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ON NONLINEAR REPLICATED NETWORKS

L. F. ESCUDERO
IBM MADRID SCIENTIFIC CENTER

In this paper we describe a new type of network flow problems that basically consists of the
classical transshipment problem with the following extensions: (1) The replication of a net-
work by producing subnetworks with identical structure, such that they are linked by so-
called linking arcs; (2) The objective function terms related to the linking arcs are non-—
differentiable nonlinear functions. We also describe an implementation of a linearly cons—
trained nonlinear programming algorithm which is fast and can solve large-scale replicated
network flow problems; the major ideas incorporated are: (i) The sparsity and the structure
of the constraints system is used to reduce the time and computer storage requivements; (ii)
The new concept of independent superbasic sets is introduced, so that it allows to obtain in
parallel independent pieces of the solution at each iteration; (iii) The predecessor, depth,
transverse and reverse structures are specialized for the case of veplicated networks; (iv}
A bending, backtracking linesearch that allows to activate more than one basic-superbasic
arc at each iteration; (v) A procedure for pricing nonbastic arcs in the presence of non—dif-

Ferentiable terms in the objective function.

Keywords: REPLICATED NETWORKS, INDEPENDENT SUPERBASIC ARCS, MAXIMAL BASIS
SPANNING TREES, BENDING-BACKTRACKING LINESEARCH

INIR ON, PROBLEM DESCRIPTION.

This paper describes an implementation of a
nonlinear method for solving a special class
of transshipment problems. The problem con-
sists of finding the local optimum of a non-
differentiable nonlinear function of a pro-
blem with a single-commodity flow in a spe-
cial capacitated direct network satisfying
suply-and-demand constraints. The speciality
of the network structure is as follows: There
are some applications, mainly in the communi-
cations, hydroelectric power and water dis-
tribution fields, on which a given network
(so-called basic network) is replicated on
a number of segments, such that they are
linked by special arcs (so-called linking
arcs) on some of the nodes and, then, produ-
cing a so-called replicated network. Let J
denote the set of nodes (so-called basic no-

des) in the basic network; i, and jk denote
the from-node and to-node of a given arc,
say k; let P, denote the set of from-nodes
of the arcs in the basic network whose to-~
node is the node j, and Qj denote the set
of to-nodes in the basic network whose from-

node is the node j for jeJ; note that

HjeJIPj={¢} and 3ieJ|Q.={g} . Let T denote
the set (and, then, |T| the number) of repli-
cations on the basic network; let WeJ denote
the set of basic nodes with linking
and, then, |W]|>1

arcs,
let n(t,3)
denote the node of the replicated network

by definition;

for jeJ that is obtained by replicating the
basic network on the segment t for teT; let
a(t,j) denote the linking arc that connects
the segment t-1 and t for teT/{1} and jeW
(note that without loss of generality we
may assume that the set W is replicated on
all segments); let a(t,j,i) denote the arc
that connects tha basic nodes j and i on
the segment t for teT, jeJ and ist, such
that n{(t,j) is the from node and n(t,i) is
the to-node; we may assume w.l.0.g that the
node n(t,i) for Qi={¢} is the same node

(the root) for all segments.

An example of replicated networks. In the
hydroelectric power problem, the basic net-
work is given by a river such that the nodes
represent the reservoirs and the arcs are

given by the sections of the river that con-
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nect the reservoirs; the single-commodity
is the water that is stored in the reser-
voirs from one period to the next one, or
is released from one reservoir to its di-
rect downstream reservoirs (the cardinality
of this set is not necessarily one); the
segments are the time units (usually, weeks
or days) of the planning horizon (such that
if it consists of, say 52 weeks then the
basic network is replicated 52 times); the
basic nodes on which the replication is ba-
sed are the reservoirs that may store water
from one period to the next one; the link-
ing arcs of any reservoir that may store
water consist of its connexions along the
planning horizon; the flow of the linking
arcs is the water stored by the reservoir

at the end of a given period and, then,
available to be released or stored on the
next periods; and the supply-and-demand is
given by the water net exogenous inflow.

The purpose of the bounds on the arcs is
threefold: first, to ensure that the water
released serves the flood control, irriga-
tion and navigational purposes; second, to
ensure that the amount of water released
from a given reservoir to any of its direct-
ly downstream reservoirs does not exceed

its canal capacity; otherwise, the overflow
is not used for producing electricity; and ,
third, to penalise the amount of stored wa-
ter that exceeds a safety capacity in a gi-
ven reservoir. The objective function con-
sists of the maximization of a non-differen-
tiable nonlinear function (typically , the
generation of electricity) over the plan-
ning horizon. See /12/, /16/, /17/, /23/,
/24/, /26/, among others. Assuming a multi-
reservoir system of 25 reservoirs and a
planning horizon of 52 time periods, the
replicated network has over 1250 nodes and
2500 arcs. The dimensions of the problem
are affordable for linear objective func-
tions given the current state-of-the art
of special data structures for storing and
updating the network (see /5/, /14/, /15/,
/18/ among others); a sounding nonlinear
network algorithm should require a comput-
ing time with the same order of magnitude

of the linear ones /6/.

Recently, new algorithms have been designed
for specializing linear primal data struc-
tures to nonlinear network flow problems;

see /1/, /&/, /1/, /16/, /19/, /20/, /23/,

/24/, and related references. Apart from
recent developments (see /2/, /4/, /6/, /7/:
/17/, among others), the methods use a li-
nearized subproblem to generate stepdirec-
tions so that the reduced gradient methodo-
logy is used in the basic-nonbasic environ-
ment /24/ or in the more efficient basic-
superbasic-nonbasic environment /21/; no
second-order information about the objective
function is used. The current methods that
use the Hessian matrix are designed for solv-

ing medium scale problems.

This work proposes to use the Truncated New-
ton method to solve the transshipment pro-
blem for replicated networks, by using the

new concept so-called independent superbasic

sets; it allows to obtain in parallel inde-
pendent pieces of the solution at each ite-
ration. The TN method was introduced in /9/
for general unconstrained nonlinear problems,
extended in /11/ to linearly constrained pro-
blems, and specialized in /6/ to general net-
work flow problems. The new algorithm uses
second-order information and allows non-dif-
ferentiable terms in the objective function,
given the special structure of both the ob-
jective function and constraints.
The paper is organized as follows. Sections
2 and 3 present the formulation and objec-
tive function of the problem. Section 4 sum-
marises the variable-reduction environment
of the algorithm. Section 5 presents the ap-
proach for obtaining the superbasic step-
direction in nonlinear replicated network
flow problems, and introduces the new con-
cept of independent superbasic sets. Section
6 describes the de-activating process and
the procedure for pricing nonbasic arcs in
the presence of non-differentiable terms

in the objective function. Section 7 is de-
voted to the bending, backtracking line-
search. And, finally, Section 8 reports some
computational experience.

2. PROBLEM FORMULATION.

Consider the replicated network described
before. Associated with each node n(t,j) is
a yalue btj representing the amount of suply
of a commodity available at the node; a ne-
gative value represents a demand for the com-

modity at the node. The decision variables
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are denoted «r , the flow on the arc

tii
a(t,j,i) and Stj’ the flow on the linking

arc a(t,j). The flow balance equations for
the nodes {n(t,j)} for jeJ and teT, ex-
cept for the root node are

"E Teig T Sey t E Tegi Yo Seet,3 T Pry

ieP, i€Q.
3 J (2.1)

where Slj is fixed for {=1 and {=|T|+1l, and
jeJ/W. The equa-

tion for the root node is not shown; it is

it is dummy for £e¢T and
implicity satisfied, since the related
s-variables are dummy and the right-hand-
side is the negative value of the summation
of the btj—values of the other nodes and the
szj—values for £=1 and £=|T|+1 for ¥jeW .
Letting X be a vector of all decision va-
riables and b a vector of the supply-and-
demand, system (2.1) can be written
AX = b (2.2)
where A is the node-arc incidence matrix.
Each column of A corresponds to an arc and
each row to a node of the replicated net-
work. Multiple (or parallel) arcs a(t,j,i)
between the nodes j and i are allowed per
each segment t; the arcs can each be given
explicitly with associate objective func-
tion coefficients and bounds and would be
treated as distint arcs.

The bounds on the arcs of the replicated
network are given by

< < 3 <
ltji < rtji "utji VlEQj, jeJ, teT
(2.3a)

Mgy S8 M view , teT/{1}

t] t] t3
(2.3b)

Following a traditional approach /21/, ma-
trix A can be partitioned as follows,
A = (B S N) (2.4)
where the columns of B form a basis and co-
rrespond to the basic arcs, and the columns
of § and N correspond to the superbasic and
nonbasic arcs, respectively; let B, § and

N denote the related basic, superbasic and
nonbasic

sets of arcs. Nonbasic arcs are
temporarily fixed to their bounds, and the
flow in sets B and § vary between
bounds.

their

By construction of A it can be shown /5/
that any basis B may be ordered such that

it is upper triangular, and the arcs corres-

ponding to columns in any basis form a span-
ning tree of the network. It can also be
shown /7/ that a maximal basis spanning tree
for a given feasible solution avoids a basic-
superbasic degenerate pivot; otherwise, null
steps are more frequent than in problems

with a general structure.

Let Z be the variable-reduction matrix whose

columns form a basis for the null space of
A, given AZ=0, such that

-B—ls } n
7z = I % a-n (2.5)
o]

where n denotes the number of nodes (with-
out including the root) and a denotes the

number of arcs. Let Basic-Equivalent-
Path (BEP) define the unique path in
the basis spanning tree that leads from
the node ik to the node jk of the
superbasic or nonbasic ark ki let

Bk denote the set of arcs in the BEP of arc
k. Arc k'eBk
the BEP of arc k if p(ik,)k=jk, where p(.)k

has a forward orientation in

is the predecessor of node (.) in the BEP
of arc k; it has a reverse orientation if
p(jk,)k=ik. - Let py denote the column

(B_ls)k and, then, pE(B_lS). The nonzero
keSulN
forward orientation and -1 for a reverse

elements of Py for are +1 for a

orientation,.

3, THE OBJECTIVE FUNCTION.

The important properties of the objective
function in nonlinear replicated networks
are quasi-separability and non-differentia-
bility. Let ctj
tion coefficient per unit of flow along the

i denote the objective func-

arc a(t,j,i). The objective function term

for the node n(t,j) of the replicated net-

" work can be expressed as follows.

h . = K_, T, 3
t5 t5 thji rtji ¥YteT, jeJd
ieQ,
9 (3.1)
where
W .
f(stj,st+1,j) VieW
Keg = (3.2)
1 ¥ied/W
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such that ¥ (.)
that K

is a nonlinear function. Note

.=0 for the root node. Then, the ob-

t3
jective function could be written

ax{ 5250, )

teT jed (3.3)

Let PL denote the set of pure linear arcs
a(t,j,1i), VL the set of linear arcs af(t,j, i)
and NL the set
of nonlinear arcs a{t,j). Arc a(t,j,1)€PL
for jeJ/W. Arc a(t,j,i)eVL for jeW; note

with variable coefficients,

that htj is a linear function if stj and
st*l,j are fixed. Arc a(t,j)eNL for jeW.
Let gtji for a(t,j,i)ePLuVL and gtj for

a(t,j)eNL denote the gradient elements rela-
ted to the r-~arcs and s-arcs, respectively.
Note that the gradient related to the set
PL is constant, and gtji for a(t,j,i)eVL

does not change for fixed values of s and

st+1,j' The Hessian matrix G has the Egrm
PL VL NL
Gl=0 0 0 (3.4)
G = 0 G,=0 } G3
o | g G,
such that G, is- a two-diagonal matrix for

IQj|=1 ¥jeWw and G, is a symmetric tri-

diagonal matrix; see an example in form (3.5)

a2 fx | x
412 X
G = T X
3 512 (3.5a)
Te12 X1 X
712 X
831 %41 Ss1 %61 °71
Note that the elements related to the same

pair (t,j) in a given column of matrix G,y

differ only in the coefficient ctji for all
ier, for |Qj]>l, jewW.
31 x| x
541 X X X
. = (3.5b)
T Ss1 XXX
561 X X X
571 XX
S31 %41 Ss1 %61 71

Let R_., and T .,
tji t]
bounds for the flow on the arcs a(t,j,i) and

denote the intermediate

a(t,j), respectively such that the overflow

r ..-R_.. is not used in the objective func-
tji “t3ji

tion and the overflow s .-T, .

) Tt3

lised. Then, the objective can be expressed

by (3.6) instead of using (3.1) and (3.3).

max{Z Z_htj - Z ZPtjmax{O,stj—th }}

is to be pena-

teT jed teT jewW (3.8a)
where
hey = Kej ) Cegi ™ Argpe Regy)
; (3.6b)
ieQ.
J
and Ptj represents a penalty coefficient or

function. The nondifferentiability introduced
by (3.6) can be treated without great diffi-
culty (see Section 6).

As an example of the objective function on
nonlinear replicated networks, consider again

the hydroelectric power problem. The electri-

city to be generated by the reservoir j at
the time period t can be given by the ex-
pression (3.1), where ctji=l’ Ktj YteT is

a constant for the (run-of-the river) reser-
voir je€J/W, and ¥ (.)

on the average of the water levels, say W s

is a nonlinear function

and w .

t+1,3
t+1l, respectively; wtj itself is a nonlinear
for teT and

jeW. Then, the objective (3.3) may express

at the beginning of the periods t ana
function on the stored water Sy

the maximization of the amount of electricity
The
function (3.3) is temporal gquasi-separable
and spatial separable; see /2/, /4/, /7/ for
separable functions and /16/, /24/ for tem-
poral-separable and spatial-nonseparable

generated along the planning horizon.

functions. The intermediate bound Rtji

be given by a constant per each pair (j,i)

may

and represents the power 'generation capacity

of the associated turbine. The upper

bound utji may be given by a constant per
each pair (j,i) and may be regarded as the
maximum physical capacity of the

(j,1i) of the river. The intermediate bound

section

th may be regarded as a safety bound on the
amount of water to be stored in reservoir j
for jeW at the time period t. Now, since the

water overflow r cannot be used for

t3i Reyi
hydroelectric power generation and the excess

of stored water s, . -T

57 T must be penalised,
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the objective can be expressed by (3.6);
see in /17/ a different approach.

4. SKELETAL ALGORITHM FOR OBTAINING
FEASIBLE-INCREASING SOLUTIONS.

Let d define the stepdirection from feasi-
ble solution, say X such that the new iter-
ate can be expressed

Xy = ik + gkdk ¥keBUS (4.1)

where {gk} is the steplength vector (see
Section 7). Given egs. (2.2) and matrix par-
tition (2.5), by linearity it results

dp
(B S N} dg )= 0
(4.2)
éxn
being df(dg,dg,dg)t . The basic stepdirec-

tion dB is used to satisfy the constraints
system (2.2), the nonbasic stepdirection dN
is temporarily fixed to zero, and the super-
basic stepdirection ds is used to maximise
the objective function (3.6).

At each iteration, the problem then becomes
determining vectors d and o , such that
{gkdk} is feasible and increasing enough;
the algorithm must be globally and, if pos-
sible, Q-superlinearly convergent. Direc-
tion d is feasible if system (4.2) is satis-~
fied. Since dN=O and dS is allowed to be
free, it results

d = ZdS (4.3)

such that

dr = = 2_p,,, 4  Vk'eB (4.4)
keS

The ascent enough stepdirection dS can be
obtained by 'solving' the problem

max{htdg + 1/2a§Hdg) (4.5)

where the reduced gradient h and the reduced
Hessian H can be written

B (4.6)

nzz taz (4.7)

such that the basic estimation H of the

B

constraints Lagrange multipliers solves the
system

_ ot
gg = B g (4.8)

and g = (gg,gg,gg)t. Note that the solution
of problem (4.5) and, then, the solution dS
of system

Hd, = -h (4.9)

is feasible-ascent for a positive definite

matrix -H and a maximal basis spanning tree.

Solving the n-system (4.8) when the arcs
corresponding to the columns of B form a
spanning tree does not need a great compu-
tational effort /5/, but the LP simple rules
for updating Mg do not apply when the objec-
tive function is nonlinear (even if basic
set B does not change). From other point of
view, using (4.8) in (4.6) could be compu-
tationally advantageous, since (1) a-n=n

for |Qj|=l ¥jed, W=J and then, |Bk| for
keSuN could be small, (2) the cardinality
of the set to be wused while iteratively
solving problem (4.5) could be much smaller
than a-n, and (3) Sk must be used, in any
case, for obtaining the stepdirection d and
the steplength a. Then, based on the com-
putational effort to be required, we sug-

gest the two following alternative formulas

for obtaining hy VkeS
9 "2 Oy 9 for |BuS|>o0.52_ |g |
k'eBy ke§ *
h, =
9y ~ 'ﬁik+ ﬂjk » otherwise (4.109

where ﬂjk =0 for jk being the root node,
and the Lagrange multipliers estimation
uB = (Wl,...,ﬂn)t is obtained by recursion
from (4.8) such that

= Mmoo~ vk'eﬁ
Ik g Ip

(4.10Db)
Matrix H is likely very dense even for
sparse matrices Z and G. Since we are deal-
ing with large-scale problems, we cannot af-
ford to use matrix H, nor any of its appro-
ximations suggested in the literature. We
suggest to use the Tuncated Newton method
at independent series of iterations (see
Section 5), such that matrix H does not need
to be stored and the computer effort and
storage are within affordable limits. Note
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that system (4.9) is not needed to be com-
pletely solved at every iteration for get-
ting, under mild conditions, a Q-superli-

near rate of convergence /9/.

The steplength {gk} must be feasible and
{gkdk} must be increasing enough; it is
interesting it may allow to activate as

many as possible superbasic arcs (see Sec-
tion 7). Being 4 ascent, a feasible {gk}

must be such that 0<gksak, where the upper
bound o keeps feasibility on arc k; o is

k
given by the expression

oy = |(abk-§k)/dk1 ¥keBUS gk (4.11)

where abk takes the active bound on the di-
rection of the sign of dk. Let I Ek and

ék denote the lower bound (1 or mtj),

tji
*intermediate' bound (R, .. or T, .,

tji t3
tion 3) and upper bound (utji or Mtj) of the

feasible flow in arc k, respectively; the

see Sec-

active bound abk is obtained as follows

(1) If dk<OAXkSEk, abk:=ak
(2) If dy<0aXy>3K, aby:=ag (4.12)
(3) 1f dk>OAik<Ek, aby :=2a

(4) If dy >0y 23y, aby :=3

After obtaining the step {gkdk} at the
current iteration (here, termed major ite-
ration), a new iterate is obtained and,
theoretically, the algorithm continues till
lin]l =0

and, then, the de-activating process is exe-

or the superbasic set is empty

cuted; the Lagrange multipliers if the solu-
if the
solution is quasi-optimal are used for se-

tion is optimal or their estimates

lecting the nonbasic arc to be de-activated
(see Section 6).

Data structures.

While maximizing in a given manifold, it is
possible that either a basic or a superbasic
arc strikes a bound during the search. If a
superbasic arc strikes a bound then it be-
comes nonbasic, the cardinality of the ba-
sic-superbasic set (the manifold) is reduced
by one, and the search continues. If a basic
arc strikes a bound then it 1is exchanged
with an appropriate superbasic arc, and the
resulting new superbasic arc is made nonba-
sic. Note that the related pivotting and,
then, the new (maximal) basis spanning tree

may be easily obtained by using LP special

data structures without any matrix manipula-

tion.

Our data structures are a mixture of those
described in /24/ for the predecessor array
but extended to the case for which 3jeJ
with |Qj[>l, and /5/ for the transversal,
reverse and depth arrays.
Let define the stem node of a given super-
basic arc as the first common node of the
paths to the root node of its two ending
nodes. Assume that a pivotting must be per-
formed between the bounding (outgoing) basic
arc, say k' and the non-bounding (ingoing)
superbasic arc, say k such that k'eBk; see

in Section 7 (conditions (7.15)-(7.16)) the
procedure that we suggest for chosen the

arc k. Let define the pivot's path as the
path connecting the ending node of arc k and
the ending node of arc k', such that it does
not include the stem node. The specialization
of our procedures for performing the pivotting

takes advantage of the structure of the ba-

sic neighbourhood of a given node, say

len(t,j), since it is included by the set
of nodes
(& )elnit-1,9) ,nices, i) onie, i) vieP L D)

¥

3
for which the arc a(ll,£2) is basic.

The predecessor array is used for obtaining
the initial transversal and reverse arrays.
The predecesor and transversal arrays are
used for obtaining the initial depth array;
it is used for obtaining the distances of
the endnodes of a given superbasic or non-
basic arc to its stem such that, by using
this information and the predecessor array,
its BEP is obtained. The depth, transversal
and predecessor arrays are used for obtain-
ing the constraints Lagrange multipliers es-
timation Ug- The predecessor and transversal
arrays are used for updating the depth array.
The predecessor, reverse and depth arrays are

used for updating the transversal array.

Although the nonzero elements of the columns
of matrix p can be computed (by using the
depth and predecessor arrays) whenever they
are needed at each iteration, we suggest to
(partially) compute matrix p at the begin-
ning of each iteration since the algorithm
described in this paper uses the same columns
very frequently. Note that it is possible to
split the matrix p in different (so-termed
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indeEendent) submatrices such that there is
not any link in matrix p, nor in the objec-
tive function among the related (so-termed
independent) sets (see Section 5.2); the
optimization of each related manifold may
be performed at each independent iteration.
Note that it is only required, at each of
these iterations, to updating the related
subarrays of the four data structures and

the related submatrix of matrix p.

Let §(p) (see below) denote the set of super-
basic arcs {&} related to the independent

let g(.) denote the
on which any superbasic arc (.) is located
in the set §(P).

be such that BEPA(i) stores for i=1 to nbep

submatrix p(p); order

Let the integer array BEPA

a basic arc, say k' such that 3ke§(p)|k'esk
where nbep=%|82|v25§(p). Let the binary
array BEPS be such that BEPS(i) gives the
orientation of the basic arc BEPA(i) in the
BEP of the related superbasic arc. Then the
nonzero elements of the column related to
any arc ksg(p) in the submatrix p(p) are as
follows: *t1 for the basic arcs stored in
BEPA (i) for i=i+l to ;+{sk[,
;=§132[ such that {g}c§ (P
subset of superbasic arcs with gq(&)<g(k);

where

denotes the

the nonzero element will be +1 for BEPS(i)=0
-1 for BEPS(i)=1
(reverse orientation). Note that the struc-
tures BEPA, BEPS related to the different
independent submatrices p(p) are not requir-

(forward orientation) and

ed to be simultaneously allocated; note also
that, since the value of nbep may drastical-
ly change from one independent set to ' an-
other, the structures are dynamically allo-

cated whenever they are needed.

ING SUP C STEP

5.1. BRIEF REVIEW OF THE TRUNCATED NEWTON
METHOD.

See in /9/, /11/ the motivation for using
the Truncated Newton (TN) methodology when
'solving' sistem (4.9); it is a natural ex-
tension of the conjugate gradient method for
solving system
HdS+h =0 (5.1)

At each iteration, say i (here, termed minor

iteration) of the conjugate gradient method,

a stepdirection Gél) is obtained as a linear
combination of the resiaual
e(l-lL-Hdél_l)—h and the

{6éj)} of previous minor iterations such

error

stepdirections

that they are conjugate.

Let déi) = déi—l)+a(l)6éi) be the solution
(probably, inexact) of system (5.1), where

(1)

scalar o is the (exact) steplength that

solves the guadratic problem

SNt
min{e(l_l)aﬁg)

Nt ..
~1/26260 56l

S (5.2)

Note that e(l) can also be written

D) o Li-1) o (D) H‘Y’(Si) (5.3)
If [|e(l)]| satisfies the test (5.4), then
dszdél) is the truncated solution of system
(5.1); the tolerance ng in test (5.4) is
dynamically updated at each major iteration

% by using expression (5.6).

Skeletal algorithm Al

0, __.. .€0)
:=-h; ds

©, (O (®

=03 G(O):=O' 6(0%

Assign e 5 S

Obtain =z

Do i=1 to I

60 1m0 gD D ),y ()

If Géi)tq(j) 2 —Elllééi)llg then

do;
If i=1 then dS:=6é1): else dsz=d§l~1)
stop;
- end;
a(i):=_e(i—1)tz(i-l)/ééi)tq(i)
(1), _ (1-1), (i) (1)
ds .—ds +o GS
e(i):=e(i-1)_a(i)q(i)
Iff|e(i)“l+t/![hnl+t5n£ then do; dS:=d§i_l); stop; end;

Obtain z(i): WZ(i)= e(i)

g (1, L D, @), G-DF, G-D)

End;

N 3)]
dg: = dg

Where W is a preconditioning (positive defi-

nite) matrix and

oy, 2 {-1 2 i1 2 s 2
e I T I e el

see /11/ and Section 8.
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It can be shown /9/ that for el>0 small

enough, d, is an ascent stepdirection, the

steplengti a=1 1is ascent enough in the ve-

cinity of the local optimal point % of the

current manifold (if -H is positive definite
(pd) and n,
rithm is globally convergent; in addition,
if -#
{x}» %

+0 for 2-«), and the above algo-

is pd the rate of convergence on

is superlinear iff

lim|lel| /||n]|-0 (i.e.,n=0) (5.5a)

such that its order is t+1l, where 0O<t=<l iff

Lim flell, /lnfl )15 < = (5.5b)

Thus, tolerance Ny can be written
- . t
ng = max{e,, min{n,v|/n{l; 1} (5.6)

for 0<n0<1 and v>0; for t=1 the rate of

convergence is guadratic as the Newton me-
thod. If || h]| is large (X is away from %),
only few minor iterations are required for
to i
then
dS is getting close to a Newton stepdirec-

obtaining ds; when X is getting close
then || h|| +0 which implies n, >0 and,

tion. Tolerance Ty

stabilities on calculating g

is a safeguard againt un-
(l).Tolerance 3

1
is also used as other safe-
guard; it avoids that ds is not ascent (e.g.,
if -H is not pd). Typical values, g, = e;/z

where €M is the machine precision in float-
ing point calculations (10E-15 in our case),
T, = 3] , y = 1 and ny = min{0.01, 1/2'}
where &' is the major iteration of the sub-
problem defined by the current manifold; &'
is reset to 1 whenever set § is changed.

5.2. INDEPENDENT SETS OF SUPERBASIC ARCS.

Note that the TN method /9/, /11/ does not
require the calculation of any Hessian
matrix, but the product

P A T (5.7

For obtaining q(l), the superbasic set S is
partitioned into, say |P| disjoint so-termed

independent superbasic sets, such that

(5.8)

vD,qcP (5.9)

For stating the two alternative necessary
conditions for the unique valid partition
(5.9), let B'P)eB define the set of basic
arcs covered by the superbasic arcs included
in set §(p); that is,

5Py

T gesip) K (5.10)

and let ¢ PIpE @) 5P gefine the set of

basic and superbasic arcs to be used for ob-

taining dép).

(i) Superbasic arc k will be included in set
§(®) if the following condition is satis-
fied

5P ng, #00) (5.11)

That is, two superbasic arcs will belong to
the same independent superbasic set if any

flow change in one of them affects the other's

solution feasibility. Note that condition

B N8y # {0} (5.12)

is not sufficient, since it could be possible

that Bk and Bl are disjoint sets and the
following condition is satisfied
(E(p)ﬂ3k¥{0})A(E(p)nB£#{w}) (5.13)

(ii) Superbasic arc k will be included in
set §(p) if the following condition is
satisfied
36, #0 | } g (P

' (gE{k UBk)/\(g €C ) (5.14)
g8

That is, two superbasic arcs, say k and 4£

will belong to the same independent set if

any flow change in one of them affects the

other's objective function coefficient.

Sets, say §(p) and §(q) will be joined in
one single set if the following condition is

satisfied

EP) 05D 291y v (3Ggg.9‘OIgeE(p)Ag'ea(q))

(5.15)

Let VL ®) cvnnGP) denote the set of basic
and superbasic linear arcs whose variable-
coefficients are not fixed at the current
iteration. Let ﬁi(p)éNLnE(p) denote the set
of nonlinear arcs in set C(P),

a(t,j,i)eVLnE(P) belongs to the set vz (P)

Then arc
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1ff a(t,§) eNLP) or a(t+1, )N @),
the special structure (3.4)-(3.5) of the ma-
trix G.

given

Note that at a given major iteration, |P|
independent iterations are consecutively
executed; note also that there are {i} minor
iterations to be executed at each iteration
p for peP.

The advantages of using independent sets at

sucessive major iterations are as follows.

(1) The Lagrange multiplier estimator L is
not required to be calculated for those no-
des {i} such that, at the given major itera-
tion, ifi,, ifj,, for k' (P),

(2). The computational effort for obtaining
vector q(l):=Zt(G(Z6él))) is drastically re-~

duced.

(3) Faster minor iterations at the price of
more (but much cheaper) major iterations.
Note that the elements of the matrix G re-
lated to the arcs included in the set
E(P)/(VE(P)UEE<P)) are not used for obtain-
ing any stepdirection dép), nor their gra-
dient elements are required to be re-evaluat
ed after obtaining it.

(4) Independent steplength upper bounds for
each set C(P) VpeP.

(5) Strong reduction on the number of arcs
(i.e., cardinality of set E(p)) to be used
for obtaining the steplength related to set
E(p). Note also that only the terms of the
objective function (3.6) related to set a(p)
are to be recomputed for obtaining the ob-
jective function value F(Xég)) related to
each trial step.

5.3. OBTAINING VECTOR q(l) IN THE TRUNCATED
NEWTON METHOD.

Assume that q(l) is related to the superba-

sic stepdirection dép).

Let pLP)pE(P) opr,, vLPIAZ Py ana

Vfép)QVL(P)/Vf(P). Let Eép) denote the com-

plement of the set 5(p)in set BuSuN

(1) Obtain intermediate vector §(l):=z(p)6él)

such that
(1)
'Z"L’k‘sk v BP)
keg(p)
52%) S vees)
0 v2etP) (5.16)

(2) Obtain intermediate vector 3(1):=G§(l),

such that
[' 0 (1) vle (_ng()u PL(p) U ‘-/'—L;P)
¥G3£g|§gv V,(_gﬁ P)

(1) "eNL'P . .
13 1= (i) (1)
£ EE Gaop 80 + G,p 182
L) cete g'el-\‘-li(% “leve

& V{enkp)

(5.17)

Computation of vector 3(1) is very fast since

G4 is a symmetric tridiagonal matrix, the ele-
ments related to the same pair (t,j) in a gi-
ven column of matrix G

3
Vier,

differ only in the
coefficient c, ., (1)
tji

related to set PL(p)uVEép) are not used (since

the elements of §

the related elements in matrix G3 are zero),
and only the rows of the Hessian matrix relat-
ed to set VL P yNE®) are used.

. t o (s A\
(3) Obtain vector q(l):=z(p) 51 5§1)_(B'ls)(P) Sél)

- (i (i et st
such that 6(1)=(a§1), 5§1),6§1))t.
qii) =§£i)_:$::::pk'kg£}) vke3(P)

k eBk
(5.18)

DE-ACTIVATING STR '

6.1. DEFINITIONS

Let the following stopping tests (with values
true and false) for the optimization on the
manifold, provided that the solution X=§+gd

is feasible-increasing.
3 6:)]
ere 10| se 1x8P 1 vl KR sasligh ) d<e,

VIn® e vEP = 9}
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e2: [rx®) - r P [ ra P < e,
' in the last T, iterations

e3: 0P <
® q

Each manifold has |P| independent problems
to be optimized, such that the optimization
of each problem p for peP is 1interrupted
once the following tests are satisfied for
the current solution: tl (optimal solution)
or Ttla(t2vt3) (quasi-optimal solution}).
Note that an optimal solution is assumed to
be found in the current manifold if tl1 for
IpeP|ltl and
(t2vt3) for all plltl. Typical values for

the (positive) tolerances are:

all p; it is quasi-optimal if

E,=E4=E,= 10E-04, e6=0.1 and 1,=3. The

2

quasi-optimality tolerance e for a given

manifold, say q is obtained as follows.

(1) e _:=max &6,5

(0
q I,

qu_1}, where Eq_l=|| h

(2) 1f Eq>,”‘r—1”wthen ?:q_1:=||EH(m and go to (1).

Vector h takes the reduced gradient evaluat-
ed at the point is, where the related super-

basic set S includes:

(a) The given superbasic set at the end of
the optimization on the previous mani-
fold, and P

(b) The just de-activated nonbasic set
(see below):

The fraction €gq is obtained so that the
following expression holds

lne,= (1/(r7+1))1n<e6/Hh(O)Hm)

Typically, T7=7 or 5. Note that, at the
17-th de-activating process at most, €

equals the optimality tolerance g+

In any case, eq is reset to EG if the so-~
sution of the previous manifold was optimal.
Note that sq+0 for g»= and, then, the ma-

nifold principle holds /6/, /8/.

Let U define the set of unsafe arcs; a un-
safe arc is a nonbasic arc that was made ba-
sic-~superbasic after obtaining the optimal

solution of any manifold and, again, become

for g=1.

nonbasic.

Let us define indicator Yi keN as follows.
yk=0 means that nonbasic arc k is not a
candidate to be de-activated; otherwise, it
takes the sign of its de-activating direc-
tion (+ for up-direction and - for down-
direction). A nonbasic arc will not be a
candidate to be de-activated if it is an un-
safe arc, the pricing is not favorable or it

is a blocked arc; see Sections 6.2 and 6.3.

Let D define the set of nonbasic arcs to be
de-activated; that is, the arcs that will be
moved from the nonbasic set to the superbasic
set. Let Béuﬁ(p) YpeP and 5(p)n5(q)={ﬁ},
where 5(p) is the independent nonbasic set

to be de-activated and, then, joined with

the independent superbasic set §(p). A can-
didate nonbasic arc will not be de-~activated
if |D| is at its (upper) bound and there is,
at least, any other candidate arc with higher
(first-order) guarantee of a stronger in-
crease in the objective function; see Section

6.4.

6.2. PRICING NONBASIC ARCS

When a solution on the current manifold is
¥keU; the set U is
declared empty if the solution is optimal.

quasi-optimal then Yk=0

Note that the basic arc k', such that
k'48, ¥ieS and k'eB,
k from the set N/U, may have its wvalue X
at its intermediate bound a

for any nonbasic arc
K
k' Then, it re-
sults that the evaluation of its gradient
element depends on the sign Y of the de-
activating direction of the nonbasic arc k.
Hence, the constraints Lagrange multipliers
estimation Ug cannot be used for obtaining
the nonbasic Lagrange multipliers estimation
A. See formula (4.10) and let

i i 5
>\k = Sk Zpk'kgk'

k‘eSk

vkeN/TU (6.1)
where xi is the Lagrange multiplier estima-
tion related to the i-direction of the po-
tgntial move of nonbasic arc k, and gi (res.
gi,) gives the gradient element related to
the i-direction of nonbasic arc k (res. the
j-direction of basic arc k'). The directions

can be + (up), - (down) and 0 (no move).
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¥
Note that gk gk for Xk ay (lower bound)
and gk=gk for Xk=§k (upper bound) such
that gi=gk where 9y is the usual gradient

element related to arc k. Both gradient ele-
+ - + -

ments = and 9y (and, then Ak and Ak) are

required for the nonbasic arc whose current

solution is at its 'intermediate' bound a

k*
t+ _ - _ [

Note flso_that gk,—gk,—gk, for k eBk such

that Xk,#ak,.

Gradient elements g; and g; for nonbasic

arc, say % such that Xl—a AYQ#O, and for
basic arc, say % such that X
ed as follows: 92=0

l—az are obtain-

and g2=K for

: t3°¢31
Lza(t,j,1); 9,59 for f2za(t,j) such that
max{0, stj-th}:=stj—th
in the usual way, gradient element gy and

gl g£+P J see (3.6).

and xk.

while obtaining,

Element gk, for k'eBk

Qs is expressed as follows:

+ i_ + i -
Bt | (BR8NP == 1) V(g =g Ap, o =+1)

g;., otherwise
(6.2)

Finally, indicator Yy for nonbasic arc k

such that keN/U is assigned as follows.

For Xk s Y=t if A;>e7; otherwise, Yk=0
where €4 is a positive tolerance (typically
0.1). For Xk By V=T if A£<—e7; otherwise,
Yk=0. For Xk=ak’ it results
0“:387 A A; z-c,
- +|)‘;>€7AA;<2—E7 (6.3)
-l)\i:se7 A)\—k<—e7

j such that Ikil= max {IA:|,IX;|L

otherwise

Thus assign xk:=xi for i=yk#0.

Note that expression (6.2) is based on the
direction 1 and orientation Prrg: The ambi-
guity on gk, for kEBknszlxk'_ak' is solved
by blocking the nonbasic arc, k or & that
satisfies test t5 (see below); note that
there is not a null step for ft5 since ) is
used as the stepdirection of set D (see Sec-
tion 6.6), the solution of a superbasic arc
is not, by definition, at any of its bounds,
and a maximal basis spanning tree is assumed
(i.e., Zk'eﬁ(p) ¥peP such that X

K is at
any of its bounds).

Let the following anti-zigzagging test for

any nonbasic arc being priced out.

br fInlf < eq o, |

where €g is a positive tolerance (typically,
0.9).
fold is gquasi-optimal,

When the solution on the current mani-
arc k will not be con-
sidered as a candidate to be de-activated
(and, then, Yk=0) if Mt4.

6.3. BLOCKING NONBASIC ARCS.

A maximal basis spanning tree avoids degene-
rate basic-superbasic pivots, but it does
not prevent null steps when a nonbasic arc
is de-activated. Therefore, a mecanism is
needed for testing whether a nonbasic arc,
say k must be considered as a candidate to
be de-activated. It may be carried out at
the same time the nonbasic arc is priced
(i.e., its Lagrange multiplier estimate is
calculated) and, then Yy is 0 if
otherwise a null step could not be prevented.
t5vt6vt7, where t5, t6 and t7

are the result of the following blocking

set to
Thus, Yk=0 if

tests:
e5:fy [=min {{A, ], 12, Iik,=5k.

for k' €8, NByA KEEIYK#OAYkYZQk'kpk%:—}

Note that ft5 if the flow in basic arc k'
changes in the same direction for any flow
change in the appropriate direction of arcs
k and 2 (given by Yi and Yo o respectively) .

té (case Y, =+):3k'e€B, such that
pk.k=-1 (reverse)A(i =_k,) or
PrrE =+
t7 (case Y =-):3k' €8y

(forward)A(Xk.~ak.)
such that
pk k——1A\xk,—ak,) or

If t5vt6vt7 we refer to arc k as a blocked
arc and, then, it will not be a candidate

to be de-~activated.

6.4. OBTAINING SET D TO BE DE-ACTIVATED

A multiple de-activating strategy is allowed

such that as many as possible candidate non-
basic arcs are to be de-activated up a given
bound, say min {T3,€9|ﬁ/ﬁ|}, where T4 and €
are positive tolerances =60

9

(typically, Tg
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and 59=0.5). For reducing the computer effort
and storage required by the Truncated-Newton
method, it is interesting that the cardinal-
ity of any independent set §(p)U5(p) does not
exceed a given bound, say Ty (typically, 60).
Note that the set U is declared empty if the
current solution is 'optimal' (i.e., test t1

is satisfied).

Given the dimensions of our problem, we sug-—

gest to use a strategy for partial pricing

if lﬁ/ﬁ]zelo(a—n), where e, is a positive

tolerance (typically, O.l)}osuch that only

a subset of N/U is priced at each de-acti-
vating process. We suggest to pricing the
arcs sequentially in set ﬁ/ﬁ, so that they
will be candidate to be de-activated if the
pricing result is favorable (see Section
6.2) and the blocking tests are not satis-
fied (see Section 6.3). Once |5| reaches the
allowed bound, the next candidate scanned
arc will replace the arc from set D with the
worst pricing result till r is not greater

than a given bound, say ¢ (typically, 0.1);

11
r gives the ratio of the number of replace-
ments to the number of candidate scanned

arcs. When r<e the scanning is interrupted;

11
it will be restarted, at the next de-actiat-
ing process, by pricing the arc where it was

left out.

Let the following de-activating tests:

t8 : D] < min{rg,eu]ﬁ/ﬁ[}

€9 s Fe8a(fa, |> min{“£| vLeD})
tlo: [N/T] 2 ¢ (a=n)

tll:r < 11 '

Formally, ﬁéﬁu{k} for yk#o if t8vt9.

After the de-activating process, the unsafe
set U is updated such that UAUUD. If the
current solution is 'optimal' in the given
manifold and D={@}, stop since it is assumed
that the optimal solution of the problem has

been found.

Finding the most suitable values for the to-
lerances is a subject for experimentation,
mainly for the multiple de-activating tole-
rance T,. Note that the stategies described
in Sections6.2, 6.3 and 6.4 produce the suf-

ficient-long relaxing step required in /8/

for global convergence.

6.5. OBTAINING INDEPENDENT SET 5(p) TC BE
DE-ACTIVATED.

Recall that ﬁéuﬁ(p) ¥peP and 5(p)n5(q)={ﬂ}.
Let Eép)éﬁép)uﬁ(p) where ﬁép)éusk vkeD (P
An arc, say k to be de-activated must be in-
cluded in set 5(p) if any move dk#o affects
the solution feasibility or the objective
function coefficient of any arc from set
E(P)uéép’; formally, ﬁ(p)éﬁ(p)u{k} for keD
if  t12af13atl4), where t12, t13, and tl4

are the result of the following including
tests:

e12: (3P4 5P <o
e13: (B3P u5Pheg ¢ (03

—{ -1
tl4: SGgg.#O:(gs(k}UBk)/\(g'EC\‘D‘UCép))

It is suggested to perform the testing in the
following sequence: t12, t13, tl4.

Now, to assure that sets 5(3) YjeP
dependent, it is required to analyse if any
keﬁ(p) would affect the solution

feasibility or the objective function coef-

are in-
move dk#O

ficient of any arc from the g-th set

¥geP/{p} ; in that case, both sets DP) ang

B(q) must be joined. Formally,
5(p)§5(p)u5(q)u{k} and E(q)é{ﬂ} if arc' k si-
multaneously satisfies tl13vtl4 for the p-th .
and g-th currént independent sets and, besides,

the following joining test is satisfied.

e15: > |50+ 53D o,

ie{p,q}

If [tl1l5 then arc k is not de-activated and,
then, DAD/{k} ; if as a result, D={g} , then
the set C must be revisited and partitioned
in as many as possible independent sets and,
as a final solution, the tolerance T, Mmust be
temporarily incremented to a suitable value.
Note that the procedure is executed during

the de-activating process and, then, hopefully
after many basic-superbasic arcs have been
activated on the (sub)optimization of the pre-

vious manifold. ’

6.6. OBTAINING THE SUPERBASIC STEPDIRECTION

AFTER DE-ACTIVATING. RELAXING STEP /8/.

The new ascent independent stepdirection
_ t t
dép)=(éép) ’ gép) )t' where Qép) takes the

direction related to the old superbasic set
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5P ang gép) is related to set B® is ob-
tained as follows.

(p)_ .. (p)
QS =h

gép)= {h, ked (P

where h(p) takes the reduced gradient related
to set §(p), and hk Ak Note that a null step
is avoided, since (a) era(p) such that Xk
is at any of its bounds, provided that the
set E(p) forms a maximal basis spanning tree,
and (b) the flow change in set Eép) has the
appropriate direction (see Sections6.2 and
6.3).

Although the relaxing step may not produce a
strong increase in the objective function

value, it is very cheap and the case for
which ||h(p)|| is not small, if any is not

very frequent.

Z, SUPERBASIC MU TI-ACTIVATING LINESEARCH.

Barring exceptional circunstances, at most
one basic-superbasic arc per each set E(p)
¥peP can be added to nonbasic set N in the
algorithms based on manifold suboptimization
and active set strategies (see e.g. /13/,
/21/); so if say, 500 basic-superbasic arcs
at the initial feasible solution will be
active at the optimal solution, then the me-
thod would require at least 500 major itera-
tions to converge. A better performance could
be achieved by the following alternative ap~-
proach.

Assume that the independent superbasic step-
direction dép) has been obtained as follows:
k :=ab -Xk VkeI(p), and dk is a Truncated-
Newton direction for Vkelép)
r(lp)_As(p)/I(p)_ set 1P
of guasi-active arcs in superbasic set §(p),
such that it can be expressed

where

denotes the set

P 4 (xeFP| Jab, -%, < <) (7.1)
where scalar e(p) is given by
P min g 5GP
where

] min {(X +h)k'abk} if hy>e
[Rg+h]y := Xg if [h [<e (7.3)

max {(XS +h) ,abk} if hy<-g

for 512>0 (typically, 0.01). By a slight

abuse of the definition given in Section 4
(see expresion (4.12)), abk in expressions
(7.1) and (7.3) takes the active bound in

the direction of the sign of h

K

Let

a((sp; = r»ln{otk VkeI((];) (7.4)
P) = min{ vkeB '}

OtL (!k € (7.5)

denote the upper bounds on (scalar) steplength
o (P)

B(p),

for keeping feasibility on sets S(p) and
respectively; O is the upper bound re-
lated to ark k as given by expression (4.11) ,
where dB is temporarily given by using expres-
sion (4.12) and, then, it takes the active
bound on the direction of the sign of dk' If
(p) (P), generally, only one arc can be ac-

tlvated in set C(p) But, if aép)>aép), fewer
major iterations could be required by allow-
ing more than one superbasic arc from set
§(p) to be activated at each major iteration;
given the special structure of matrix p(p)
(submatrix of p related to set a(p)), the
computer effort is likely to be within af-

fordable limits.

Let the feasible solution Xég) be expressed
as follows.

(P)_ 3(p) (p)aftt (p)
X =¥ T+ LotPT e (7.6)
where
CLPNE 1 for ker'P)
¢ . ) (»)
min {a‘P’ ak} for keI'P (7.7)
n
and
X;p)= )-(;p)Jr d(Bp) (7.8)
where, now
d;P)= p(P) [a(P)]#tds(P) (7.9)
such that
a{P) 21 (7.10)
where
B 5P
ap min {ak, €B ’Idk4>eﬁ (7.11)

The upper bound O is obtained as in (4.11)

by using the expression (4.12) for ab and

kl
considering that {dk.} is given by expression

(7.9).
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By assuming that the set ﬁ(p) forms a maxi-
mal basis spanning tree, and following the
same approach described in /3/, /6/, /10/,
it can be shown that, under mild conditions,
the solution XB) (7.6)-(7.9) is feasible
and increasing enough, and the convergence
{Xég)}*ﬁég) is global with a Q-superlinear
rate, provided that

(7.12)

The scalar m is the first nonnegative inte-
ger 0,1,2,... that keeps feasible the basic

solution xép) and satisfies the condition

(p) z(P) ys - %
F(Xpe ) - F(Xgg )z w (Z‘_(_;_ h (X - X0
kel
+8 T h.d)
keT'P

(7.13)

where Be{0;1} , ne{0;0.5} ; typically,
g=0.5 and u=0.1

If the point Xép) does not satisfy the con-
dition (7.10), then the scalar m in (7.12)
is updated such that

m= zn(aépla(P))/zns (7.14)

and the condition (7.13) is tested again.

Let Y(p)=min{l,uép)} so that if, at any

major iteration, a fixed number Ty of trial
steplengths fail to keep feasible the point
Xép) or does not satisfy the Armijo-like

condition (7.13), then y(p) is used as the
next trial value provided that Y(p)<6m. It
is assumed that the steplength procedure has
failed if o P s,
trial steplengths does not produce a feasi-

or a fixed number Tg of

ble solution that satisfies the condition

(7.13). Typically, 15=2 or 3, and 1,.=6 or 7.

6

If Vf(p)uﬁﬁ(p)={ﬂ} (see Section 5.2), a
LP-network flow subproblem is to be maximiz-
ed. In that case, the condition (7.13) is
always satisfied by the feasible solution

(p) _
XBS (7.6)-(7.9).

Note that the basic arc k'eB ‘P may belong

ksg(p). Assume that
k' is the bounding basic arc; then, a super-

to more than one set Bk

basic arc, say k is selected for pivotting
such that k'eBkldk>a(p)- As a result,
IBén)|2|Bé°)| v2e8'P),  4#k, where (o)
identifies an old BEP and (n) identifies a

BEP after pivotting , The entering arc is

chosen such that

(0)| veer(P)y

16827 1= ming ]

(7.15)
where the set L(p) is included by the arcs
that satisfy the condition

|Xp-aby| > e 5 max{|X,-ab, ]} (7.16)

for leg(p)|a2>éP)Ak'sBéo); ab, is given by
expression (4.12) and €13 is a given nonne-
gative tolerance (typically, 0.1). Since the
linesearch procedure tends to reduce the car-
dinality of the superbasic set, finally it
results that, hopefully, |§(p)]
by more than one and the value of |6é
still could be affordable.

is reduced

n)l

8. COMPUTATIONAL EXPERIENCE.

An experimental prototype for solving the
nonlinear replicated network described in
Sections 1 to 3 has been written, based on
This
section reports some computational results

the ideas presented in Sections 4 to 7.

on some real-life problems coming from the
hydroelectric power field. The prototipe,

named NLRNET, was written in PL/I, compiled
with the option OPT(2) and run on an

IBM 370/158 computer operating under VM/CMS.

The problems are the following.

Problem I

|g|=7, w=3,

F={p}. Py={1}, Py3={#), B, ={2,3}, »5={4},
o =(5y, P ={4), Pg={5,6,7}. |[T{=4.
Note that Q4={5,7} and Q;=16,8} It is a

segment of Problem III.

Problem IT

Its physical description is very simple.
|J]|=6, wW=J, p, =g}, Pj={j—l} for j=2,...,7.
(Note that Exit is given by the dummy reser-
voir j=|J|+1). Then, Qj={j+l} ¥jeJ. That is,
there is not any run-of-river reservoir, each
reservoir in J has only one directly down-
stream reservoir and each reservoir in J/{1}
has only one directly upstream reservoir.

Planning horizon: |T|=26 bi-weeks.
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Problem III

Same Problem I, but |T[=26.

Problem IV

[7f{=8, w=3/(3},

Py={9¢}, 7P,={8}, B ={1,2], , =131, o ={3},
Po={4}, B =g}, g={5,6,71,

Py =(8}. |[r|=26.

Problem V

|9]=4, w=g,
P, ={g}, g]=b—1} for 2, ,5 [T|= 52.

Problem VI

|3|=6, w={2,3},

Py ={8}, Pj=1{3-11 for 4=2,....7. |1 |=52.

Problem VII

IJI=6' w=g,

Pp={pl, B =8}, py=(1,2}, P, ={j-1}

j=4,5,6,7. [T[=52.

Problem VIII
[J|=6, w=J/{ 6},
P1={¢}I p2={1}' P3={¢}l P4={¢}'

Po={3,4,5}, P,={6}. |T|=52.

Problem IX

l7l=6, w={1,23,

PL={p}, By={9}, py={1,2}. P, ={3}, Py 2,4},

=15}, p =y6}. |T|=52.

Problem X

|al=9, w={1,2,5,7},

B2}, B=(1), Bi=(2), B =(3)},
P91, B ={5}, P, ={6), B =(4,7),

By ={&}, P={9}. |T|=s52.

P5=(2},

for

Problem XI

|al=10, w=3/{5,8,10},
L =12}, Py ={1}. By={f}, P ={2},
Py={3,4}, B ={P}, P, ={6}, Bg={7},

Py ={5,8}, P ={9}, P ={10}. jTi{=52.

Problem XIT

[gj=11, w={1,2,3},

P =93, B ={(d}, B={1,2}, @ =(¢},
Ps=1{3,4}, 7 ={(5}, B, ={8}, m={¢},
Pg={6,7,8}, P =(8}, P, ={2.,10},

PE(11). Ir=s2,

Problem XIII
|a|=15, w={4,5,6},

LR =(9) By=(1), R =(2}, & =(¢),
BPo={4}, B ={@}, Py ={6}, Py={7},
Py={8}, Pig =12.3}, By ={10},

P ,=1{5,9,10}, P, ={11,12}, P ={13},

Pig ={14}, P ={15}. |T}=52.

Note that 'reservoir' j=10 is a splitter
such that it does not generate electricity,
being Qlo={ll,12}.
Problem XIV
|3 |=16, w=J,
P ={¢}, P ={1}, Py={2}, P, ={6}, P, ={g},
Pe =10}, P =1{4,5}, P =181, Py =181,
Py ={3,6,7,9}, P ={$}, P, ={11},
Pa={9}, P ,=110,12,13}, P ={14},
Pg ={15}, P, ={16}. |T|=52.
Problem XV
3] =23, w={1,2,5,6,7,8,9,10,15,17,18,23},
P =g}, B,=(1}, m={2}, B =(2), B =(3),
Pe=1{4,5}, Py={p}. pg={p}, By={g},
Pip=1{7.8,93}. P;=1{j-1} for
i=11,...,14, Pg={6,14], P ={j-1}

for j=16,...,24. |T|=52. Note that 0,=13,4}.

For comparative purposes, the methods used
for obtaining the superbasic stepdirection
are as follows.
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(i) Preconditioned Reduced Truncated Newton
(PRTN) method as described in Section 5,

algorithm Al where the absolute value
of the diagonal of the reduced Hessian
matrix (ZtGdZ)(p) is used as the precon-
ditioning (positive definite) matrix W
for the p-th independent set, being Gd
the diagonal of the Hessian matrix G
(3.4). Note that the diagonal element
in (ZtG Z)(p) related to superbasic arc

keé(p) is given by the expression
3 -
ke ¥ Wer, Skrwe (8.1)

such that G22=0 for %zal(t,3j,i)jed:

i.e.,% 1is a non-linking arc and, then
only matrix G4 is used; see (3.4)-(3.5).
Remark: the sign of the vector q(l) at

a given minor iteration of the Truncat-

ed Newton method is changed if it has

been assumed 'a priori' (and, in our
case, it is an easy task) that matrix
G4 is positive definite.

(ii) Reduced Truncated Newton (RTN) method

as described in Section 5, algorithm Al

for W=I.

(1iii) Preconditioned Reduced Gradient (PRG)
method, such that dép) solves the system

Wdép)=h(p) (8.2)

where the matrix (ZtGdZ)(p) is used as the pre-
conditioning matrix W. Note that the matrix
thdZ“» has only nonzero elements whenever the
BEP's of two superbasic arcs, say k and £ inter-
sect nonlinearly; i.e., they have one
basic arc in common, at least (and,
then B, NB #{#}) and, besides Ak'eB nB,
such that k'=Za(t,j) for jeW. Then, the
element in matrix (ZtG Z)(p) related to
superbasic arcs &%eg(p) is given by
the expression

= G
AR TRl S 18 S AL (8.3)

where B, é{k'eeknsllk'za(t,j), JeW}

Since matrix W must be positive-definite
the sign of its elements is changed if
it has been assumed 'a priori' that ma-
trix G is negative-definite. System --
(8.2) is solved by a 2-step procedure
that uses the Cholesky factor R of ma-
trix W. If, while obtaining the factor

R, the intermediate computation R is

> kk
such that Bkksal then Rkk=s and,

: _o1/2
wise Rkk_Bkk

1 other-

where Rkk is a diagonal
element of R; see in /22/ a different
approach.

(iv) Reduced Gradient (RG) method,

(p), ., (P)
ds :=h

such that
. Note also that dk:=hk for
ke P} in methods PRTN, RTN and PRG pro-

vided that jﬁe{k}uBkIQEa(t,j),jew.

In all cases, the prototype starts with an
all-artificial basis and terminates when the
tests described in Section 6 are satisfied.

The values of the tolerances are as follows:

€1=sqrt(10E—15), 52=e3=s4=10E—04, €6=e7=0.l,
68=O.9, €9=1.0, p=elo=ell=€l3=0.l, n0=€12=0.01,
B=0.5, and T1=T2=T5=3, T3=a—n, T4=60, 16=7

and r7=5.

Tables 1 and 2 contain a summary of the re-
sults of our computational experience on the
problems described above.

The column headingsof Table 1 mean the follow-
ing:

mani. Number of manifolds that have been opti-
mized; note that it is also the number of de-
activating processes. Note also that the re-
sults are obtained by using the strategy that
allows to deactivate as many non-blocked non-
provided that the

pricing is favorable and the upper bound for

basic arcs as possible,

the number of superbasic arcs per each inde-
pendent set is not violated.

ind. Number of independent superbasic sets.

msize. Maximum cardinality of the independent
superbasic sets.

Mitn. Number of major iterations.

mitn. Number of minor iterations

nfval. Number of (partial) objective function
evaluations. It helps to measure the perfor-
mance of the linesearch parameters.

npiv. Number of pivottings. It is interesting

to note the high number of pivottings that is
required for all problems.
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Table 1. Summary of the results for the test problems. Method PRTIN.

Problem| #nodes| #arcs | mani] ind |msize| Mitn | mitn |nfval| npiv| nacti | ffeval | fgeval | fheval |CPU time
(%) (%) (%) (secs)
P 28 64 50 4 | 20 35 108 | 35 21 41 64 38 26 6
P1I 156 312 10| 22 | 37 76 326 | 81 36 85 L8 22 29 51
Pl 182 he 6 7 59 115 k19 [ 116 64 | 149 43 27 26 84
PIV 208 | 416 6| 15 | 21 57 | 201 59 42 | 63 14 16 15 123
PV 208 | L16 51 19 12 52 | 344 72 39 | 106 8 12 19 104
PVI 312 | 416 i 8 | 31 48 1431 50 12 1 21 38 29 36 115
PVII 312 | 624 5| 15 | 37 65 | 342 72 32 ] 98 12 9 15 290
PVIII 312 | 572 61 17 | 29 55 | 321 63 15 | 109 8 6 21 103
PIX 312 | 416 51 16 | 18 31 471 36 1] 25 24 23 29 96
PX 468 | 676 7] 21 43 72 | 348 73 53 104 36 31 34 190
PX1 520 884 61 30 38 153 761 | 162 69 277 18 11 23 259
PXI1 1 572 | 728 4| 24} 31 62 197 | 71 43 55 62 52 59 194
PXIi1 780 | 988 510 16 14 b1 79| 45 22 31 31 35 38 365
PX1V 832 | 1664 8] 32 | 43 | 310 | 709|389 | 169 | 532 20 16 22 559
PXV 1196 | 1872 9| 3 57 | 233 782 233 153 302 L7 25 29 657

Table 2. CPU-time (secs) comparison of the methods

for the test problems

Problem PRTN RTN PRG RG

Pl 6 23 1 192
PII 51 430 524 4833
Pilt 84 201 196 >5000
PV 123 904 5634 12631
PV 104 792 6089 6429
PVI 115 271 225 3824
PVII 290 1792 1542 9037
PVILI 103 642 2321 15940
PIX 96 4ot 634 >10000
PX 190 682 327 7622
PX1 259 543 3584 8094
PX11 194 609 804 17914
PXELL 365 1482 1302 >20000
PX1V 559 3645 -- --

PXV 657 2032 -- --
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nacti. Number of activated (basic, super-
basic) arcs. Note that nacti-npiv measures
very accurately the performance of the bend-

ing, backtracking linesearch procedure.

ffeval. Average percent per iteration of
the number of evaluations of the nonlinear

terms in the objective function.

fgeval. Average percent per iteration of
the number of evaluations of the non-cons-

tant elements in the gradient.

fheval. Average percent per iteration of
the number of evaluations of the nonzero
elements .in the Hessian.

The most remarkable result shown in Table 1
is the performance of the concept of inde-
pendent sets; the average size of the inde-
pendent superbasic sets is relatively small
compared with the cardinality of the relat-
ed superbasic set. As a iesult, the computa-
tion of each major iteration is very cheap.
The traditional criterion (number of evalua-
tions of the objective function, gradient
and Hessian) for the performance of an algo-
rithm does not help too-much for analysing the
performance of the concept of independent
superbasic sets; by definition, only a frac-
tion of the objective function, gradient and
Hessian elements is to be evaluated at each
major iteration. We prefer to use the para-
meters ffeval, fgeval and fheval.

The multiple superbasic activating strategy
seems very promising, but more extensive ex-
perimentation is required to draw any con-
clusive remark; a computational comparison
with the traditional single activating line-
search described in /13/ is planned by using
test cases for which SI>>§, where sI and é
are the superbasic sets at the initial fea-

sible and optimal solutions, respectively.

Surprisingly, the number of candidate arcs
for being deactivated is not too-high and,
then, we could not perform an extensive ex-
perimentation with the joining test t15.
Although the overlapping of different BEP's
is very frequent, blocking test t5 has not
been fully experimented; this is due to the
fact that it was very rare that a basic arc
takes its intermediate value while, at the

same iteration, all superbasic arcs whose

BEP's include the basic arc also take a bound-
ing value. Since a maximal basis spanning tree
was built for the initial feasible solution

and a blocking nonbasic arcs strategy was used,

no null steps were found.

The results shown in Table 2 for the RTN me-
thod were included to show the necessity of
preconditioning in anpractical algorithm. By
comparing the results for RTN and PRTN (the
preconditioned algorithm), it is seen that
RTN is 2 to 8 times as expensive to use as

the preconditioned algorithm.

The results shown in Table 2 for the RG me-
thod show that the systematic using of the
reduced gradient as the superbasic stepdirec-
tion have a poor convergence, if any; the
strategy must be rejected for large-scale
problems.

The PRG method is the exact Newton method

for separable objective functions; since our
case is quasi-Separable then the good perfor-
mance of the method in some problems is not
a surprise. In any case, the computation of
the Cholesky factor of the preconditioning
matrix W is cheap; note that the cardinality
of the independent superbasic sets is small
and, probably, the matrix W is not very dense.

9. CONCLUSIONS.

In this paper we have presented a rough algo-
rithm that takes into account second-order
information for solving a type of large non-
linear network problems; its main ideas may
be easily extended to the general sparse case.

Taking advantage of the structure of the ob-
jective function and constraints of the non-
linear replicated network; the main features
of the algorithm are as follows. The prede-
cessor, depth,vtranverse and reverse arrays,
together with the sequential storing of the
BEP's related to each independent superbasic
set, are the only data structures to be used
for dealing with the tree. A new procedure
for pricing nonbasic arcs in the presence of
discontinuities in the objective function has
been described. Null steps are prevented,
since the basis spanning tree is kept maxi-
mal and an ad-hoc blocking de-activating
strategy is used. A multiple and anti-zigzag-
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ging de-activating strategy with partial
pricing is used. The new concept of indepen-
dent superbasic sets is introduced so that
the Truncated-Newton method and the line-
search procedure can be used for optimizing
'in parallel' the manifold of each indepen-
dent basic-superbasic set. Given the special
structure of the Hessian matrix G and the
variable-reduction matrix Z, the computer
effort for obtaining the vector
q(i)EZt(G(Zéi))), at each minor iteration i,
is within affordable limits; note that the
cardinality of each independent set is usual-
ly small. One of the main reasons (apart the
nonlinearity of the objective function) for
not using necessarily the estimation of the
Lagrange multipliers of the nodes while eva-
luating the reduced gradient, is precisely
the size of the basic equivalent path of the
superbasic arcs. The main advantage that the
multiple superbasic activating linesearch of-
fers over the traditional single activating
approach is that as many as |§| new arcs may
become active in a single major iteration;
however, the computational comparison between
both linesearch strategies in large-scale
problems is a subject for future experimenta-
tion; and so it is the procedure for select-
ing candidate nonbasic arcs, so that it would
promote small independent sets of arcs to be
de-activated.

Selecting subsets of candidate nonbasic arcs
to be de-activated may be performed in se-
veral ways, so that the size of the set

§(p)u5(p) is kept small for all p; a prece-
dure is described in /24/ for a temporal se-
parable and spatial nonseparable objective

function. In our case, the best procedure is

left open at this point.

In Section 8 we have reported the results of
the algorithm by using a set of real-life
hydroelectric power generation problems;
based on this computational experience, it
seems that the ideas described in this paper
are worthy of extensive experimentation. Com-
puter effort is important because the full
model with 25 reservoirs and 52 time periods
is to be run for planning purposes under se-
veral assumed inflow patterns; however, in
some cases, aggregating the last, say 14
weeks of the time horizon in 3 time periods
(i.e., months) does not strongly deteriorate
the planning goal.
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