 0.39 0.06 0.25 0.08
14 0.36 0.06 0.23 0.08

Table 2
Initial random dissimilarity N(0,1)+10

Maximum Minimum
n My Sy My Sy
0.96 0.07 0.78 0.21

4

5 0.85 0.10 0.63 0.19
6 0.75 0.11 0.54 0.16
7

8

9

0.66 0.10 0.46 0.15
0.59 0.09 0.41 0.13
0.54 0.09 0.36 0.12
10 0.49 0.08 0.33 0.10
11 0.45 0.07 0.30 0.09
12 0.42 0.07 0.28 0.09
13 0.39 0.07 0.25 0.08
14 0.36 0.06 0.24 0.07
15 0.34 0.06 0.21 0.07
16 0.32 0.06 0.20 0.06
17 0.30 0.05 0.19 0.06
18 0.28 0.05 0.18 0.05
20 0.26 0.05 0.16 0.05
25 0.21 0.04 0.13 0.04
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Table 3

Relationship between n and the quantiles of the 7 statistic.
Initial random dissimilarity U(0,1)

128

Maximum
nop-Qos Qo Qs  Oso 035 Qo Qos
4 0.86 .86 0.86 1.00 1.00 1.00 1.00
S 0.68 0.71 0.78 0.85 0.91 1.00 1.00
6 0.56 0.61 0.68 0.75 0.81 0.86 0.90
7 0.49 0.53 0.60 0.66 ‘ 0.72 0.78 0.82
8 0.43 0.47 0.52 0.60 0.65 0.71 0.74
9 0.39 0.43 0.47 0.53 0.58 0.64 0.67
10 0.37 0.39 0.44 0.49 0.53 0.58 0.61
11 0.33 0.35 0.40 0.45 0.50 0.55 0.58
12 0.29 0.32 0.37 0.42 0.47 0.51 0.54
13 0.28 0.30 0.34 0.39 0.43 0.46 0.48
14 0.26 0.28 0.32 0.36 0.40 0.44 0.46
15 0.24 0.26 0.30 0.34 0.38 0.42 0.44
16 0.23 0.25 0.28 0.32 0.36 0.39 0.41
17 0.21 0.23 0.26 0.30 0.34 0.37 0.39
18 0.21 0.22 0.25 0.28 0.32 0.35 0.37
20 0.17 0.19 0.22 0.26 0.29 0.32 0.33
25 0.13 0.15 0.18 0.21 0.23 0.25 0.26
Minimum
n| Qo Qi Qi Qso Q35 Qo Quos
4 0.45 0.45 0.64 0.82 1.00 1.00 1.00
5 0.31 0.37 0.48 0.64 0.77 0.88 0.94
6 0.24 0.32 0.43 0.54 0.64 0.76 0.81
7 0.24 0.28 0.37 0.46 0.56 0.66 0.72
8 0.19 0.23 0.31 0.41 0.49 0.57 0.61
9 0.17  0.21 0.28 0.36 0.44 0.51 0.55
10 0.16 0.19 0.26 0.32 0.40 0.46 0.50
11 0.14 0.17 0.23 0.30 0.36 0.41 0.46
12 0.13 0.16 0.22 0.27 0.33 0.38 0.41
13 0.12 0.15 0.20 0.25 0.30 0.35 0.38
14 0.12 0.14 0.18 0.23 0.29 0.33 0.36
15 0.10 0.13 0.17 0.21 0.26 0.31 0.34
16 0.10 0.12 0.16 0.20 0.25 0.29 0.31
17 0.10 0.12 0.16 0.20 0.24 0.28 0.30
18 0.08 0.11 0.14 0.18 0.22 0.26 0.28
20 0.08 0.10 0.13 0.16 0.20 0.23 0.25
25 0.06 0.09 0.10 0.13 0.16 0.19 0.20



Table 4

Relationship between n and the quantiles of the ¥ statistic.
Initial random dissimilarity N(0,1) + 10

129

Maximum
n | Qos Qi Qi Qso Q5 Qoo  Qos
4 0.86 0.86 0.86 1.00 1.00 1.00 1.00
5 0.67 0.71 0.79 0.86 1.00 1.00 1.00
6 0.56 0.60 0.67 0.75 0.83 0.88 0.91
7 0.50 0.53 0.59 0.66 0.73 0.79 0.82
8 0.44 0.48 0.54 0.60 0.65 0.71 0.74
9 0.40 0.42 0.48 0.53 0.60 0.64 0.68
10 0.36 0.39 0.44 0.49 0.55 0.60 0.62
11 0.32 0.35 0.41 0.45 0.51 0.55 0.57
12 0.30 0.33 0.37 0.42 0.46 0.50 0.53
13 0.28 0.30 0.34 0.39 0.43 0.47 0.50
14 0.25 0.27 0.32 0.36 0.40 0.45 0.47
15 0.24 0.26 0.30 0.33 0.37 0.41 0.43
16 0.22 0.25 0.28 0.32 0.35 0.39 0.41
17 0.21 0.23 0.26 0.30 0.34 0.37 0.39
18 0.20 0.21 0.24 0.28 0.31 0.35 0.37
20 0.18 0.19 0.22 0.26 0.29 032" 0.33
25 0.13 0.15 0.18 0.21 0.23 0.25 0.26
Minimum
n| Qos Qi QG 0Os0 Q15 Qoo Qos
4 0.45 0.45 0.64 0.82 1.00 1.00 1.00
5 0.31 0.37 0.48 0.60 0.77 0.88 0.93
6 0.27 0.32 0.43 0.55 0.67 0.75 0.81
7 0.21 0.27 0.36 0.45 0.56 0.66 0.70
8 0.19 0.24 0.33 0.41 0.50 0.58 0.63
9 0.17 0.22 0.29 0.36 0.44 0.52 0.56
10 0.16 0.20 0.26 0.33 0.40 0.46 0.50
11 0.15 0.19 0.24 0.30 0.36 0.42 0.45
12 0.14 0.17 0.22 0.27 0.34 0.39 0.42
13 0.12 0.15 0.20 0.25 0.31 0.36 0.38
14 0.12 0.14 0.18 0.23 0.28 0.33 0.37
15 0.10 0.13 0.16 0.21 0.26 0.30 0.32
16 0.10 0.12 0.16 0.20 0.25 0.29 0.31
17 0.10 0.12 0.15 0.20 0.23 0.27 0.30
18 0.09 0.11 0.14 0.18 0.21 0.25 0.27
20 0.08 0.10 0.13 0.16 0.20 0.23 0.25
25 0.06 0.07 0.10 0.13 0.16 0.18 0.20



Finally, we have studied the efficiency of the maximum method.and the minimum
method through other simulation tests, in the sense of establishing which one best
recovers a possible pyramidal structure underlying the initial data. In this sense, we
would just point out that the results obtained in these tests show that the pyramidal
method of the maximum generally is more efficient than the pyramidal method of the
minimum.
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