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ON THE SELECTION OF THE PARAMETERS OF AN EXPONENTIAL
GAMMA PROCESS PRIOR IN BAYESIAN NONPARAMETRIC
ESTIMATION

DOMINGO MORALES
UNIVERSIDAD COMPLUTENSE DE MADRID

Consider a nonparametric Bayesian estimation problem where the Statisticeian has decided to
use an exponential gamma process prior. This paper deals with the selection problem of the

process parameters.

Some algorithm to determine the parameter ¢ from the prior guess and the strength of belief

are given.

The case where this last concept changes with time is also studied.
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1. INTRODUCTION.

Suppose that in a nonparametric Bayesian de-
cision problem the Statistician has decided to
use an exponential gamma process (E.G.P.)
What is the criterion to select, within the
class of all E.G.P., the most advantageous
E.G.P. to treat an estimation problem?

An E.G.P. has two parameters: A(t) and c. So,
it is necessary to give some criteria to de-
termine A(t) and c on the basis of the prior
guess and the strength of belief.

A(t) is chosen in such a way that the mar-
ginal expectation of the E.G.P., EA,c(F(t»’
is the prior guess Fo(t); and thus

c
A(t)=ln(l—F°(t))/ln(E§T) }, where c is not

already specified.
How to select c?

Ferguson /5/ said that ¢ measures the prior
strength of belief in some sense; i.e., if
we can rely on our prior guess, c should be
"large". Otherwise ¢ should be "small". But,
what do we understand by "large"?
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Observe that F(t) will depend on the sample
(xl,...,xn), and on the process parameters
(A(t), c). Conseqguently, the value of c will

influence our estimation.

Clearly, it is necessary to have an accurate
method to translate the strength of belief

in the parameter c.

When we ask for the strength of belief, in a
nonparametric Bayesian procedure, we will

receive an answer like: bad, moderate, good.

At that time, we will have to translate that
qualitative value in a numerical gquantity,
(0,)

determine c, or belonging to

whether belonging to if we directly

(0,1) if we use:

L(e)=1n (£22) /1n (&)

How can we be sure that the chosen numerical
value will not cause an important bias on the
final estimation?

Our purpose 1is to give an algorithmical me-
thod, which allows us to determine the most
advantageous value for the parameter c in a
nonparametric Bayesian estimation problem.

de Estadistica e I.O.
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2, PRELIMINARIES.

Consider the topological space (R+,Tus),
where R+=[0,a» and Tus denotes its usual
topology. The space M(R") is the collection
of all probability measures on R" and Td
is the topology of the weak convergence on
M(R") . (M(M(R+)),TD) is the space of all
probability measures & on M(R') (i.e., pri-
ors) together with the topology of weak
convergence derived from (M(R+), Td).

Consider F, Q & M(R'), F(t)=F((-e,t])). The
Levy distance between F and Q is given by:

dL(F,Q)=inf{a>0/Vx F(x-a)~a<G(x)<F(x+a) +a}.

This distance metrizes the topology of the
weak convergence. Furthermore, it has the
property that VQdL(F,Q) is the maximum
euclidean distance between the graphs of F
and Q, measured along the 1352 - direction.

Obviously, the following family of subsets
is a neighbourhood base of FeM(RY) in the
topology of the weak convergence:

B(F,a)={QeM(R") : dL(F,Q)<a| , a>0

Consider the sets N(F,a,k,tl,...,tk)
= {QeM(R") /] F(t)-Q(t;) 1<a  i=1,...,k},
a>0, keN, tl,f..,tkEC(F), where C(F) is the

set of continuity points of F.

Proposition 2.1.

NF={N(F,a,k,t1,...,tk): a>0, keN, tl""’tk C(F)} is
a neigbourhood base of FEM(R') in Ty. Fur-
thermore N(F,a/2,k,tl,...,tk)cB(F,a)
VN(F,a/Z,k,ty...,tk)s.t. a>0, k&N,

tiree s 8C(R), -t <a, F(t))<a/2,

1
F(t )>1-a/2.

Proof: Proof similar to theorem 2.3.3. in
Huber /7/.

The following distance also metrices the
topology of the weak convergence.

Consider F,QEM(R+). The Prokhorov distance
between F and Q is given by:

dp(F,Q)=inf {a>0/F(G)ZQ(Ga)—a VGETuS} ,

where Ga= {x€R+/inf d(x,y)=za}
c
veG

In(M(M(R+)),TD), the Prokhorov distance
between & and ¢/ is defined in a similar way:

dp(.@,_;/)=inf {a>0/y(G)z,@’(Ga)—a vG Td} ,

where G = {QeM(R")/inf d (Q,P)za} . See /2/

c
PeG
for further details about the topology of

the weak convergence.

3 10 S METER <
E.G.P.

Suppose that Q(t) is the prior guess. 1In
that case,

c
A(t)=1n(l-Q(t))/ln(E§T) is selected (where

c is not already specified).

The following criterion is proposed: "Given
QEM(R+),E>O, a>»0. Find cO(Q,E,a } such that
veze, & (B(Q,8))>1-a, where gi’c denotes
the distribution of the E.G.P. we are look-
ing for".
Remember that VEdL(Q,F) is the maximum
euclidean distance between Q and F, measured
along the 1352 - direction.

This fact allows us to draw B(Q,&). If Q(t)
is continuous, the strip is even more easy

to draw.

Then, we'll ask the specialist to translate
his strength of belief in two numbers VEE
and a such that the true distribution func-
tion we want to estimate, F(t), verifies

4; (F,Q)<e with probability 1-« .
the specialist will have to give us a strip
around Q(t) and his subjective probability
of F(t) to be inside the strip.

Therefore,

In this section we find an algorithm which

determines s from the knowledge of Q,cg,a.

Remember that B(Q,E)CN(Q,E/z,k,tl,...,tk)

VN(Q,S/Z,k,tl,...,tk), verifying the condi-
tions in Prop. 2.1. Therefore, it is enough
to find cO(Q,S,a)>0 such that
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Yczc (7 (N(Q,e/2,k,t,,...,t. ))>1-a for
o] A,C 1 k
some k and tl,...,tksC(Q), verifying the

above conditions.

This is equivalent to
éﬁ(Nc(Q:E/Z,k,tl,...,tk))<a Now we have

o} =
' '?/‘,C(N (Qle/zlkltl""ltk)) =

k
2, (.U

A,cti=l

Wb
n

{F: IF(ti)-—Q(ti) [2e/2} )< .
*07)\,c( {F:|F(t)-0(t)) |>e/2} )<
.k
k
< ;

4 2,_ 4
—? EA,C((F(ti)-Q(ti)) )—;2— VA,C(F(ti)),

-
™M=

i=1 1

where V, C(F(t)) denotes the marginal va-
7

riance of the E.G.P. with parameters

(A(t),0).

Remark 3.1.

2
If A(t)=1n(1—Q(t))/1n(—c%) , then

Ey (F(£))=Q(t) and
In(1-0(t))/1n (g5
Vy (P =(55) o (1-q(e)?

The following algorithm is proposed: "Find

keN and tl,...,tkaC(Q) according to proposi-

tion 2.1. Select Cq such that
4 k .

- Vv (F(t,))<a".

82 i=1 A,cC i

The following result shows that the algo-
rithm is convergent.

Lema 3.1.

¥t>0 fixed g(t,c)=VA C(F(t)) decreases mono-~
r
tonously in c>0.

Proof: Use standard calculus techniques.

BELIEF IS A FUNCTION OF THF TIME.

In the previous section we have explained
how to express numerically the strength of
belief using the Levy distance, then we
have given a procedure to obtain the para-
meter c. The already mentioned method sup-
poses that the strength of belief is cons-
tant, and therefore independent of time.
Usually, this hypothesis is not true be-

cause the reliance the specialists  have

in their prior guess depends significantly
on the different zones of the time axis. If
those differences are small, the previous
section technique should be used because it
is useless to complicate a model unnecessary.
However, if those differences are large, the
use of the proposed method is questionable.

In this section we will express the strength
of belief as a function of the time 2e(t).

We are interested in analizing, in a Bayesian
context, the possibility of having a strength
of belief which changes significantly with

time.

A study of this problem, giving a solution
with practical usefulness, will have the fol-

lowing steps:

(1) Decide the type of random probability

measures to be used.
(2) Quantify the strength of belief.

(3) Choose a numerical method to determine
the E.G.P. parameters, using as initial
data the prior guess and the guantifica-

tion of the prior strength of belief.

(4) Estimate the distribution (survival)

function.

In step (1) we have decided to use E.G.P.
Concerning step (4) see the derivation of
the posterior‘expectation of an E.G.P. in
Doksum /4/. We will develop the remainder

steps in the rest of this section.

Suppose our prior guess is Q(t). The prior
strength of belief is a qualitative concept,
and therefore ambiguous. So, we need a
method to numerically translate this concept
for every value of time. To solve this pro-
blem we propose a positive function e(t)
(e:R" R') such that the true distribution

function F(t) must verify:

éa,c(FaB(Q,ZE(t)))>l—u , where:
(a)-§a,csM(M(R+)) denotes the distribution of
an E.G.P. with parameters (A(t),c).

(b) B(Q,2e(t))=

={GeM(R") :¥t»0 inf{a>0:Q(t-a)-a<G(t)<

<Q(tt+a)+a}c2¢(t) }.
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Remark 4.1. VA c(F(t;)) has been defined in remark 3.1.
1

V2(2e(t)) is the maximum euclidean distance, Therefore, we propose the following algo-

rithm: "“Find k, kieN and {t;}cC(Q) accord-

ing to proposition 4.1. Select c such that

measured along the 135¢-direction, between
the point (t,G(t)) and the graph of Q(t).

"
Firstly, we consider a function e(t) taking (1) <a

.only a finite number of values; and secondly,

a continuous function. In both cases we give e (t) continuous
algorithms to determine the parameter c¢ of

the E.G.P. we will use in a Bayesian estima- Proposition 4.2

tion problem.
Let e{t) be a continuous function. Let

. . +
e(t) taking a finite number of values 0<t)<...<t;eC(Q) be a partition of R such
that: ,
Lft xo<x1<x2<...xk<xk+l be a partition of
R, where xo=0 and x, =+, e(t)=gi if and T (1) e(t )=e(t, )=ege(t) VYielt ,t ]
only if telx x.), i=1 k+1 ! 1k
4 i-17%37 reee BT S (2) 0t )<e/2 and Q(t, )>1-¢/2
Under these conditions, the following result (3) ~t <e i=t k-1
is obtained el T
’ (4) e(t)=¢ Vter'-[t_,t )
1"k
P iti 4.1.
roposition (5) 2€(t)>max{e(ti),s(ti+l)} Vte[ti,ti+l)
Let {t;}CC(Q) (1=1,...,k+1; 3=1,...,k,) be a i=l,...0k-1
+
artition of R uch that:
partd s Then, N(Q,e(£)/2,¢y,...,t,)=
1
1) t = i=
() e= =1,k =(FeM(R") 1 |F(t,)-Q(t,) |<e(t;)/2
i . . .
(2) tje[xi—l’xi) i=lekel 5 sl kg i=1,....%}<B(Q,e(t)).
i i
(3) t,-t,  <e, i=1,...,k+1 ; j=2,...
J J—151 8 * J=2, ’ki Proof: Proof similar to proposition 2.1.
(4) x,-t < i=1,...,k
i : We want to find the smallest value of the
(S)Q(t;kgl/g parameter c verifying é?'c(B(Q,Ze(t))zl—a ,
r
c
k+1 = - <
(6) ot )>1-e sz Where A(£)=In(1-0(t))/ln ()
k+1 As N(Q,e(t),ty,...,t)cB(Q,2e(t)), it suf-
7 ei+1<2€' i=1n--'yk X
1

fices to show that géilc(Nc(Q,e(t),tl,...tk))<a.
Then, N(Q,e(t)/2, {tjl.} ) =

o]
{ fya|Fed i Now, 9) (NTLQ,e () by, nenity)) =
= {FeM(R") : |[F(tD)-0(t)) |<e. /2 1=1,...,k+1; k
i j i R/ cCULFF(t)-0(t)) |2e () D)<
3=lse.a kb eBUQ,e(t)). S
k
< X 3 Vi c(F(ti))=(2), where
Proof: Proof similar to proposition 2.1. i=l e (ti) '

Vi C(F(ti)) has been defined in remark 3.1.

r

We want to find the smallest value of the

parameter c Verifying:.éa C(B(Q,Ze(t))zl—u, Therefore, we propose the following algorithm.
! "Find keN and tl,...,tkaC(Q) according to

c
where A(t)=1n(1-Q(t))/1n (=) .
c+l proposition 4.2. Select ¢ such that (2)<a”.

As N(Qle(t),{t§})CB(Q,2e(t)), it suffices

to show that @IC(NC(Q,e(t),{t§}))Su

2. A NUMERICAIL EXAMPLE,

Now, 9% (N (Qe(t) { t§}))=
o ~We illustrate the application of the proce-
A,c(_U ql {FeM(R+): F(t?)-Q(t%)IZE.}) < dure obtained in the third section with an
1;1 j=1 J t exercise.
k+1 il ;
= 3 3 vV, (F(5))=(1}), wh
i=1 j=1 ei Asc b ! ere
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Suppose the prior guess is Q(t)=1—e_t in

t20 (i.e.; an exponential distribution with
parameter A=1), and the strength of belief
has been quantify by e=EPS=0.3

o=ALFA=0.1.

and

Observe that Q(t) and € are given by the
specialists in the subject under study. Ac-
cording to their accumulated knowledge they
should be able to propose a prior guess
Q{t) of the true distribution function F(t)
and to draw a strip that
. l-0 is their subjective probability of F(t)
to be inside the strip. We recall that this

round Q(t) such

strip is built in such a way that making
Ve

between F and Q, measured along the

to be the maximum euclidean distance
1350-
direction.

We want to find c, such that

"@Z,CO(B(Q’O‘?’))ZO'Q'

According to prop. 2.1., we use the follow-

ing algorithm to calculate
tieC(Q) (i=1,...,k).

Let INV_Q be a PASCAL FUNCTION representing
the inverse function of Q.

BEGIN

T[1]:=INV_Q(1-EPS/2);

I:=1;

WHILE T[I]<=(1-EPS/2)DO
BEGIN

TCI+1]1:=T[IJ+EPS ;

We obtain the following tiei(Q): 0.1625,

0.4625, 0.7625,1.0625,1.3625,1.6625,1.9625.

Using the following algorithm we evaluate
the function

4

FF(c)= — 32—
0.3)2 i

VAL (FlE)),

7
z where

1

A(t) and v, c(F(t)) have been defined in
r
Remark 3.1.

BEG

FF:

IN

=0 ;

FOR I:=1 TO K DO

FF:
END

To
alg

BEG
INC

C:=
REP

UNT
END

We

FF:=FF+ (C/ (C+2) ) #+ (LN (1-Q(T[I])) /LN (C/
/C+1)) ) =(1-Q{TLI1))**x2;

=4/ (EPSx%2) +FF ;

7

calculate co, we have used the following

orithm.
IN
R:=1000 ; PREC:=0.1 ;

0 ;
EAT

IF FF(C+INCR) >ALFA
THEN C:=C+INCR

ELSE INCR:=INCR/10 ;
IL INCR<PREC ;

have obtained co=348.
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