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INTRODUCTION

The problem of obtaining the MVUE’s of the probability densities and rela-
ted functions for various families of distributions (for which a complete sufficient
statistic, Z, exists) is of great interest for many reasons, as noted, for example,
by Halmos (1946), Rao (1949); Kolmogorov (1950), Lehmann (1951), Joshi and
Park (1974), Hoeffding (1983,1984) etc. The main one is the general problem of
estimation E u(X), where u(z) is an arbitrary given function. This problem re-
ally consists in obtaining the MVUE p(z; 6) of the density p(z; ) and integrating
with respect to z the product of this estimator and u(z), i.e.,

EMX):/uum@me

Neyman and Scott (1960) were the first to consider the problem in the par-
ticular case of a normal distibution with unknown mean and variance. In this
way one can obtain for example MVUE’s for characteristic functions, moment
generating functions etc., and derive MVUE'’s for moments by differentiating.

Another problem is to estimate the probabilty P(X € A). It is also tanta-
mount to obtaining the MVUE p(z;6) and integrating this estimator over the
set A, l.e.,

ﬂXem=/mmmm.

There are many ways of obtaining the MVUE'’s of probability densities p(z; ).
One of them consists in obtaining the solution ¢(z|Z) = p(z;0) of the unbia-
sedness integral equation

/ o(z]2)a(z:0) dz = p(z;0).

where ¢(z|6) is the density of the sufficient statistic Z. This approach has been
used, for example, by Ghurye and Olkin (1969) to obtain the MVUE’s for mul-
tivariate normal probability families, see also Lumelsky and Sapoznikov (1969).
Another way consists in Rao-Kolmogorov-Blackwellizing an arbitrary unbiased
estimator with respect to the minimal sufficient statistics Z, which were used by
Patel (1965) and Patel (1978) for the multivariate modified power series distribu-
tions. The general theory for the representation of MVUE'’s has been developed
in depth, see, for example, Stein (1950), Bahadur (1957). Some useful proper-
ties of multivariate power series distributions and general results related with
the theory of MVU estimation can be found in Ghosh, Sinha and Sinha (1977)
and “Encyclopedia of Statistical Sciences”, edited by S.Kotz and N.L.Johnson,
see also Johnson and Kotz (1969).
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We shall no longer discuss this or any related problems any more, since they
have been considered in details in the monograph Voinov and Nikulin (1993),
where many examples, applications and tables of MVUE’s are given.

Being the most often used a chi-square goodness-of-fit test is based on the
limiting theorem established by Carl Pearson in 1900. The theorem states that
a quadratic form of Pearson

r

X2 = Z(Vi —np;)°

i=1 npi
of vector v = (vy,...,v,)7 following the multinomial distribution M,(n,p), p =
(P1,--.,pr)", tends as n = oo to the limiting chi-square distribution with r — 1

degrees of freedom.

Later on R. Fisher showed that if multinomial probabilities p; = p;(#) de-
pend on unknown parameter 6 = (9;,...,9;)”, which can be replaced by the
minimum chi-squared estimator 6, or an estimator asymptotically equivalent to
it which is a root of the equation

- 1 73 6}),’(0) .
B =1,... <r-—
E @) 99, 0, i=1,..,k (k<r—2),

i=1

then the Pearson’s statistic

. 12
. r [Vi —np;(0n ]
X2(8,) = Z__.f—)
i=1 np; (9")
has in the limite a chi-square distribution with r—k — 1 degrees of freedom. This
fact allows to construct a reasonable statistical test for testing the hypothesis
that outcome probabilities belong to a given parametric family. Untill 50s one
assumed that Pearson’s test is applicable in more complicated situations, where
the conditions of Fisher apparenltly do not hold. In particular this case appears
when testing the hypothesis that a continuous probability distribution belongs to
a given parametric family. Untill now one may found many examples of incorrect
recommendations on applications of Pearson’s test in statistical guide books (see,
for example, monographs of H.Cramer, A.Hald, M.Kendall, W .Feller). One
assumed that a violation of conditions of Pearson’s and Fisher’s theorems can
not essentially distort a statistical inference. However, in 1954 Chernoff and
Lehmann showed that a formal application of Pearson’s test when one uses the
magimum likelihood estimator 6, leeds to a substantial difference of a limiting
distribution of the statistic X2(6,,) from the chi-square distribution: the statistic
X?(0,) is distributed in the limite as n = oo like

512 + “‘+£r2—k—1 +/i1§3—k + "'+l1k‘513—1’
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where £1,...,&r—1 are idependent standard normally distributed random varia-
bles, the numbers p1, . .., pr lie between 0 and 1, and generally speaking, depend
on the unknown value of the parameter 6. For this reason Nikulin (1973), Dzja-
paridze and Nikulin (1974) (see, also Rao and Robson (1974), Moore and Spruill
(1975)) proposed to consider two modifications Y? and W? of the statistic of Pe-
arson, depending on the method of estimation of the parameter 6. The statistic
Y? is applied if one uses the maximum likelihood estimator 6,, or an estimator
asymptotically equivalent to it (BAN estimator) and the limit distribution of
Y? is a chi-square with r — 1 degrees of freedom. The statistic W? is different
from the statistic Y2 and allows us to apply a chi-square test when we use any
/n—consistent estimator 07, of § and the limiting distributions of W2 is a chi-
square with r —k —1 degrees of freedom. More details one can find, for example,
in the paper of Nikulin (1991), where is pointed out that one may construct a
chi-square-type test by using the best minimum variance unbiased estimators of
the unknown probabilities. This paper generalizes the results of Bolshev and
Mirvaliev (1978) and Voinov and Nikulin (1993) for a wide class of multivariate
discrete distributions, and with the paper of Nikulin and Greenwood (1990) gi-
ves some general presentation about the theory and practice of the chi-square
test.

1. NON-TRUNCATED MULTIVARIATE MODIFIED POWER SE-
RIES DISTRIBUTIONS

Following Patil (1965) and Patel (1978) consider first the problem of mini-
mum variance unbiased estimation of non-truncated multivariate modified power
series distributions.

Let A ] )
AD =P 6y i=1,2,..m,
be arbitrary subsets of k—vectors, ag»i) = (agil), .. .,ag-i,c))T € R*.

A sum N
Ao = 3o
i=1

is the set of all k—vectors of the form

i“(i)»
i=1
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n

A=) A

i=1

1s denoted by n[A]. A set {a} denotes the singleton, the set of only one vector.
A set T of a k—dimensional.space is-said o be.stable with respect to a vector
r=(ry,re,...,m)" ifz =(21,22,...,2¢)" € T implies z+r € T. Equivalently,
T+{r}eT.

A subset T of a k—dimensional space is said to be the indez set of the function
£(8) = a(z)d3 - 95%,0 = (91,9s,...,0:)T €O € R¥, v; > 0,
where a(z) # 0, z € T, so that f(6) is finite and differentiable.

This index set is denoted by
(1) T = W[f(0)]-

A real valued function u(0),6 € ©, is called MVU estimable if it possesses
the MVU estimator based on a sample

X:(X17X27'--7Xn)T Xi:(Xil,...,Xik),
of size n drawn from an appropriate distribution.

Let T be a set of k—fold cartesian product of the set I, where I is the set of
non-negative integers, i.e.
T={(z1,...,zx)":zi €1, i=1,2,... k}CIxIx---xI,
and let

£(0) = a(2)(9(91))™ - (9(98))™, 6=(91,...,9)T €O CR*, 9; >0,

where the summation extends over the set T = W[f(6)] and where a(z) is posi-
tive, © is the k—dimensional parameter space, which is the region of convergence
of the power series of f(6). Let f(6), g(¥1),...,g(Jx) be positive, finite and dif-
ferentiable. The parameter space © is the region of convergence of the series

f(9), 6 € 0.

A k—dimensional random vector X = (X, X,,. .., X%)T with the density
function

a(z) (9(91))"" - -~ (g(I%))™*
(2) P{X = z;9} = f(9) ’

0, otherwise,

zeT,
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may be defined to have multivariate modified power series distribution (MMPSD)
with range T and the series function f(6), 6 € ©.

When g(¥;) = exp(¥;), 1= 1,2,...,k, (2) can be rewritten as
k
a(z) exp '(Zﬂ;z;)
i=1
f(9) ’

0, otherwise,

(3) P{X =z;6} =

zeT,

i.e. MMPSD belongs to a class of discrete multivariate exponential type distri-
butions. This class includes the multivariate power series distributions (MPSD)
considered by Patil (1965) when functions g(¥;), ¢ = 1,...,k; are invertible. On
the other hand the class (3) is larger than the class of MPSD, since functions
g(¥;) may include another parameters. For example, the generalized negative
multinomial distribution

k k
m (m + Zﬂixi - 1) !H [19,»(1 - 19‘.)13.--1]%’
i=1

i=1

)
zy!oxy! (m+z:c,~(ﬂ,~ - 1))!

can not be included in the class of MPSD (0 < ¥; < 1; 8; > 1; ¥; i < 1).

(4) ?{X:x;f)}:

Let X = (X,...,X,)" be a random sample from (2), X; = (Xi1, ..., Xir)".
Then the statistic

(5) Zn=(21,22,...,2k)" =) _X;
=1
with components
Z;=> Xij (G=12,...,k
i=1

is the complete sufficient statistic for §. The density function of Z,, is

b(z,n) [g(9)]™" - - [g(Ie)]"™*
(6) fP{Zn =z,0} = [f(g)]n ’

0, otherwise,

z€ n[T]7

where z = (z1,...,2¢)7 and
b(z,n) = ZHa(xu, ey Tik)
i=1
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and summation extends over all values of z;; such that

n

Z:l:,'j = Zzj (j:l,?,...,k).

i=1

Theorem 1 (PaTEL (1978))

A necessary and sufficient condition for the parametric function

k
u(8) = [T (s(v:))™
1=1

(r1,...,7)7 for some positive integer n. Whenever it exists the MVU h(Z,) of
the parametric function u(8) is

to be MVU estimable is that n[T] is stable with respect to the vector r =

b(Z, —r,n)

(7) h(Z,) = W Zon)

Zn € n[T]+{r}.
Coroblary 1
A parametric function
k
u(8) = [J(a(w:))
i=1
is not MVU estimable if T is finite.

Example 1

Let X = (X3,...,X,)" be a random sample from multinomial distribution
My (m, ) with parameters m and 6 = (9,,...,9%)7:

T Tk
miget ... 92

k k m
z1!oxg! <m— in>! <1+Z’49,'>
i=1

(8) PXi=1z;0} =

i=1

9; >0, i=1,2,... k. If k=2,

then we have a random sample from binomial distribution, if k = 3, then we
have a sample from trinomial distribution.
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Since T is finite a parametric function

k

u(8) = [ 95

i=1
is not MVU estimable for the multinomial distribution (7), i.e.

E h(Z,) £u(6), 0 € O.

Corotlary 2

A parametric function

k
u(f) = Hﬂ:‘

is not MV U estimable if r; is fractional or negative for some 7, i = 1,2,... k.
For example, if X is binomial B(n, p) random variable, then the ratio p/(1 — p)
is not MVU. (When p is the proportion of males in species, it would mean
that the sex ratio is not MVU estimable). It follows from the next results of
Kolmogorov (1950) and Hoeffding (1984), related with the problem of estimation
of the value of a real-valued function u(f), § = (91,...,9%)”, on the basis of a
sample X from the multinomial distribution My (m, ). According these results
the MVUE exists if and only if u(6) is a polynomial of degree at most m.

Let
u(ﬁ) = u(g(ﬂl)» e "g(ﬂk))

be a function of g(¥1),...,¢(Vx) and let u(#)[f(#)]" admit expansion in the
power series of g(¥;), 1.e.

9) u@FO)" =D ez n)lg(@)] - - [9(IR)],
z=(z1,...,2)7, z; are non-negative integer, z; € I.

Then it holds the

Theorem 2 (PaTEL (1978))

A necessary and sufficient condition for u(),8 € ©, to be MVU estimable

function on the basis of a random sample X = (X;,...,X,)" of size n from
MMPSD (2) is
(10) Wu(0)(£(6))"] € WI(£(6))"],
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where W[ ] is an index set (see(1)). Whenever it exists, the MVUE h(Z,) of
u(f) is given by

c(Zn,n)
(11) h(Zy) =4 bZn,n)’

0, otherwise.

Zn € Wu(0)[f(6)"],

Corollary 1 (PAaTIL (1965))
The MVUE 62 of the variance
o? = Var h(Z,)
reduces, if exists, to
(12) &2 = Varh(Zy) = h(Za) (h(Zn) — h(Zy — 1)),
where Z, = X; + --- + X,, is the complete sufficient statistic for 6.

Coroflary 2

The density function P{X = z;60} of MMPSD is always estimable and the
MVUE P{X = z;0} = h(z; Z,) is defined by the expression

'j){X =z;0} = h(z;Z,)=P{X =z|Z,} =

a(z)b(Zp, —z,n—1)
b(Z,.,n) v Zn E(n— 1)[T]+{:L‘},

(13)

1l

0, otherwise.

The corollary immediately follows from (9) and the condition of unbiasedness.

On can verify that the conditional distribution of X given Z, is the distri-
bution (5) if and only if X is an element of a random sample X from (2). It
means that MMPSD is characterized through its conditional distribution given
Zy (see, for example, J.Ghosh, B.K.Sihna,B.K.Sihna, 1977).

Example 2

For generalized negative multinomial distribution defined by (4) we have

o s 30

=1

k
zq!z! (m + Z:ﬂi(ﬂi - 1))!
i=1

a(z) =
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and

k
mn (mn + Z'B‘Z* - 1) !

i=1

k
AR (mn-}-ZZ,-(ﬂ,' - 1))!

b(Zn,n) =

i=1

Then the MVUE h(z; Z,) of P{X = z;0} in accordance with (12) is

z mn

h(z; Zn) = P(X = x]Z0) = fI (Z" ) m(mn —m)

i=1

k k
(m + Zﬂ;z:,- - 1)! (mn —m+ Eﬂ;(Z,' —z;)— 1)!
i=1

i=1

k k
(mn —-m+ Eﬂ;(Z; - :L',') - E(Z, - :E;)) !

i=1 i=1

k
(mn + ZZ,’(,B,’ — 1)> !
k = k ’
(m + > mi(Bi - 1)) ! (mn +> BiZi - 1) !

X

X

X

Example 3

Let X = (X1,...,X,) be a sample, a k—dimensional random vector X; has
the probability distribution (2). Then the complete sufficient statistic

Zp = ixi
i=1
for a parameter 6 has the density function
gn(2;0) = P{Z, = 2;0}
defined by (5).

Since random vectors X; and U,

U=2,-X =iXi)
i=2
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are independent and the Jacobian of the transformation from
(Xl,u) to (Xh Zn)

is equal to 1, we may write down the density function f(z1,2;8) of X; and Z,
as

f(z1,2;0) = P{X = 2;0}gn_1(z — 1 6).

Then the density of conditional distribution of X; given Z, = z is

P{X = z;0}gn-1(2 — z1,0)

(14) f(zllz) = gn(Z,9)

Substituting Z, instead of z in (13) we get evidently the MVUE (12) of
P{X = z;0}. Performing the same manipulations we may obtain the joint con-
ditional density of X1, Xs,...,Xm (m < n) given Z, = z:

‘:P{Xl =T, 9} NN fP{Xm =ZTm, g}gn_m (Z —_ in; 0)

i=1

(1)f(21, . ., Zml2) =

gn(2;0)
Substituting Z,, instead of z in (14) we get the MVUE for
P{Xi=z1,...,Xm = zm; 0}

Let, for example, P{X = z;6} be the density of the multinomial My (m,#)
distribution given by (7), i.e.

m! m
(16) a(:n): % —<.'L'1,...,:Ek>
zylxy! (m—— 1’,’)!
=1

i

and
where
(18) bz,n) = (Zl”f""z]),
(19) f6) = Y a(a)oy-- -5,
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and the summation extends over all non-negative integers z; such that
k
0< Z:c; <m.
i=1

Substituting (15),(16) and (17) into (14) we get the MVUE
T{Xl =z,...,.X;j=2;0} =P{X1=21,...,X; = z;|Z,}

of {X; =z1,...,X; =z;;0}, j <n:

T a(zy) - a(z;)o(Zy, —x1—-+-—2z;,n

DXy = a1, X; = ;,0) = 220 (J)IE(Z n)1 1) _
j ( m )( m(n —j) )
i \ iy, Tik Zy =211 = = Zj1, .. Dk — T1k — = Tjk

mn
Zyy ..., Dk

2. THE TABLE OF MVUE’S FOR FUNCTIONS u(6) OF PARA-
METER 6 OF THE MULTINOMIAL DISTRIBUTION

Let X = (X1,...,Xn)” be a sample from multinomial My (m, ) distribution
with parameters m and § = (91,...,9%)7, l.e. the density function of X; =
(Xi1, ..., Xix)T is given by (7). When a parameter m is known then

n
Zn = ZX,-
i=1

is the complete and sufficient statistic for a parameter 6 and

(mn)l95t .. 9

" * mn )
21! ceezg! (mn — ZZ,‘)! (1 + Zl?t)
i=1

i=1

P{Z, =20} =
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N u(® MVUE
3
mn-Zzt
@) @] 7
m-3 s
?{X: ;0} - _ =
Y e b= & :
k <
mn+ZZ.‘
CORECN B
"I+Z:c,
mn \2 = -
(™)
k
=32,
2 Var P (fll) (f:) -:_-1
[20] m_ZI.
- i=1
)
k k
m("‘l)—zz.‘-i-z.r;
BT (P
m — T
i=1
(0 D)
3
H(”j1:~'~71~»$:~)
po o )
(Z mn . )
CP{Xl =zy,..., ml 11111 k
= z4; (n-20)
3 X;S_:z,ﬁ)} :hgli]—::11-~~-—z¢1,...,Zk_,,1k_,,._zlk),
($1y~1~n~,$k) = m!
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Remark (TRINOMIAL DISTRIBUTION)

As it was remarked by Patil (1965) the multivariate distribution given by (7)
with the series function

fO) =1 +914+92+ - +9)",

can be expressed in its traditional form:

P{X =z;6} =

k
m!p;!pat - - pi! -
P1:-D2 Pk . <1_§ :P:) i=1 ,
zylzg! - - zp! (m— E :c,-)!

where

k k

19.

p:(pl)"'apk)T) bi = lk ) 0<§ pl<1)0S§:xt_<_m
i=1

1+ 219; i=1
i=1

Let suppose that £ = 3. In this case we have X = (X;, X, X3)” and

m o, —
P{X =20} = < oz )pf‘p;”’(l—pl —p2)" T,
0<z;<m; zy+z9 <m; z; €1, where

m!

m —
1 T3 ) zlzol(m—z) — z2)!

If X =(X1,...,X,)7 is a sample from the trinomial distribution, then the
sufficient statistic for pis Z, = X; +---+ X, and

mn -2y -
P2 = 2,7 = 2;0) = (21 zz)pi*p;*(l—pl—pz)'"" no,

0<z;<mn; 0< 21420 <mn.
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THE TABLE oF MVUE’S FOR FUNCTIONS u(p) OF PARAMETER p OF THE
TRINOMIAL DISTRIBUTION.

N u(p) | MVUE

( > ( - n - )
- z
1 :P{X :B;p} P 1,2 Z1 1,42 12‘2

(ZleZ >

(I z ) ( z z )

. 7 —92 Dy — 2

2 ':Pz{X__:L‘,p} fP2 L2 ( 1 12 2

mn )
ZlyZ2
3 =1,2 p 1 Z
pi, 1=1, pz—m—n i
4 21Z2
pPipz mn(mn — 1)
mn+ 1
5 —, 1=1,2
pi ! Z; +1
(mn+r—i—j>
pip 2y —i,2,— ]
6 | (1=p1—p2) ( mn )
1,5, T€EZL ARA

mn+r—i—j3>0
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3. THE TABLE OF MVUE’S FOR FUNCTIONS u(6) OF PARAME-
TER 6 OF THE NEGATIVE MULTINOMIAL DISTRIBUTION

Let X = (Xi,...,Xn)” be a sample from a negative multinomial N My (m, 6)
distribution with parameters m and 6 = (9, ...,9)":

k m
P{X; = 2;0) = ———=L L g7 9 <1—Zz9,~> ,

k
Xi=Xa, oo, Xa)®, 2= (21,..,26)7, 2= 0,1,2,...59:>0,0< > ¥ < L.
=0

When a parameter m is known, then

is the complete and sufficient statistic for a parameter 6, and

k

I‘(mn)Hz,-! =1

i=1

k
T (mn + Zz,-) X mn
P{Z, =z;0} = i=1 ARV (l - Zﬂ,) ,

;=0,1,2,...:i=1,2,... k.
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u(6)

P{X =z;6} |.

[23], [20]

0, otherwise.
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u(f)

k
r
I17
i=1

) ' Zi!
A iz
r=0,1,2,... N Zitmn—1)1 7T
(23], [20] =1
Z,>7',', 1—1,2, ,k
k k 2
[(EZi—ZT‘i+mn—l>'] . e
i=1 i=1 H (Zi )
)
Sz N EiE
i + -1}
Var 4 = mn
[20] ( k E
ZZ,‘ - QZri + mn — 1)!
__\i=1 i=1 fI Z,'
k _1(Z,‘ - 21‘,‘)'
ZZ,- +mn—1]! v=
i=1
EX l - Iy
n
Zn
8 k
ZZ,' +mn-—1
i=1
k k
I’(mn)HZ,-l‘ [m(n -0+ Z(Zi —Ty— xh’):|
i=1 - i=1 %
]
fP(Xl =z1,..., [I\(m)} r [m(n - e)] E(Zl — Ty — xlz)'
Xe = z4;0) k ¢k
£<n HF m+ EZ:EN
i=1 j=1li=1
X k ¢k
F'<mn + ZZ,) H]:[l'j,'!
i=1 j=1li=1
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4. LEFT TRUNCATED MULTIVARIATE MODIFIED POWER SE-
RIES DISTRIBUTION

Leta €7 ={z=(z1,...,2x)":zs €1, i=1,2,... k} CIxIx---xI1
being the set of non-negative integers, and let

So; ={z:z€l,z>05},j=1,2,...,k,

and 8§ = {(z1,...,2x): z; €8a,; 1 =1,2,...,k} C 84, X 8py, X -+ X 84\t

Let also

(20) fla,8) = a(z)(9(9))™ -+ (9(9i))™,

where the summation extends over the set 8,a(z) > 0, and € © k—dimensional

parametric space. Let f(a,8),g(d1),...,9(J%) be positive, finite and differen-
tiable functions.

A k—dimensional random vector X = (X, Xo, ..., Xi)T with density func-

tio
0 a(@)(g(91))" - (g(Ie))™
(21) P{X = z;a,0} = f(e,0) ’

0, otherwise

z €8,

may be defined to have left truncated multivariate modified power series distri-
bution (LTMMPSD) with range W[f(«, 0)):

Wif(a,0)] ={z=(21,...,26)":2; > j, j = 1,2,...,k},
and a series function f(a,6) defined in (18).

Let X = (Xi,...,X,)” be a random sample of size n from LTMMPSD (19),
Xj = (le,ng, .. .,Xjk)T. Denote

Z:(Zl,...,Zk)T and Y:(Yl,...,Yk)T,

where
Zi = Zin, Y = min(Xy, Xoi, ..., Xni), 1=1,2,... k.
ji=1
Ifa=(a,...,a;)" and § = (V1,...,9;)7 are both unknown, then

(YT,ZT)T = (Y],.‘..,Yk;Zl,...,Zk)T

1s the complete sufficient statistic for (o, 6).
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Theorem 3 (PATEL (1979))

If X=(X1,...,Xn)" be a random sample of size n from LTMMPSD (19)
then (Y7, Z7)" has the density

by, 2,m) g™ - [g(II™ 2 € W{[f(, 9)]"),
PY =y,Z =2a,0} = (fle, ) " yeWlf(a,0)],

0, otherwise,

(22)
where W[f(a, 6)] = 8 is the index set of f(a,6),

b(y,z,n) = c(y,z n)—c(y+1,2,n),

c(y,z,n) = ZHa(z,l,.. Vi)

and summation extents over all n—tuples (214, Z2i,...,2Zni) for i =1,2,... k of
integers z;; > y; with

n
E zji=z, i=12,... k.
j=1

Denote = (n1,...,n)7, where n; = g(¥;), i=1,2,...,k.

Theorem 4 (PaTEL (1979))

A real valued parametric function u(«,n), a And 7 being unknown, of the
LTMMPSD (19) is MVU estimable iff for every @ € 7, u(a, n)[f(a, 8)]" admits
a power series expansion in 7y, 7, . .., Nk, 1.€.

u(a, n)[f(a, 8)" Zd (a,z,n)n7* - - -etar*, z € W{u(a,n)[f(a,0)]"}

and
WA{u(a,n)[f(a, )]} € W{[f(a,0)]"}.
The MVU estimator h(Y, Z, n) of u(a, n) if exists, is given by the expression
dY,Z,n)—-d(Y +1,Z,n)
h(Y,Z,n) = b(Y,Z,n) ’

0, otherwise.

Z € W{u(Y,n)[f(e,9)]"},

(23)
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Remark 1

The parametric function

k
u(®) = [J(g(3:))
i=1

is not MVU estimable if 7 is finite or if r; is fractional or non-negative for some
1.

Corofllary 1

A necessary and suffficient condition for the parametric function

k
(24) uw(8) = [T(e(:)),
i=1
T1,7T2,...,Tk being non-negative integers, to be MV U estimable is that

WAl (e, 0]} + {r} C W{{[f(e,0)]"}.
Whenever it exists the MVUE h(Y, Z, n) of u(8) is given by the expression

MY, Z—rn) WA e V7Y 4
(25)  h(Y,Z,n)= v,z 0 2 €W (@ +{r},

0, otherwise.

In particular if r =1 = (1,1,...,1)7, then from (22) and (23) it follows that the
MVUE for

k
(26) u(6) = [To(%:)
i=1
1s given by formula

b(Y,Z - 1,n)
(27) h(Y,Z,n) = b(Y,Z,n) '

0, otherwise.

Z € W{[f(e,0)]" + {1},

One can verify that the MVUE of the variance Var h(Y,Z —1,n) of the statistic
(25) is given by formula

(28) Var h(Y, Z = 1,n) = h(Y, Z,n)[h(Y, Z,n) - h(Y, Z — 1,n)).
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Example 5

Let u(6) = [g(¥;)]". In this case, according to (23), the MVUE for u(9) is

R WY, Z—r,n)
(29) T](23 - 7',) - b(Y, Z, Tl) )
where 7 = (0,...,0,7;,0,...,0)7 is the vector with component r; at i—th place

and zero elsewhere. The MVUE of the variance Var 7(Z; — ;) of the statistic
(27) is
(30) Var ﬁ(Z, - 7',‘) = f](Z, e 7',') - ﬁ(Z, - 21‘,').

In particular, if »; = 1, then we obtain that the MVUE for g(¥;) is the statistic
7(Z; — 1) and the MVUE of its variance is

(31) Var #(Z; — 1) = 5(Z; — 1) — 7(Z; — 2).

Coroflary 2

The MVU estimator ¢(Y, Z, n) of a parametric function

k
(32) u(a) = [Jof
i=1
for non-negative integers 7;(i = 1,2,..., k) always exists and is
. _un yn Y +1,Z,n)
(33) &Y, Z,n)=Y] Y{ AR e(Y)
where .
r; i
(34) e(Y)=2%" ( N )Yi",
) E Ji
¥* denotes summation over all non-negative ji,...,jr except ji = 7, 1 =

1,2,...,k. From (30)-(32) it follows that the MVUE for

u(a) = af
is given by formula:
. s o c(Y+1,Z)n . .
(35) s, zm =¥ - G TR 0 -7,

and the MVUE of its variance is

Y +1,Z,n) [1+ Y +1,Z,n)

(36) Var &(Y, Z,n) = =575 b(Y, Z,n)

[l vor v
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From (33) and (34) we can find that the MVUE &; for a; is

v cY+1,2Z,n)
(37) Gi =Y b(Y, Z, n)

and the MVUE of its variance is

o= . _cY+1,Z,n) (Y +1,Z,n)
(%) Vo = G 1 G

By the same way we can find the MVUE for the function

k k r
(39) u(a) = Ha: = (H“‘) ,

obtained from (30) in the case r; = r3 = --- = ry = r. From (31) we find its
MVUE

. _ Y +1,Z,n)] ,, cY+1,Z,n)_,
(40) a(Y,Z,n) = [1 + WY Z.n) ]A Y. Z,m) B,

where

k k
A=][v: and B=JJ1+V0).
i=1

i=1

The MVUE of the variance of the statistic (37) is

(41)  Var &(Y, Z,n) =

(Y +1,Z,n) oY +1,Z,n) 9
1 Br - T
(Y, Z,n) [ b(Y,Z,n) ( A7)
Now we can obtain easily the MVUE’s for u(a) = a3 az---ax and for its va-
riance, for which we need to put » = 1 in (37) and (38).

Coroflary 3

In general P{X = z;a,0} defined in (19) is not MVU estimable for an
arbitrary point o € 7. Nevertheless, if 7 is finite then P{X = o + r; o, 8} is
MVU estimable and its estimator is given by
P X=a+r0,6)=

aY+r)e(Y4+r,Z-Y-rn-1)—aY +r+1)c(Y+r+1,Z-Y —r,n—1)
(Y, Z,n) ’

T Zi>a(Yi+1) 41 forevery i =1,2,...k,

0, otherwise.
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5. A CHI-SQUARE GOODNESS-OF-FIT TEST FOR MULTIVA-
RIATE DISCRETE DISTRIBUTIONS

Let X = (Xy,...,X,)7T be a sample, X; € R¥. We consider the problem of
constructing a chi-square criteria for testing the composite hypothesis H, ac-
cording to which the law.of .X; belongs to.the.family of multivariate.discrete
distributions, given by (2) or (19). We denote Z, the complete and sufficient
statistic for 8. Let Q denote the sample space of the vector X; given Z,,. We per-
tition § into r(r > 1) mutually disjoint subsets Q1,...,Q,. Let v = (v1,..., ;)7
the frequency vector arising from groupping the data X;,..., X, over the sets
Q... Q, p=(p1,...,pr)7, where

Di = fp{Xl € QiIZn},

and let

V= %(V —np), E=E{VVT|Z,}.

The rank of the covariance matrix X is 7 — 1. Let £~ be a general invers matrix

of ¥. Using the results of Voinov and Nikulin (see, for example, (1989,1990) we
obtain the next

Theorem 5

If the size n of the sample tends to the infinity then under H, a statistic
Y,2 = VTE~V is distributed asymptoticaly as x2_;:

nlLX{:OT{Yn <z|H,} = ﬂ’{xf_l < z}.
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