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PIVOT VARIABLES, TESTS AND STRONG
CONSISTENCY

JOAO TIAGO MEXIA*

Let the random vector Z have a distribution depending on parameters
v. A function U of both Z and v is a pivot variable if its distribution
does not depend on y. Assuming that oy, is an estimate of a whose
asymptotic distribution has an associated pivot variable and that v,
is a consistent estimate of 7, it is shown how to derive tests for hy-
potheses on . Conditions are obtained for these tests to be strongly
consistent and to enjoy duality. The case in which ay, is asymptoti-
cally normal is considered and so the Wald and Rao score tests are
shown to be strongly consistent.

Key words: Pivot variable, strong consistency, duality, Wald and
Rao score tests.

1. INTRODUCTION

Strongly consistent tests were first considered by TIAG0O DE OLIVEIRA (1980).
In this paper we are going to present a technique to obtain such tests.

Given a random vector Z¥ with k components and distribution F (% ~%), we
put 2% ~ F(z* 7). If U = g(Z¥,4*) has a distribution that does not depend
on 7" it will be a pivot variable. Since the distribution of |U| will also not depend
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on 7' we take pivot variables to be non negative. U will be a continuous pivot
variable if g is a continuous function. Assuming ZF = h(n)(af — o*), with
h(n) — oo, has limit distribution F(z* 4*) and 7}, to be consistent, we will show
how to use Uy, = g(ZF,4%) to test

Ak — Lk
Hy: o = ag

establishing conditions for strong consistency. The case in which the distribution
of Zﬁ is asymptotically normal is considered and the Wald and Rao score tests
are shown to be strongly consistent.

2. LIMIT DISTRIBUTIONS

Let us establish

Proposition 1

If V7 has limit distribution F(v"), V" ~ F(v"), and (V") is continuous, the
limit distribution of £(V;7) is the distribution of £(V7).

Proof:

A direct application of the HELLY-BRAY lemma shows that the characteristic

function of £(V") converges to the characteristic function of £(V"), thus the thesis
follows.

Constant vectors may be considered as degenerate random vectors that are
independent from any other random vector. Let P(z’) be the degenerate ¢ di-
mension distribution with all the probability concentrated in the origin, then
al ~ P(z* —a'), and, if V" ~ F(v"), the joint distribution of the pair (V",a?)
will be F(v") - P(z* — a'). If V. has limit distribution F and X!, £ a?, the limit
distribution of the pair (V],X%) will be F(v") - P(z! — a*). We now prove

Proposition 2

The limit distribution of U, will be }(«)’ (u), the distribution of U.
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Proof:

Since Z¥ has limit distribution F(z*|y') and 7t 2. 4t the limit distribution
of the pair (ZF,7%) will be F(z*|y!) - P(z' — 4*). Thus, according to proposition
1, the limit distribution of U, will be the distribution of U = g(Z¥ ') with

ZF ~ F(z*|y). Since U ~F (u) the thesis is established.
|

3. TESTS AND CONDIFENCE REGIONS

Since U,, has limit distribution ;-| (u), if up is the quantile for probability p
of F (u), we will have pr(U, < uj—g) — 1 —g, thus

(1 H = {a*|g(h(n))(ag — a*); Fn) < u1-g}
may be considered as a 1 — ¢ limit level confidence region for a*.

When H, holds, with Z; o = h(n)(&% — ak) and Uno = g(Z% o, %) we will
have Z} o = 2%, Uno = Up and pr(Uno < ui—y) — 1 — g. Thus with Uy o
as test statistic and Rej =]uj_,; +00[ as rejection region we will have a g—limit
level test.

This test is associated with the confidence region since H, is not rejected, by

the ¢—limit level test, if and only if aX belongs to the 1 — ¢ limit level confidence
region. :

The existence of associated confidence regions points towards these tests
having duality properties.

4. NORMS, SEMI-NORMS AND STRONG CONSISTENCY

Given w', g(z*, w") reduces to a function g(z¥|w¥) of z*. With E, the event
that occurs when

2) £ 137) = \/a(=*132)

is a semi-norm, let us establish
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Lemma 1

If {(z¥|y') is a norm and pr(E,) — 1, whenever o # af and K,h(n)~! — 0
we have pr(f(Zﬁ)O - 28138) > Kn) — 1.

)

Proof:

When E,, occurs,

UZn o = Zaln) = L(h(n)(o* = af|3:) = h(n)l(a* — af|3})

and, when o # of, £(o* — ak|7%) & £(a* — ak|5*) > 0. Thus, to complete the
proof, we have only to point out that pr(E,) — 1 and K,h(n)"! — 0.

This lemma enables us to prove

Proposition 3

Under the conditions of Lemma 1 we have pr(U, o > K?2) — 1.
Proof:

Since K(Zﬁlol'ﬁ,) = /Uy o we have only to show that pr(f(Zﬁ,oFy,',) > Kp) —
1. From propositions 1 and 2 we see that £(Z|3%) has as limit distribution the
distribution of vl with U ~F (u). When E, occurs,

£y 0 — Znl7h) — L0 17h) < £(Zn175)
It is now easy to use Lemma 1 to complete the proof.

When K, — oo,qn =F (u)(K2) — 1, then, if the conditions in Lemma 1
hold, we get, for any alternative, rejection with limit probability 1 while the first
type error tends to 0. Following Tiaco DE OLIVEIRA (1980) and (1982), we say
that, then, the tests will be strongly consistent.

Let us now consider the confidence regions associated with these tests. Ac-
cording to propositions 1 and 2 the limit distribution of V, = £(ZF|52) will be
the distribution of vU with U ~j§~ (u). Then, with K,,h(n)"1 — 0 and K,, — c©

we will have pr(V, < K,) — 1. Now, when E, occurs, V, = h(n){(ak — o¥|7})
and, since pr(E,) — 1.
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Kn
3) prif(af - oM7) < g == !

thus we will have a limit level 1 confidence region for af whose size “shrinks to
zero”.

5. THE NORMAL CASE

If Z* has the normal distribution with mean vector n* and variance-covariance
matrix M with characteristic ¥ and MOORE-PENROSE inverse MY,

(4) U= (2" =) M (2" - 1)

will be a continuous pivot variable since, see MEX1A (1990), it is a central chi-
square with k' degrees of freedom. If #* is null and M is regular, we will have
U = Z"M™'Z and, with M™! = [m%J], we can take as components of 4 the m*J

with ¢ < j. Let W(v') be the matrix thus reconstructed from the components of

vl.

Then, with g(z*,v%) = zTW(v')z, £(zF|v') = \/g(z*|vt) will be a semi-norm
[norm] whenever W(v') is positive semi-definite [definite]. We point out that,
see WILKS (1961, pp. 80 to 82), regular variance-covariance matrices are, as well
as their inverses, positive definite. Let us establish

Proposition 4

If W(+*) is positive definite, pr(E,) — 1.

Proof:

kEok
Given A = [a;5] a k x k matrix and A(A) = ZZ lai ;| it is easy to see
i=lj=1

that |27 Az| < A(A) “zk”2 , ”zk ” being the euclidean norm of z*. The smallest
eigenvalues of W(7¢) and W(y*) will be ¢, = min {zTW(7})z| ||| =1} and ¢ =
min {z"W(y!)z| ||z*|| = 1} . Thus, with d, = A(W(¥}) — W(7")), we will have
len — ¢| < max {|z"W(F})z — 27 W(1")2|| ||¥|| = 1} < dn. Now the elements of
W(5%) and W(1*) are components of 7% and v and, since 7%, 2 7, dp 2 0,
thus ¢, & ¢, with ¢ > 0, since W(y*) is positive definite. When ¢, > 0, W(32)
is positive definite and E, occurs so that we will have pr(E,) — 1.
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In many instances the conditions here required are met, see AMEMYA (1985,
pp. 105 to 121), by eztremum estimators. These estimators are obtained ma-
Ximizing or minimizing a function defined over the parameter space. Maximum
likelihood and least square estimators belong to this class. We also point out
that the tests that are obtained, in this way, for the normal case include the
Wald and Rao score tests, see AMEMYA (1985, p. 142). Thus these tests will be
strongly consistent.
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