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A METHOD OF MULTIOBJECTIVE
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A decision situation with partial information on preferences by means
of a vector value function 1s assumed. The concept of minimum value
dispersion solution as a reference point joined with a pseudodistance
function from such a point and a dispersion level €, lead to the no-
tion of e—dispersion set. The dispersion level represents the amount
of “value” that the decision maker can be indifferent to, therefore he
should choose his most preferred solution in this set. Convergence
properties, as well as an interactive method based on the reduction of
e—dispersion sets by means of parametric variation of €, to aid de-
cision making in discrete problems is considered. Detailed numerical
ezamples are included.
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1. INTRODUCTION

In this paper we propose an interactive method to aid decision making in
solving deterministic multiobjective problems. It tries to help a decision maker
(DM) to come up with a decision in the value efficient set, combining optimi-
zation and satisficing points of view. The method we present, assumes a vector
value function and makes use of an evaluation function obtained as the sca-
lar product of the vector value function and a generic weights vector (scaling),
which leads to assume an imprecise weighted additive evaluation function (see
Debreu, 1960 or Krantz et al., 1971). A minimum dispersion solution, which-is
the one with smaller value difference over an information set about component
value weights (optimization), is obtained. Such solution, as a reference point to
choose the DM , 1s theoretically provided. Next, a pseudodistance function from
a minimum dispersion solution and a dispersion level, which is considered as
the amount of value that the DM can be indifferent to, leads to the dispersion
set (satisficing). The procedure uses a parametric variation of the dispersion
level which produces an interactive reduction of the dispersion set, whose con-
vergence 1s proved. Different parametric variations are possible and, in practice,
the method stops when the dispersion set has been reduced enough for the DM
to choose his most preferred solution.

Consider the problem of multiple objective (or vector) optimization: A set
X C R" of alternatives or decisions x called decision or attribute space and a
set of objective functions z = (zy,...,z,), which the DM wishes to maximize.
In this way, a function z defined on Z which take values on the objective or
solution space R" is defined, with

z=z(x)€Z and Z=2z(X)CR"
where Z is the feasible region in the solution space.

Three different situations depending on the available information on prefe-
rences for the DM are considered.

1. The only one information in Z is “more is better” for each objective z;(i =

1,...,n), which leads to the null information problem and we formulate it
as
max z(x)

In this problem. which has been widely studied, arises in a natural way the
concept of efficient (Pareto optimal or nondominated) point. Preference
optimal points must be efficients and the set of efficient points, defined as

E(X,z)={xeX: 3 x' € X with z(x") > z(x)}
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where [z(x') > z(x) & z;(x") > z;(x)Vi and z(x’) # z(x)], will include the
most preferred solution. There are several methods available to generate,
under some conditions, all the elements of E(X,z)(see among others the
books of Goicoechea et al.,1982; Chankong et al., 1983; Steuer, 1986).

2. There is complete information on preferences in the sense that we may
assess a value function (Debreu, 1954; Fishburn, 1964; Keeney et al., 1993)
denoted by v, which is a real-valued function defined on Z and represents
the DM preferences by means of a strict weak order > (asymmetric and
negatively transitive), such that

z >~ z' < v(z) > v(Z)
We call it complete information problem and we formulate it as

max vz
z€Z ()

which it 1s a classical optimization problem and the optimal solution will
be a point of the set

Opt(Z,v) = {z' € Z:v(z') = maxv(z),z € Z}

3. The DM provides information not enough to assess a value function. but
to assess a vector value function v : Z — RP, which represents (Roberts,
1979: Rietveld, 1980: Rios-Insua, 1980) a strict partial order > (irreflexive
and transitive) intersection of p strict weak orders. where

z>12 o v(z)>v(z')

We call this situation. which may be considered intermediate between 1
and 2. partial information problem. Note that. if there were no more
information on preferences in the feasible region v(Z) C =F. we would be
in case 1. On other hand. if all the components v; in v were equals. would
be in case 2.

From a general point of view. the terminology, partial or incomplete informa-
tion, is also used in the case under uncertainty for utility functions. probability
distributions and the evaluation function. Several methodologies have been pro-
posed to deal with this problem on partial information (Chankong et al.. 1983:
Rios et al.. 1989). but in in our context. we shall refer to the certainty case with a
vector value function. that may be seen as a way for lack of precision of the true
DM ’s (scalar) value function and 1s suitable for hierarchical structures which



often exhibits the multiple objective decision making problems. The problem
formulation 1s formally analogous to 1, but in the solution space. We have

gy ()

and leads us to the value efficient set
E(Zv)={z€Z: 2 2’ € Z with v(z') > v(z)}

where
E(X.z) Dz N (E(Z,v))={x€X:z(x) € E(Z,v)}

assuming that z 1s an increasing function, that is,
z(x + Ax) > z(x) forx € X, Ax >0 and x+ Ax € X

where [z(x + Ax) > z(x) < zi(x + Ax) > z;(x)V{]

Several important useful concepts have been developed by researchers for the
case of partial information on value (or utility) functions as Fishburn (1964,1965),
Sarin (1977), Hannan (1981), Kirkwood et al. (1985), Korhonen et al. (1984),
White et al. (1984), Weber (1985), Malakooti (1989), Rios-Insua (1990) and
Kirkwood (1992) among others, and an interesting overview within a general
framework is found in Weber (1987). Therefore, we shall not consider it here.
On other hand, there are also a number of helpful computer programs which
aids to assess value and utility functions (i.e., Keeney et al, 1976; Kirkwood et
al., 1986,1987; Logical Decision, 1992; Decision Pad, 1993).

The paper consist of five sections. In the first section the problem is for-
mulated with a brief overview of the context. In the second and third sections,
solution concepts, as well as, monotonicity and convergence properties are pro-
vided. The fourth section synthesize the method into an algorithm for solving
discrete problems. Some numerical examples are given in the last section.

2. SOLUTION CONCEPTS

Given the partial information problem, it leads us to determine the value
efficient set E(Z,v) and so z"!(E(Z.v)). and considering that such set, reduced
from E(Z.z). could be still too extensive for the DM to choose an alternative.
we propose a method to aid him.

Let us consider a vector value function v:Z — RP and the set K° = Rﬁ_,
which i1s a convex cone.



Definition 1

Let be K D K° a constant, convex, closed and acute cone which we call
information cone, and R'P its positive polar. The set

K. =KFnNnS,
is called information set associated to K, where S, 1s the unit sphere on RF.

Let E(Z, R) be the efficient set with respect to K(z € E(Z. i) if there is no
z' € Z such that 2’ € z+ K). It may be seen that, if K? 1s a polyhedral cone it
will be possible to determine its set of generators {k!,::. k™ }(Tamura. 1976).
which normalized on S, are denoted {ki,. .., ki}.

Definition 2

For each z € Z, the numbers

vi(z) = [nax (k-v)(z)  v.(z)= knel}f' (k- v)(z)

are called upper and lower inderes, respectively.

Let be Ex, = {z € E(Z,v):v(z) € E(v(Z),K)} and E = Ex, in what
follows. Assuming that v*(z) y v.(z) represents for each z, the best and the
worst values under the information cone A, a criterion to determine a solution
in Ey consists of considering those solutions whereby the difference between
both indexes will be as small as possible. This setting is based on the idea
that carries to choose those points of the efficient set in which the information
cone approximates the information given by a value function (scalar) in which
both indexes obviously are equal. We introduce a function which measures such
difference on E .

Definition 3
The function dy : £, — &Y. defined as
di(z) =v7(2) — va(2)

is called dispersion function or dispersion associated to z under the formation
cone A .

Note that v™(z) > v.(z) for each z € Ey | therefore, it 1s always dy(z) > 0.
On other hand. we can introduce the ordering >, on Ex x E, defined by

2> 2 & di(z) < dk(z)

- 157



which is a strict linear order (asymmetric, transitive and complete) and leads to

a total ordering on Ex. As the most preferred solution, we shall consider that
with smaller dispersion.

Definition 4

A solution z’ € E, such that

) = i, )

1s called a minimum dispersion solution under K.

The set
D(Z,K) ={2' € Ex : dx(2') = mindx(z),z € E}
is called minimum dispersion set.

Once v is assessed, if there is no more information on preferences on v(Z) C
R?, the information cone is K° C R? and the ordering will be > (ko). However,
the DM may provide more information on his preferences by means of a cone
K D K°, what leads to a smaller dispersion.

Proposition 1
Let be K’ and K information cones such that K’ D K and z € E, . then

dyi(z) < di(z) and

In d < min d.
(in dxo(2) < min di(z)

Proof
We observe that if K’ D K it is K. C K., E, C E, and

x (k- < : ' : > mi v)(z
mmax (k-v)(z) < max (k- v)(z) and Join (k- v)(z) 2 min (k- v)(z)

-

hence dy/(z) < dx(2z) for each z € E, and thus

min (max (k-v)(z)-min (k-v)(z)) < min (ma

x (k- v)(z)— min (k- v)(z))
2€Ex kE€K! keK! z€Ex keK. kER.

which shows the second inequality.
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Let us now consider a result which states that if a solution z has minimum
dispersion for an increasing sequence of information cones, whose information
sets converge to a vector k*, such solution maximizes the value function (k* -v).

Proposition 2

Let be z € E and { K™}3%, an increasing sequence of information cones such
that K | k*. Ifz € D(Z, A™) foreach n = 0,1,.... then z € Opt(Z, (k* - v)).

Proof

If z € D(Z. K™) for each n. then v(z) € E(v(Z), K™) for each n. Because of
the nesting property of the efficient sets with respect to the sequence {K™}. it
will be v(z) € E(v(Z). K*). where Kt has as polar positive the vector k™ and
thus z €Opt(Z. (k* - v)).

We note that (k¥ - v) represents the value function when all the uncertainty
on preferences has been removed and, consequently, we would have a complete
information problem. Observe in this last case that the dispersion of all solutions
would be zero, we have no objection to this, because we have a value function
that provides a total ordering.

We shall not consider here effective ways to asses information sets (cones)
based on preferences, but some methods can be found in Malakooti (1989).

3. PSEUDODISTANCE ON DISPERSION

The above criterion. based on minimum dispersion. may be too strict in some
cases, so we are going to introduce a less restrictive criterion in the idea of the
satisficing approach. that combined with the former, leads to an aid decision
making method.

In this satisficing criterion an amount ¢ > 0 is considered, which means the
maximum “amount of value” that the DM can ignore or be indifferent to. and
the solution(s) to the problem will be those whose distance from a minimum
dispersion solution will be smaller than .



Definition 5

We call pseudodistance on dispersion between z.2z' € Ex, to the mapping
pr  Ex x E,. — RT where

pr(z,2') = |dx(2) — dx(2')] .

Proposition 3

The mapping py is a pseudodistance on Ej.

Proof
a) As a consequence of the definition is immediate that py(z.2') > 0.
b) For the triangular inequality, note that
px(2,2") = |dx(2) — dx(2")| =

adding and subtracting d(z')

= [dx(2) = du(2') + die(2') — dic(2")] < |dic(2) — d ()] + |d (&) — dye (2]
= px(z, Zl) + PK(zlvz”)

with the last inequality, because of definition 5, proves the triangular inequality
for all z,z',2°€ E,.

c) It is trivial from definition 5 that py(z,2') = px(2'.2).

d) We shall see with an example that can exist two solutions z, 2z’ with z # 2’
but px(z,2') = 0 and so px will be a pseudodistance.

)

Let us consider a problem where v(z) is defined on ®? and a polyhedral in-
formation cone K" whose information set K., is given by the generators {(1/V5,

2/V5),(2/V5, 1/v5)}. Let be z,2' with z # 2’ and v an undefined vector value
function such that

v(z) = (1. 0) and v(z') = (0,1)
From previous definitions we have

v(2) = max (k14 ko 0) = max k) =
€ER. *

S

and analogously

va(2) = knel}p ky =

Sl
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Hence

In a similar way, we obtain for z’

2
v (z') = max kp = —= and v.(z') = min ko = 1

kEK. NES kEK.

and dy(z') = 1/v/5. Then, pr(z,2') =0 but z #2’.

(@1}

Definition 6

Given zt € D(Z, K') and a real number ¢ > 0. a solution z € E such that
pr(z.27) < e is called e—dispersion solution.
The number ¢ is called dispersion level and the set

D(Z K.z%) ={z € E, Lpx(z.2h) < €}

e—dispersion set (with respect to z%t).

The e—dispersion concept is more general than the one of minimum disper-
sion

Proposition 4

Given zt € D(Z, K) and a dispersion level ¢. then

D(Z. K)C DJ(Z. K.2%)

Proof

Ifze D(Z R) then
dx(z) = dK(Z+) = min d(z)

z€E

hence py(z.2%) < ¢ for all € > 0.

Now. we consider approximation and convergence principles for the e-dispersion
sets.
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Theorem 1
Given dispersion levels €1, €2, where €] < €3, then for all 2zt € D(Z, K) is

D.,(Z,K,z%*) C D, (Z, K,z%).

Proof

It is immediate.

Theorem 2

Let be zt € D(Z, K) and {€n},¢N a sequence of dispersion levels such that
€n | 0, then
D..(Z,K,z") | D(Z,K)
(in the sense that (1] Dc,(Z, K,z%) = D(Z, K)).
neN
Proof

Let us call D, (Z,K,z%) = D, and D(Z, K)=D.
Because D C D,, for all n, then D C ﬂDn.
n

To show the other content, note that if z’ € ﬂDn then

n
px(2z',2%) < ¢, forall n
so, taking limits and because py is non negative, we have
pr(2z . 27) =0
thus, we obtain that

dx(z') = di(z%) = min dx(z)

z€FE g

and z' € D .
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4. ALGORITHM FOR DISCRETE PROBLEMS

Although the above developments are theoretically valid for continuous pro-
blems, due to the difficulty to determine E, specially in the nonlinear case, a
method for multicriteria evaluation for discrete problems with its corresponding
algorithm is now considered.

Firstly, the algorithm computes the minimum dispersion set D = D(Z, K)
as well as the associated dispersion value. Then, for a solution z* € D and
an initial dispersion level ¢, the e-dispersion set D, = D(Z, K.z%) is computed
and then presented to the DM to make a choice if possible or otherwise, take a
smaller dispersion level and repeat the process.

Let £, = {z'..... z9}, 1 the iteration index, M a large positive number, j the

index for the dispersion level sequence €;(= €j), ¢(j)= card(D.;) and F a subset
of E,. We assume that the indexes of the solutions in D,; are appropriately
renumbered from 1 to g(j) in each iteration (g(1) = ¢). The algorithm is as
follows

Step 1. Seti=0,d=M and D= 0.
Step 2. Seti =1+ 1.

Step 3. Choose z' € Ey and compute d* = dy(2z'). Ifd" > d, go to step 4. If
d' =d, set D = DU{z'} and go step 4. Otherwise. setd =d'. D = {z'}
and go to step 4.

Step 4. Ifi < q, go to step 2. Otherwise, D and d are 1dentified

and let be zt a solution in D.
Step 5. Set j =1 and F= 0.

Step 6. Seti=0,D,; = Ex\F.¢; =¢/j and ¢ = q(J).

=~

Step 7. Seti =1+ 1.

Step & Choose z' € D,; and compute py(z'.z%). If prl(z'.2%) < ¢, go to
step 9. Otherwise set D; = D \{z'} and go to step 9.

Step 9. Ifi < q, go to step 7. Otherwise Dj has been identified.

Step 10. If D¢; 1s satisfactory for the DM to choose onc solution. stop. Ot-
herwise. set = D¢;(= Ex\Dy;)-

Step 11. Set j = j+ 1 and go to step 6.
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Let us now consider some computational aspects of the method.

In the first part of the algorithm it is necessary to compute the indexes v*(z)
and v.(z) to determine the solution’s dispersion. In the case of polyhedral cones,
what is usually considered, we shall propose a method based in the Lagrange
multipliers, easy to implement.

Let K be a cone and K. its positive polar (on the unit sphere) with generators
G=1{k',... K"} and G. = {k!,... K[}, respectively. Let be E, = {z!,... .29}
as before. The scheme is as follows: Let be

Er ={z' € Ex :H(v(z"))" > 07}
where H is a r x p matrix with k/ being the jth row of H, and
E} = Ex\Ey
In £} and E2 we shall compute the lower index
() = min (k -v)()
and the upper index as . _
vi(z') = (k- v)(z')
with k* = v(z') in EL, and in E2 as
vi(z) = max (k- v)(z')

To explain why the maximum is reached on such a point, and the minimum
on G., we use the Lagrange method. Let us consider the problem

max(k - v)(z) = k1v1(z) + - - + kpvp(2)
subject to
Bioopi=1
(that is, (ki.....kp) € Sp) and consider the Lagrange function
Llky k) = kivi(2) + -+ kpvp(2) + Ak + -+ k2 — 1)
Given the partial derivatives of L, we obtain the system

{ vi(z)+2Xk; = 0, i=1,...,p

(D kP4 4k = 1

From any of the above equations where v;(z) # 0, we obtain

vi(z) kivi(z)
= — k, = —L 2
/\ Qki and J ‘U,‘(Z)
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for any j #i. If we substitute each k; in (1), we have

2 2 2
2 (m(z) UL {C) N z§<z)) .

vi(z) vi (z) v;

so
+v;(z)

VeR@) i)

and the two critical points will be

ki =

v1(z) vp(2z)

\/U%(z)'*"”‘"”g(z) “““ \/t:f(z)+-.+z,‘§(z)

and the opposite.

To start the method it is necessary an initial value ¢ to iterate. A way to
have an idea about this value may be to put

€ = max px(z,27)
z
Note that with this initial value, the first D, set would be Ej.

In the algorithm, the considered parameterization is ¢; = ¢/j. however, ot-
hers parameterizations could be proposed depending on the characteristics of the
problem under consideration (i.e.. number of alternatives. speed convergence).

5. EXAMPLES

A) Let the structure of the D 's vector value function be linear
v(z) = (vi(z). va(2)) = (421 4 z2. 2y + 629)

that must be maximized and let be Z C =2 the set of solutions whose efficient
set E(Z.KN°) for the Pareto order is shown in table 1.

Table 1
2 3} 1 8 8.2 9 11 12 D le
2 12 8 7 6.1 6 5} 3 2 1




Table 2

ozt 2 28 g7 z® z°
vi(z') 24 0 24 0 39 . 389 | 42 | 49 | 51 62 618
wz') 75 52 . 50 | 448 | 45 | 41 30 | 27 = 21.2

We determine for each point z* their values v; and vy as shown in table 2 and
figure la), and thus E = {z!,2% 2% 25 27,25}, because z! dominates z*, z°
dominates z* and z® dominates z°.

We consider three cases corresponding each one to a different information set
(figures 1b), c) and d)).

Y
T ] [ ] . "N Ko
70 - (v(z")=i) .
60 b) | \
50 2. 3i5
. 4, °° ~ Ki
6 .

30 7
20 -

10 N .
T T T T T 1 d Z;;}_e

10 20 30 40 50 60 70 Vl

a)

Figure 1.

a) Graphical illustration of the solutions on the v;v2 space. b), c) and d), three possible
information sets.
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Al Assume that K7 is the (null) information set (figure 1b), with generators
{(1,0),(0,1)} and let us compute D and d. Initially, let M = 10%. Choosing
z! € E, its dispersion value is

d' = dyo(z') = v*(2') — v.(2') = 78.7— 24 = 54.7

Because d' = 54.7 < 10% = M, we set d = 54.7 and continue to proceed
finally in iteration six of the first part of the algorithm (steps 1 to 4). to obtain
zT = z® and hence

D={z°}and d = d° = 19.6

The value indexes, as well as the, dispersion values of all solutions in E are
shown in table 3, from which we see that the preference ordering will be

22 -2° 22" = 2% - 2!

Table 3
z! 7z -z o z8 2" A
v (2') 787 | 634 S 616 639 592 67.6
v(z) 24 39 42 41 30 27
dyeo 547 244 0 196 0 229 | 292 406
pr(zt.zt) 351 48 + 0 = 33 96 21

In the second part of the algorithm (steps 5 to 11), because max py (z'.2%) =
35.1, we initially take ¢ = 36 and choose the parametric variation ¢; = ¢/2/7 1.
In the first iteration D3¢ = E and, in the fifth one, the algorithm stops because
we obtain the unitary set Dsos = {z°}. The iterations, with their respective
e-dispersion sets, are shown in table 4, where we see the monotonicity property.

Table 4
Iteration € D,
1 36 E
2 18 23.2° 25 27
3 9 z3.2° 2°
4 4.5 z° 28
5 25 z°
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If the DM states that 4.5 is a satisficing dispersion level he must choose the
most preferred solution in Dy s = {z°, 25}.

A2. Now, if the DM states that the information set is given by the vectors

k' =(0.8,0.2) and k? = (0.5,0.5), which normalized on S, gives us the extreme
vectors for K (figure 1c)

k! =(0.97,0.24) and k? = (0.71,0.71)

we shall have E,1 = {z! 2% 2%} because under the corresponding information.

z° dominates z3,2% 27, The results are shown in table 5 in which we sec that

D={z®} andd = 44
and the preference ordering will be

z8>ze>z1

Table 5
zl z6 ZS
v*(z) 70.3 63.9 67.6
v.(2) 41.3 57.4 63.2
dx 29.0 6.5 4.4
px(zt,2%) 24.6 2.1 0

Again, we can continue the process, starting with a dispersion level ¢ =25(max Ox
(z',2%)=24.6) and for the parametric variation €;=¢/5 !, the e-dispersion sets
are shown in table 6.

Table 6
Iteration € D,
1 25 Ei
2 5 PANA
3 1 z8

A3. Finally, if the DM states that the information set is given by the vectors
k! = (0.7,0.3) and k? = (0.1,0.9) which normalized in S» give the extreme
vectors for K?(figure 1c)
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k! =(0.92,0.39) and k2 = (0.11,0.99)

lead to £ = {z1 .23, 2°, zG,zs}, because z® dominates z7. In this case, we obtain
D = {2z°} and d = 9.6 and the preference ordering will be

222" 2% - 7' - 2°
If € = 7, it will be easy to show that D7 = {23, 2°}.

B) In the case of a nonlinear vector value function, as it will be the case of
quadratic components. let us see that it is possible to apply in the same way the
method. Let us consider quadratic components for v such that

vi(2) = — (27 4 23 — 72z; — 20z2) and vo(z) = —(z7 4 22 — 162 — 60z,)

and let the information set be defined by the vectors k! = (0.8,0.2) and k* =
(0.4.0.6). which normalized in S, give us the extreme vectors

k! =(0.97.0.24) and k? = (0.55,0.83)

In this case we obtain E = {2z°.z° 2%} under the corresponding information
cone, because z> dominates z'.2% 2% and z® dominates z%,27. Also. note that
z° 1s not a value efficient solution. The results are shown in table 7. from which

we obtain the preference ordering
2> > 25 - 2°

with D = {23} and d = 54.2.

Table 7
73 z° 28
v(z') 7435 8157 8957
(2 6893 6842 5988
dy 542 1315 2969
Pzt z") 0 773 242.7 |

The last row of table 7 is the pseudodistance on dispersion and we can see that
for a dispersion level € = 80. it is Dyg = {23, 2°}.
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6. CONCLUSIONS

In this paper we have considered multiobjective decision making under partial
information on preferences what may leads to determine the DM’s vector value
function instead of a scalar one. From this vector function, the value efficient set
is obtained and considering such set too extensive to choice a solution, a method
based on one hand on a minimum dispersion solution concept over a preference
information set and on the other, on a dispersion function with respect to a
minimum dispersion solution, which it is a pseudodistance, are considered. The
idea of dispersion level leads to its associated set which fulfils monotonicity -
and convergence properties. This set will contain all the indifferent “in value”
solutions for a given dispersion level and de DM will choose his solution in
this set or will ask for a smaller one. An algorithm for discrete problems with
different computational issues supports the method which is proved with some
numerical illustrations.
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