LOWER BOUND STRATEGIES IN COMBINATORIAL NONLINEAR
PROGRAMMING. A CASE STUDY: ENERGY GENERATORS
MAINTENANCE AND QOPERATION SCHEDULING

L.F. ESCUDERO

The Genenatonr Maintenance and Operation Scheduling probfem is presented:as Large-scale mixed
integen non-Linean programming case. Several nelaxations of the integrality condition on the
variables are discussed. The optimal solution of the model based on these nelaxations £s vie
wed as the Lowen bound of the optimal solution in the oniginal probfem. A continuous cons -
thained non-Linean programming algorithm s used in the optimization of Zhe retaxed formula-
tion. Computational expenience on a variely of real-Life problLems is provided.

NOTATION USED IN THE PROBLEM’'S FORMULATION

A. Conflict maintenance scheduling cong
traints matrix.

b. Right hand side vector of system
AX<b. '

B. Power transmission losses matrix in

function Tz; it is assumed to be -

square, symmetric and positive defi

nite.
BO‘ Constant term in function Tg-
Bi‘ Linear coefficient for generator i

in function Tz.

C. Production cost function to be mini
mized.
Cil' Production cost function for genera

tor i and period £.

D.. Maintenance outage duration in inte
gral and consecutive periods for ge
nerator i.

EZ' Power demand by the system at pe --
riod 2.

i=1,...,I. A given power generator

¢(Pi/Mi)pContinuous function (see egs. (8)
and figure 1) that in formulation -
F2 approximates constraints (5) and
(6) of formulation F1.

Fl. Original formulation of the problem

F2. Alternate formulation to F1, such
that the Y-variables have desappea-
red; both formulations are equiva-
lent for feasible solutions.

F3. Formulation obtained by relaxing the
integrality condition of the X-varia
bles in formulation F2.

F4. Formulation obtained by relaxing the
integrality condition of the Y and

X-variables in formulation F1.
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£=1,...,L and t. A given period (week) in
the planning horizon.

m, and Mi' Lower and upper bounds on the out
put of generator i if it is not in
maintenance at a given period.

Piﬂ' Output power of generator i at pe -
riod £.

QiKEPiZ/Mi' A continuous (0;1) variable.

ti(o) and t;. Barliest and latest available
periods for beginning maintenance -

on generator 1.

(2)

ty °'= max {tio), £-D +1}.

ti(3)= min {Z, tﬁl)}.

TK' Power transmission losses function
for period £.

Xit' Binary variable such that Xit =1
if generator i begins maintenance
at period t; otherwise, Xit = 0.

X. Column vector of binary variables
{Xit}.

Yil' Binary variable such that Yip= 1if
generator i1 i1s in maintenance in pe
riod £; otherwise, Yi£= 0.

Y. Column vector of binary variables

{Yil}'

1. INTRODUCTION

The increased cost of fossil fuels used in -
the production of electricity has prompted -
the utility industry to seek more efficient
operatingprocedures. One of the most promi-
sing of these require new methods for the au
tomated scheduling of generators maintenance

These refined techniques will help minimize

. Madrid-1.
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the cost of production.

It is expected that better generators mainte
nance schedule planning will result in two -
areas of savings. First, such planning will
allow more efficient generators to be availa-
ble more often during the yearly production

cycle. Lessened fuel usage can amount to -
several million dollars a year in réduced -
production costs. Second, better maintenan-
ce planning may postpone generation expan -

sion. This results in postponed capital cons
truction costs. In dddition to reduced cost
saving, the maintenance crews and operating

plants can be utilized more efficiently.

The purpose of this work is to find a strong
lower bound to the solution of the genera -
tors maintenance scheduling problems, so --
that (a) an ample set of maintenance cons --
traints is satisfied, (b) the electricity de
mand at the peak load hour of each period --
(usually, a week) is satisfied, and (c) the
non-linear production cost of electricity --
over the planning horizon (usually, one to -
two, years) is minimized or, at least, the dif
ference with the optimal solution is not -~
greater than a given value.

This paper is organized as follows. Sec --
tion 2 briefly describes the problem and pre
sents its mixed integer non-linear formula -
tion. Section 3 describes a relaxation of -
this formulation. Section 4 discusses some
computational experience obtained by applying
a constrained non-linear programming algo --

rithm to solve the new relaxed problem.

2. PROBLEM FORMULATION

See in Escudero et al. /5/ a full discussion
of the application area, maintenance schedu-
ling constraints and types of objective func
tions to be optimized. Escudero /6/ presents
a methodology for dealing with the generators
maintenance scheduling problem when the pro-
duction cost of electricity (a non~linear --
function) is to be minimized subject to a
large system of several thousands of linear
constraints with several hundreds of binary
variables and several thousands of semi-con-

tinuous variables.

In this paper we present an alternative formu
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lation to the model described in /6/ so that
(a) the semi-continuity condition on the pro
duction variables is relaxed by a non-linear
formulation, and (b) a new type of constraint
(the electricity transmission losses) is in
cluded.

near.

This new constraint is also non-1li-
The optimal solution of the new for-
mulation is a strong lower bound to the op-
timal solution of the original problem, so
that the goodness of any feasible solution
may be measured in terms of its maximumdif
ference from the optimal feasible solution.
Briefly, the problem is as follows. 1In an
electrical power system, the goal consists
in obtaining the power generators maintenan-
ce and operationscheduling to minimize the
cost of satisfying a prescribed demand for
electric power over a given planning horizon
(usually, 52 weeks). Suppose that at weeks
£ =1,2,...,L in the period under considera-
tion, it is known that the power demands on
the system are El, E2,..., EL' The problem
is to determine appropiate outputs from the
power generators i = 1, 2,..., I at each of
these weeks so as to minimize the cost of sa
Let I be 25.
we only consider the output, cost and the de

tisfying the demands. Here -
mand of the peak load hour for each week of

the planning horizon.

At each week £ a generator may be available
for the system, in which case the output, -
say Piz' must be mig PiligMi (where m; and
Mi are given lower and upper bounds), or the
generator may be unavailable for the system
(it is the case when it is in maintenance,
and then Pi£= 0). Variable Piz is termed --
gemi-continuous. Let xit be a binary varia-
ble such as Xit = 0 if the maintenance is --
not beginning in this wekk. Generator i ---
will be unavailable for the production sys-
tem in week £, if Xit = 1 and t<L<t + =~~~
+ Di_l’ where Di is the maintenance outage -
duration in integral and consecutive weeks.
Let téo) and til) denote the earliest and la
test available weeks for beginning maintenan
ce on generator i. Usually,generators are
maintained once and only once (if any) over
the planning horizon (see other variant in

/6/) .
tained, % Xit =1 for t = téo), t£0)+ 1,...

Then for the generators to be main--

ey tél) is the classical special ordered

See e.g. /3/. 1If all ge
nerators are to be maintained, there are ---

set of typel orSlI.
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I = 25 constraints of this type.

Usually, there are many exclusivity cons-
traints among the periods in which the gene-
rators are to be maintained. The most typi-
cal constraints are (see in /5/ the details

and mathematical formulation):

1) For a particular week, the total ra --
ting of generators in maintenance can-
not be greater than a given amount --

(termed gross reserve)

2) Maintenance crews are assigned to po -
wer plants, or sets of generators, and
are not available to simultaneously -
work on different generators. No more

than one generator belonging to the sa

me physical set may be in maintenance
in the same week.

3) It is forbidden that more than a given
number of generators belonging to the
same special class may be out of the -
production system in the same week.

4) It is frequent that there are cons ---
traints, such that the elapsed time --
between the beginning of the mainte --
nance in generators, say 1 and j, must
be greater than a given number of ---
weeks; other type of constraints requi
res that generator j cannot begin --

maintenance before a given number of -

weeks following the ending of mainte -

nance in generator i; etc.

These types of restrictions may amount to se
veral thousands of mathematical constraints.
The corresponding constraints matrix is very
sparse; consider that in each constraint the
re are involved only a few generators per --
each week and that different weeks produce -
different mathematical variables and cons --
traints for the same type of restriction.Let
AX<Db denote these constraints system, where
A is the constraints matrix (it is very spar
se with many 1's in its non-zero elements),
X is the column vector of binary variables
{Xit}’ and b is the restriction vector ---
(with many 1's in its non-zero elements). A
typical problem involves I = 25 generators
with a total of 700 possible weeks for begin
ning maintenance (that is, the dimension of
vector X is 700), and the number of rows in
matrix A varies from 52 (number of weeks in
the horizon and, then, number of gross reser

ve constraints) to several thousands. In --
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the case for which computational experience
is reported, the number of rows is 920 with
a density in matrix A of 1.02% of non-zero -
elements.
Xe{0;1}.

The system AX<b 1is linear with

To account for transmission losses in the --
transmission network, it is necessary to de-
rive a function of the power losses in each
week in terms of the generated output powers
Piﬂ’ then the total power required consists
of two components: the system demand EZ for
each week (that it is assumed to be known)
and the transmission losses TZ what are unk-
nown. Most utilities use the so-called ap-
proximate B-constant formulation (see /9/-
-/12/) to represent transmission losses by -

the quadratic loss formula

I I
T, = B. + Z: B.P. ,+ Z:
£ 0 Pt il im1 3=

1
1 PieBis Fye

(1)

where the B-matrix is square, symmetric, and
positive definite at least for mingigngi.

Then the formulation of the constraints that
represent the relation between the output of
the system and the demand to be satisfied is
as follows: % Piz-—Tz;BEK for £ =1,2,...,L
There are L = 52 constraints of this type.

In the unusual case in which the output po-
wer Piﬂ of all generaters {i} that are not
in maintenance at week £ is their allowed mi
nimum {mi}, the total load (that is, output
power minus transmission losses) at this ---
week may be greater than the system demand
EK; but, usually, the total load exactly co-
vers the system demand.

Since if generator 1 1is in maintenance in
week £, it is not available for the produc-
tion system (then, PiK= 0) and, otherwise --
mis;Piﬂs;Mi' we may represent this restric-
tion as follows: miYiﬂzgpiEﬁQMiYiK and Yiﬂ +
+ % Xit =1 for £ = 1,2,..., L and £ ---

tgz) = max{tio), K—Di + 1} to t£3)=

i
(1)
i

from
= min{£, t , where Yi£ is a binary varia
is in
t the week
in which it begins) and Yiﬂ = 1 ford<t or
L>t + Di"l‘ At most there are IxL = %3;52=
Since t. ‘and

= 1 and tél)=
= L—Di + 1 for all generators, in our case -

ble, such as Yi£ = 0 if generator 1

maintenance in week £ (being

=13C0 variables of this type.

til) are not necessarily téo)

the number of constraints of this type is --
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2028 and the number of Y-variables is 676.

For £ <t£0) or K>t£1)
are not needed and the above constraints are

+ Di—l, Y-variables -

substituted by (in our case) IxL-676=624 --
bounds of the type mi<Pi£<Mi since genera
tor i will be always in the production --

system.

The operation cost function for the planning

horizon is

c= L Cip(Pip)
ip ¢t

It has separable components, in the sense --
that at week £ the cost of producing the --
output Pit by generator i 1is independent
of the other generators output. 1In our case

Ciﬁ(PiK) is a convex function.

Thus the problem of minimizing the operating

cost over the planning horizon can be expres

sed by
I
(F1) min.C = P =t CiK(Piﬂ) (2)
subject to
til)
E: X, =1 Vi (3)
it
t=t§0)
i
AX<Db (4)
t£3)
y + X., =1 Vi, L (5)
ig g;;{Z) it
i
miYi£<P £<M1Yi£ wi, L (6)
I
igl Pip-T,>E, WL (7)

where Xl.te {0;1}; Yiﬂf {0;1} ; and mi<Pi£<
< Mi if generator i must not be maintenan
ce in week £ . Function TZ is given by (1).
In our case the dimensions of problem Fl are
number of rows: 3025; number of X-variables:
707; number of Y-variables: 676; number of
P-variables: 1300 (there are 624 that are ex
plicitly bounded).

3. RELAXED FORMULATIONS

It is clear that F1 is a very sparse non-li-

near constrained problem with continuous and
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binary variables. In order to reduce the in
convenience of dealing with binary variables
in non~linear problems, let us approximate -
constraint types (5) and (6) by the follo---
wing formulation suggested by Biggs /2/. Let
¢i(Pi/Mi) be a continuous function for Pi_>

>n& having the following properties for
¢i(Pi/Mi) = Pi/Mi (8a)

8. (P, /M)
i 11 (8b)
d(Pi/Mi)

and it is desired that ¢i(Pi/Mi) is very -~--
small for Pi <m;. Pigure 1 shows the gene--

ral form that is required for ¢i.

e — —

‘1/": Pl/"l

Figure 1. A continuous approximation to

constraints (5) and (6)

Now let (5), (6) and (7) be replaced by the

following continuous constraints

i i
—— + \1- == X,, S
Mi ( Mi) ;Q) it
1
t](.3)
<
Qip * ;tgz) X¢ 51 (93
1
and
I
Z MO, ~T,>E, W% (10)
i=1
where
Pi/Mi' Pl/mi .
Qi[ = {1l1a)
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and

I
TZ = B0 + E;i BiMiQi[ +

I I
+ o, (M.B. .M. R
ég; gg; Q50 (M3, M)0,, (11b)

Note that O<;QLZ<JH Biggs suggests the ---

following expression for ¢i(Pi/Mi)

0 (Py/M) = (a/M)Py, + (b/M)P7;t

- (e/mp)ely? (12)

for n>>1. Specifically, a = 0.01, b =

= 0.000297, ¢ = 0.0000198, and n = 6. Biggs
made the following remark that it is also im
portant in our context: the linear term must
be present in ¢i<Pi£/Mi)’ since it is needed
a non-zero derivative when Pil = 0; otherwi-
se, the system will be completely insensiti-
ve to any generators that are out of the --
production system.

Hence an alternative formulation of the gene
rator maintenance and operation scheduling -
problem F1 is

i

(F2)  min.C = E;i L, Coetop (1)

subject to constraints (3), (4), (9) and (10)
where Xip € {0;1} and Qjp and T, are given by
(11). The dimensions of the new problem are:
number of rows: 2349; number of X-variables:
707; and number of Q-variables: 1300 continug
us non-linear variables (624 have the bounds
mi/Mi and 1, and the rest have the bounds 0
and 1).

Note that formulations F1 and F2 are equiva-
lent in the sense that a feasible solution -
to one of them is alsoc feasible to the other
The ad
vantage of F2 over Fl is that the Y-variables

sharing the same objective function.

have desappeared and its LP relaxation is —-
tighter than the LP relaxation of F1.

4. COMPUTATIONAL EXPERIENCE

In this section we report some computational
experience for ocbtaining lower bounds to the
optimal solution of a variety of problems F1
with very similar dimensions.
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The following definitions will be useful la-
ter: F3 is the formulation obtained by rela-
xing the integrality condition of the X-va -
riables in formulation F2 and F4 is the for-
mulation obtained by relaxing the integrali-
ty condition of the X and Y-variables in for
mulation F1. Then, both F3 and F4 are LP for

mulations.

We may see that the dimensions of problem
F2 are smaller than the dimensions of problem
F1l; but it has higher non-linearities. We
may try to solve problem F2 by using the --—-
branch-and-bound approach or some mixed inte
ger non-linear programming algorithm (e.g.
see /1/ and its references). But given the
dimensions of problem F2, this approach is -
not practical. Instead, and by exploiting --
the special structure of problem F2, we use -
the following approach. First, we may note
that for a ¢given maintenance schedule {Xit},
problem F2 is converted in L different pro
blems, each of which has a convex non-linear
separable objective function, the convex non
linear Knapsack constraint (10), and the cor
responding variables Qi£ in week £ whose ge-
nerators are not in maintenance (being, mi/
/Mi<Qi£<l).

ly the L non-linear convex continuous Knap

Then we may solve independent

sack problems that are associated to each fe
assible maintenance node in the implicit enu
meration approach (see the details in /5/and
/6/}).

algorithm, we may obtain a lower bound of --

Before using the implicit enumeration

the optimal solution to problem Fl: a) by re
laxing the maintenance constraints (3) and
(4), and (b) by solving the corresponding L
Knapsack problems may be non-convex, and so-
With -
this approach we obtain feasible solutions

me Q-variables are semi-continuous.

such that the best value obtained by using

the implicit enumeration algorithm is not --
greater than 8% of this lower bound of the -
optimal solution, in the cases with which we

have experimented.

We obtain a stronger lower bound to the opti
mal solution of problem Fl,'by relaxing the

integrality constraint of the X-variables of
formulation F2.
blem.

Let F3 denote the new pro-
It should be noted that a schedule --
produced by F3 will contain values of Qi[
lying between 0 and mi/Mi' Because of -~
the form of the constraints, such values -~

tend to lie close to zero or close to mi/Mi
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and the optimum value of F3 may be a stronger
lower bound of the optimum value of Fl1l. If
this solution is feasible in F1l, the problem
is solved; if it is infeasible its wvalue is
also a measure of the goodness of the best -

current implicit enumeration solution.

In /6/ we describe an algorithm whose problem
has not the component of transmission losses
(1) .

re, since function Ciﬁ is convex and separa-

The above approach also may be used he

ble; in this specific case the lower bound -
is very strong (the difference between the -
current best feasible solution and this bound

is by average not greater than 28%).

Anther lower bound to the optimal solution of
problem F1 is obtained by relaxing the inte
grality condition on its binary variables X

and Y, and solving the continuous non-linear
programming problem (1)-(7) with 0<X, Y<1

and continuous.
blem.

smaller solution than formulation F4.

Let F4 denote this new pro-
Clearly, formulation F3 has a strictly
The -
former problem is tighter than the latter sin
ce eq. {(11) allows a stronger reduction of -
the possibility 0 <Pi£‘<mi; note that this

value is not allowed in the original problem
(5)-(7) and

(9)-(10) are equivalent for P = MQ.

Fl. Also note that constraints
In any ca
se,problem F1l may be solved by using its =---
LP ., relaxation together with a branch-and-
bound approach; see /1/.

For solving the continuous non-linear problem
F3, we use the constrained non-linear program
ming algorithm described in /4/. Some re
marks are in order:

(1) The Biggs approach (1lla) and (12) to be
dealt with the semi-continuous variables
{Qil} is guite satisfactory; although we
must be aware of the possible inestabili
ties of parameters a, b and c.

(2) The initial point X(o) to be used by the
constrained non-linear programming algo-
rithm is feasible and it is provided by

the implicit enumeration algorithm (see

/5/ and /6/) applied to problem F1; it

needs an average of 2.30 m of CPU time -
in an IBM 370/158 computer to find the -
first feasible solution. It is interes-
ting to note that the time is only 0.22m
if the transmission loss component is de
(7).

leted in constraint Note that a --
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(3)

(4)

(5)

(6}

(7

feasible point in problem F1l is also fea

sible in problem F3.

It is very fast to obtain by the algo
rithm the set J of active constraints --
and its Jacobian matrix R, (see Appendix
1). The first estimate u(O) of the La-

grange multipliers vector for the set J,

is obtained by minimizingl]g£0)||2 where
is the Lagrangian gradient vector;

(3.7)). (0)
we use the procedure described in (4,Sec.
4) , such that uio)
the i-th active inequality constraint has

0
3l
(see /4, eq. For obtaining u

is set to zero if --

a negative solution in the minimization
of]]géo)H 2. It is interesting to note
that there is only an average of 11% ine
quality constraints that are active in -
each feasible point of problem Fl.
(0)

The Lagrangian Hessian matrix B at --

point X(O) is analytically evaluated;see
/4, eqg. (1.11)/ and Appendix 1. Note --
that Bio) = 0 for constraints (3) and --

(4) independently of the value of X. No-

te also that “iO)
inequality constraints.

= 0 for the non-active
Matrix B(O)
scaled with formulation (3.10) of /4/;in

is
anycase, it is very sparse and does not

need so much storage capability.

We use the direct BFGS approximation ---
5.8/ and Appendix 1) to ob-

tain the Hessian matrix B(

(see /4, eq.
without --
using the Powell modification /4, eg. --
(5.10);

the sparsity condition,

our main concern was to preserve
instead of kee-

ping the positive definite property.Then
we use the Shanno procedure /4, eq. (6.3)/
to keep the sparsity condition, being --

B(k) the new matrix.

At iteration k, see Appendix 1, we use

the sparse updated matrix é(k)

(k+1)

to obtain

the new matrix B at the following -

iteration.
if B(k)
5 (k)

Procedure (7.1) of /4/ tests
is positive definite; if it is,
is used to obtain the search direc-

(k+1) 3

tion § If B

is not positive de
finite, we use procedure (7.3) of /4/ to
modify it, so that the resulting matrix

58X) is used to obtain s§(k+1)

Only in one iteration, it was found in-
consistent the guadratic programming pro
blem that is used to obtain the step di-
rection §,{(see Appendix 1) in step (3)
of the given algorithm. In this case we

used the approach described in /4, Sec.9/
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(8) It was detected that setting directly --
afk) o 1 (see Appendix 1), often avoids
to use in step (4) of the given algo----
rithm the approximate line search for ob
taining the steplength. The reason is -

*
that X(O) is very close to the optimum X

(39) In the cases with which we have experi-
mented, it was not frequent, when crite-
ria tl and t2 described in /4, Sec. 10/,

(see Appendix 1) were satisfied, By <T

3
for any active inequality constraint i.
Usually, point X(k)

blem F3.

is feasible in pro-
T3 is a given tolerance; the-
se results were obtained for T3 = 10” 2.

(10)In the gquadratic programming problem QP
(note that the Hessian matrix B of the -
objective function is positive definite)
to be solved in step (3) of the given al
gorithm for obtaining the step direction
S(k) (see Appendix 1), we force 6§ = 0 to

be the first solution of é(k) (usually,

it is feasible in QP). (k-1) ¢
close to § and based on the strategy de-

viged for obtaining the variables that -

Since X

in QP will be basic, superbasic and non
basic /7/, the execution of QP is very -
fast. 1In fact, most of the basic varia-
bles are slack variables (they corres-
pond to inequality constraints), most of
the structural variables are nonbasic ,

and most of these variables do not chan-

ge their status during the QP execution.

(11)A typical QP to be solved at iteration -
k = 1 requires about 32 m of CPU time or
so, and involves about 2800 inner itera-
tions. During the first 3 or 4 major i-

terations, the performance is very simi
lar. The subsequent QP's (of which 20 -
or so are required) involve very few in-
ner iterations (about 300). The total CPU
time required for solving problem F3 1li-
es between 3 and 3.50 hours in an IBM --
370/158 computer using the operating SYsS
tem VM/CMS, with theroutines being written
in PL/1 Optimizer, and using the MPSX -~
system /8/ in the inner iterations of --
the very sparse system of linear equa --
tions of the Shanno procedure /4, egs.

(6.3)/.

(12)Although we cannot know before solving -
F3 how close is the initial point X(O)
(that is feasible in F1) to the point ﬁ,
in the cases with which we have experi -

mented the deviation of the production -
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cost for X(o)

is not greater than 3% of
the production cost for the point X that
satisfies the stopping criteria descri-

bed in /4, Sec. 10/.

(13)Finally, it must be remarked thatthemain
drawback of the optimum solution of F3 -
is that condition (lla) permits the exis
tence of multiple local minima and, if -

point X(O)

is not close to the global op
tima of F3, it cannct be guaranteed that
the optimum of problem F3 is a true lo-

wer bound of the optimum of problem Fl1.

5, CONCLUSION

A general formulation of the Generator Main-
tenance and Operations Scheduling problem is
described. The problem is viewed as a large-

-scale mixed integer non-linear programming ca
se, since the energy production cost objec -
tive function and the energy transmission --

losses constraints are non-linear functions.

A relaxation of the integrality condition on
certain type of semi-continuous variables is
obtained by introducing a new non-linear ---
function in the constraints system. A conti
nuous constrained non-linear programming al-
gorithm used in the optimization of the rela
xed model has been proved to be quite satis-
factory. The optimal value of its objective
function may be a strong lower bound of the
optimal value of the objective function in -
the original problem, if the initial solu --

tion is close to the optimal podint.

Since the new problem has multiple local mi-
nimum points, if the initial solution is not
close to the optimum then the obtained local
minimum is not necessarily a lower bound to
the optimal solution value of the original -
problem. By exploiting the special structu-
re of the original problem (it is a multipe-
riod problem with non-strong linkages among
the periods), an ad-hoc implicit enumeration
algorithm provides an initial feasible solu-
tion to the continuous non-linear problem --
that it is also feasible in the original pro
blem,

Since it is required much more time for ob-
taining the optimum solution to the original

problem than for obtaining the initial feasi
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ble solution and the optimal solution of the
relaxed problem, it is worthy to optimize --
this problem. If the difference on the pro-
duction cost value of both solutions is -
small, it does not mean that the feasible so
lution is close to the optimum point in the

original problem; but it was very close in -
the real-life cases with which this approach

was tested.

6. REFERENCES

/1/ BAkoka, J., "Solving discrete non-linear
programming problems by branch and --
bound methods", Working paper , Ecole -
Superieure des Sciences Economiques et
Commerciales, ESSEC, Paris, 1980

/2/ Biggs, M.C., "An approach to the opti -
mal scheduling of an electrical power -
system",in: Dixon, L.C.W. (ed.), Optimi
zation in Action (Academic Press, Lon -
don, 1975) pp. 364-380

/3/ Escudero, L.F., "Conjuntos especiales -
en programacién matemdtica", Qliestiid 2
(1978) pp. 69-78.

/4/ Escudero, L.F., "A projected Lagrangian
method for non-linear programming " IBM
Scientific Center report G320—3461, Pa-
lo Alto, California, 1980.

/5/ Escudero, L.F., J.M. Horton and J.E. ~--
Scheiderich, "On maintenance scheduling
for energy generators,, Proceedings of
the IEEE-PES Winter meeting, 1980, N.Y.
(IEEE catalog 80 CH-1523-0-PWR, paper
A-80-11-7)

/6/ Escudero, L.F., "On Energy generators -
maintenance and operation scheduling”,-
IBM Scientific Center, Palo Alto, Gali-
fornia, 1980. See also "Operations goals
in maintenance scheduling for power ge-
nerators", Qllestiié 4 (1980) pp. 227-
=247,

/7/ Escudero, L.F., "An algorithm for large
scale programming problems and its ex -
tensions to the linearly constrained -
non-linear case", IBM Scientific Center
report SCR-01-81, Madrid, 1981.

Qtiesttd - V. 5, n.° 2 (Juny 1981)

/8/ 1IBM, MPSX-Mathematical Programming Sys-
tem Extented/370, program product 5740-
-Xm3, SH19-1095, IBM France, 1978.

/8/ Kirchmayer, L. and G. Stass,"Analysis -
of total and incremental losses in -
transmission systems", AIIE Trans. ---
70(1951) 1197-1205.

/10/ Kirchmayer, L. and G. Stass, "Evalua --
tion of methods of coordinating incre -
mental transmission losses, AIIE Trans.
71 (1952) 513-520.

/11/ Lasdon, L.S. and A.D. Warren, "A survey
of non-linear programming applications]
Working paper 79-13, Graduate School of
Business,
Texas, 1979

University of Texas, Austin,

/12/ Sasson, A.M., "Optimal load flow", in:
Wood, A.S. (ed.), Application of Optimi
zation Methods in Power System Enginee-
ring, IEEE Tutorial Course, 1976, 19-29.

7. APPENDIX 1.

Notation used int he nonlinearly constrained

nonlinear programming algorithm used for sol
ving problem F3,

a(k). The steplength of the descent step ai

rection at iteration k, such that

2K o yk=D) () (k)

(k)

where § is the descent step direction.

AEA(X(k)).

Jacobian matrix of the cons ~--
traints functions in formulation F3. A is -
the corresponding submatrix of the active -~
constraints.,

B(k). Hessian matrix of the Lagrange functi~
on L{X,u), such that

L(X,w) = F(X) ~ c(x) 5y

where F(X) is the objective function, c(X)
is the column vector of the constraints func
tions, and y is the column vector of the La-
grange multipliers. B(k) is evaluated (or
approximated) at point X(k) for the Lagrange
multipliers estimates vectors p(k). Note -~-
that

E: uék)B(X(k))i

(K)o gxtk),
iej
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where G(X(k)) EG(k) is the Hessilan matrix of
the objective function F(X) evaluated (or --

approximated) at point X(k).

B(X(k))i EBik). Hessian matrix of the cons-

traint function ci(x(k)

) evaluated (or ap-
(k). Note that G(O)
and Bgo) are analitically evaluated at the
R (0) (k) (k)
. For k>0, G and Bi
are not evaluated, but B(k) is approximated
by using the direct BFGS Quasi-Newton formu-

lation; see /4, eqg.(5.8)/.

proximated) at point X

initial point X

E(k). The Lagrange Hessian approximation -

obtained by modifying matrix B(k) at itera-

tion k. This modification satisfies the ---

sparsity condition on the exact Lagrange Hes

sian matrix. See in /4, eq. (6.3)/ the for-

mulation for é(k).

ﬁ(k). The Lagrange Hessian positive defini-
te approximation obtained by modifying ma -~

(k)at iteration k, so that the step di

rection at the next interation

trix g
is obtained.
See in /4, procedures (7.1) and (7.3)/ the -

procedure for obtaining ﬁ(k).

x)

8§ The descent step direction of the solu

tion at iteration k.
f(o).

before iteration 1 of the given algorithm;
(k)
£

It is any vector or matrix evaluated

is the same vector or matrix evaluated
at iteration k.

gék). Gradient column vector of the Lagran-
ge function L(X,p), such that

gz g x) = gx™)) - 2, ™)
where g(X(k)) is the gradient vector of func
tion F(X). Vector g(X(k)) is usually appro-

ximated by finite differences for k> 0; it -
is analitically evaluated for k=0.

J. Set of active (i.e. strictly satisfied -
and violated) constraints in formulation F3.

Constraint ati: X>0 is active if élF X ¥0. No
te that ay is the ith column vector of matrix

A and X is the unknown column vector.

k. A given iteration of the algorithm.
u(k). Column vector or the Lagrange multi-
pliers estimates at iteration k. TSP
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the corresponding sutvector of the inequali-

ty constraints.

OP. Quadratic programming problem to be sol

ved at iteration k for obtaining the des -

cent step direction ék), such that QP can be
written
min{g(k)t s k) 1/26(k)t B(k'l)s(k)

subject to Akt (k) = ~g k1)

(k-1})

where ¢ is a column vector whose inde-

xes belong to the set J updated at itera-

tion k-1. Note that it is assumed that the

general formulation of problem F3 can be wri
tten

=

min{F(X) subject to c(X) 0}

t, and t,.

1 2
ed by the current point X

Stopping criteria to be satisfi-
(k); if these crite
ria, among others, are satisfied it is assu-
med that X(k) is the optimum point §. Cri-
teria tl and tﬁ are related to the feasibili
ty of point X( ); see /4, sec. 10/.

T3. A given tolerance of the Lagrange multi
pliers, such that if ﬂi> T3 for ¥ o€ J it is
assumed that the stopping criterion t3 is sa
tisfied. Usually, T3.= 1074, Note that it
is required that the Lagrange multipliers es

timates vector ﬁ(k)

of the active inequali-
ty constraints must be positive at optimum -
point %, except for the degenerate case; see
/4, sec. 1/.

X(k).
k.

Point (solution vector) at iteration

*
X. Optimum (locally strong) point of formu-
lation F3.
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