COMPUTING A K- INDEPENDENT SET OF M AXIMAL WEIGHT ON A
PARTIALLY ORDERED SET: A RESEARCH CASE HISTORY

X. BERENGUER

This s a Zutorial papen presenting the nesearnch carnied out on the Speraner-

Endos problLem, that is the problem of computing a Maximal Weighted

dent Set on a Pantially Ondered set.

-Indepen-

Results ane shown An the same ornden as

the reseanch was made: anafysis and solution to the Spenrnen {sub)problem [K=1)
and generalisation of this result yielding a polynomial solution to the Spen-

ner-Endds problem.

1. INTRODUCTION

It is a well known result the "Sperner's --—-
theorem" which states that in the lattice of
all subsets of an n-set the maximal number -
of incomparable (i.e. not related) elements
is(nﬂ. It arises in a natural way the —---
"SpJ%ner problem", that is the problem of -o
computing the maximal number of incomparable
elements in any partially ordered set.

Erd8s gave a generalisation of Sperner's --
theorem stating that the maximal cardinality
of any set of incomparable elements which --

has no more than k members lying on any chain
is

2 (2

For any partially ordered set the correspon-
ding problem that arises will be referred to
as the "Sperner-Erdds problem”.

Both problems can be formulated while assig-
ning non constant weights for each element -
of the poset. These more general versions of

the problem will be studied here.

The paper presents the real course of the --
research carried out for solving the Sperner
-Erdds problem. Aftér the statement of this
problem, the related subproblems are studied
yielding a solution to the Sperner-problem.
The aim of the procedure for this solution
is then generalized and the Sperner-Erdds --
problem is solved too.

The final results of this research are repor
ted elsewhere (/1/ and /2/), emphasis is =---
made here on the intermediate steps between
them and their connection. The author will
be happy if some light on the "methodology"
of the research is extracted from this work;
this intention is to clarity -somehow- the
obscureness of the way to get the so called
"final results", which in general don't in--

clude the experience behind them anyway.

2, THE SPERNFR-ERDUS PROBLEM

. . +
Given a poset P, a weight function w: P—R

(such that for AcpP, w(A)= w(x)) and a -

P
+ X€A
number k€ Z , a Xk-chain is a linearly orde--
red set of k elements, and a k-independent

set Ik (or a k-Sperner set) is a subset of
P with no (kt+l)-chains, the Sperner-Erd8s --

problem is to compute

MAX w(I})

Iﬁ;P

3, THE SPERNER PROBLEM

A first relaxation for the Sperner-Erdds Pro
blem can be made fixing k=1, 1In that case
the Sperner Problem is faced. The 2-chains

are the usual adges and teh problem is to -
compute the Maximal Weighted Independent set

on a poset.

Other relaxation can be made when considering

uniform weights. The problem is then to ---
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find the independent set of Maximal Cardina-
lity. For a general graph this problem is -
known to be NP-Complete, but is polynomially
solvable for particular cases (bipartite ---
graphs, when applying the K¥nig - Egervary -
theorem, and othars, see Garey-Johnson /5/).
For posets, Golumbic /7/ gives a polynomial
algorithm,

A Vertex Cover of a graph G(V,E) is a subset

C¢V such that for all part (x,y)EE, either
xgC or ye€C or both x,yecC.

It is easy to show that given an Independet

Set I, then C = V-I 1is a vertex cover, soO:

MAX w(I) = 2 w(x) - MIN w(C)
Igv XEV cev

From this equation, the problem of computing
a Maximal weighted Independent set on any --
graph is equivalent to the problem of compu-

ting a Minimal weighted vertex cover.

Given a weighted poset P, define Pz, the —--—-
2-Copy of P, as follows:
p? = {{x,1): xe€P and 1i€{0,1},

arcs (x,1i) « (y,3j) 1iff x<y< and jri,

weights w'(x,1) =w (xJ}

For a subset of vertices A in P define the -
"corresponding subset" A' in p?

where

o]

A1={(x,1|x€_A and 3 z € V~A such that x<z,z¢A}

For a subset of vertices A' in P2 define the

corresponding subset A in P as follows:
A = {x|(x,i)¢A"}

Lemma: A subset C is a Minimal Weighted Ver
tex Cover in P if its corresponding subset C
in P2 is a Minimal Weighted Vertex Cover in

Pz, and viceversa.

As a more general result is presented below.
the proof of this lemma is not given here. -
The key fact in that proof is the transitivi
ty property of the poset (see /1/).

Hence, the Sperner problem on P can be redu-
ced to the problem of computing a Minimal --
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as A' = AUA,,

A ={(x,le€A and J y € V-A such that x>y,y¢A}

Weighted Vertex Cover on P2.

P2 is a bipartite graph. For any bipartite

graph B = (VA, VB, E) the problem of compu--
ting a Minimal Weighted Vertex Cover can be

formulated as the following Integer Linear -
Program:

i=1,2,...n,

MIN ;X n= |VA] + |VB1

(i,j)€E

The matrix of this program is totally unimo-
dular because it is the transposed matrix of
the incidence matrix of a bipartite graph, -
which is known to be totally unimodular (see
/6/). The extreme points of the convex —----
polyedron will be integers and so an eguiva-
lent Linear Program with integer solutions -
can be formulated. The famous Kachian's re-
sult, giving a polynomial algorithm for the
Linear Programming Problem yields a polyno--

mial solution to our problem.

However a more efficient procedure can be ob
tained. The dual of (1) for our case will be
n

Max 2 -
(i,3)€E eij %Yk

Se r¥i) eij T Y dwy VieVA, (r* successor fun.)
ier(3) Oij T Y yewy VjevB(r_pmedecessorfun“)

01420, v, 20

Making Y = 0,k =1,2,...n, the infinite -~
Yscaled" solutions are avoided, and the re-
sulting program is:

MAX (Ej)E,E Sij
z, - jz—r"(i) B;=0  viev®
ferm(y) Opg - 20 vser”
Oijao
Osziéwi

Now we are faced with a Linear Program which
corresponds to a Max-Flow Problem, and effi-
cient algorithms are known for this problem

(for instance, Dinic-Karzanov /3/ running in
9(n3) time complexity, or Galil /4/ running
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2‘33) time complexity)}.

in (n
Applying all the previous results we get the

following equations which solve the Sperner
Problem:

- 2 _
MAX w (I) = w(x) - MIN w(C) =
TeR xep cep
= Z_w(x) -~ MIN,w(C) =
X€EP ¥ CCP2
= Eéb‘y(x) - MAX FLOW (P%)

The following algorithm sums up the proce---
dure:

a) Construct P2

b) Solve MAX FLOW in P2,
MIN CUT C' on P?,

That will yield a
the corresponding set -
C in P will be a Minimal Weighted Vertex
Cover in P.

c) I =P - C and I is the desired Maximal --
Weighted Independent Set.

4, COMING BACK TO THE SPERNER-ERDOS PROBLEM

Recall that the main problem was to find ---

MAX (I ), where I is a Maximal Weighted -
Icp k

k=
K-Independent set (a subset of P with no =---

(k+1)-chains).

As for the above subproblem, first we trans-
form the MAX problem to a MIN problem. A --
set ClgP is a k-chain cover if it contains -
at least one member of every chain in P. It

is easy to show then that

w(x) = MIN w(C,, )
G

k1=

- >
fﬁg@ w(Iy) XEP

We define de multipartite graph Pk, the k- -
copy of P as follows
Pk = Ux,i) = x€P and 0O<i<k,
ares (x,1i)<(y,j) 1ff x<y and j=i+1,
" weights uﬂ(x,i)=w(xﬁ

The following lemma transforms the problem -
of computing a Minimal Weighted (k+l)-chain
cover in P to the one of computing a Mini---
mal Weighted (k+1)-chain cover in P(k+1).
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Lemma: =
MIN (C]&1) MIN

. L} 3
CH4H]P %&11n P

ﬁf'(ck+ﬂ

Proof: Let ekm be the set of all (k+1)-chain
—*_-_ +1
covers, First we shall prove gk”k(ﬁ Ye GkH
(P) and secondly gkﬂ (P)e Gk+1 )y and the-
refore the lemma will be proved.
1) é’k_M N el P
Define the correspondence f:
g k+l
kyp (P é;+1
P(C') = {x:(x,1)€C"' for some i}
L}
We shall show that F(C )¢ Gk+1(P)'
. . . k+1
That is easy: Suppose a chain in P :
0)<(x1, ) PRI < (%, ,k)
Clearly there is an i such that (ki,i)€ c' -
(as C' covers every chain in Pk+1). But then,
by the definition of P xie'P(C'), and there-
fore
meg5m1 P) Mdghlp )gwl
and
MIN w(C)« Nk W' (CY)
< . +1
ceg . (P) ee
k+1
)é,kH(P)g Gh4(P )
k+1
Define the correspondence.f ek+l P) — 6k+l )

For a (k+1l)-chain cover C€€k+l P) and
for all x€P, let Kc(x) be the length of the
longest chain in the (k-Independent Set) --

P - C which leads up (but does not include)

X.
p(C) = {(x,£5(x)) : xec}
k+1
We shall show that ? C)CGk+1 )
For any chain in P:L = {xo,x1,...,x£} we -——--

must show that there exist some 1 el+
0¢i ¢ k such that x, e c, Cce @k+l(P) and ---

RC i )— ige then (x ,1 )e(C) and so the --
the correspondlng cnaln in P L L(XO,O),
(%0 1),...,(x,, )} will be covered.
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Let us observe the behavior of Kc(x) func---

tion. It is easy to see that

1) La(xy) >0

ii) For all 1i, Kc(xi+1) > Kc(xi) and Kc(xi+ﬂ
= Kc(xi) implies x.€C.

iii) Kc(xk)i kand Kc(xk) = kimplies x €C.

Therefore Zc(x) is an increasing discrete --
function defined into the interval 0 (or ---

more), k (or less). See Fig. 1 for a graphi

cal interpretation of this fact:

A continous analog of Kc(xi)=i is drawn (in

heavy line), and three examples of Zc(xi):
(1) which crosses Ec(xi)=i in i=k

(2) which crosses it at some intermediate --

point in }0,k|.
(3) which crosses it at i=0.

Clearly Kc(xi) meets Kc(xi)=1 at some point

and so the set {i:ﬂc(xi)=i} is non empty.

Recall we are trying to see that there exist

some i  such that xiOQC, C€GkH(P) and L, --

(Xio)zib' Now it is easv to find this i .

a) If Kc(xk)=k, take i0=k (and obviously x
€C) .

b) If Lo(x)<k take i = MAX {i;zc(xi)= i},

B (x()
A
b(x)=1
k
w
(2)
: (3
;
2
1
0 > 1
0123 . K

Fig. 1
Possibilities of Kc(xi)
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as then Kc(xio+1)=10+l is not possible --

(otherwise weé should choose i0+l) and it

)=i (therefore X, €C).
0

must be I,C(xi0+1

(Pk+1 +1

Therefore (C)C & )

x
ke ® ) and By, (BC G, (@

and

MIN
Cce8

w' (C")

MIN wC)=2 )

Ceb, ,, (P)

k+1
k+1(P

This result, together with the one obtained

in the first part of the proof, produces

MIN

w(C ) MIN w' (C )
. k+1l , k+1 k+1
Ck+llnp C'k+lln P
and the lemma is proved.
At this point, we have
MAX > MIN
; w(L,) = w(x) - ) =
I, inP "7k T xep ) Cy,y inP” Crar)
= Z w(x) MIN o
= - A l UJ'( L} )
P '
e G I P G

k+1)

Any C'e Gk+1(P is a cut in Pk+1 conside~-

red as a network, and viceversa. From the --
max flow = min cut theorem of Ford Fulkerson,

it follows that

MIN U ' = k+1
o kn w' (C ka1’ MAX FLOW (P )

k+1tH P
and so,

M A X k
I in'p w(I ) = }ép w(x) - MAX FLOW (p 1)

and the Sperner-Erdds Problem is solved.

The following algorithm sums up the procedure

a) Construct Pk+1

1

b) Solve MAX FLOW on Pk+ . This will produce

] .
a MIN CUT C k41 and a corresponding Ck+1

in P.

c) I,=P - Ck+1 and Ik is the desired Maxi-
mal Weighted k-Independent Set in P.

The appendix shows an example of application.
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Step a) produces a graph with k.n (n=|P|) -
nodes.
will be

The total complexity of the algarithm
©(kn)® ,o depending on the max flow
algorithm which is used (a=3 for Dinic-Karza
nov, 0=2.33 for Galil). It is a case where

ir appears pseudopolynomiality (see /5/) be-
cause the complexity dependes on k, a parame
ter of the input. But since the problem is

trivial for k2n the algorithm becomes polyno

mial.
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6. APPENDIX: AN EXAMPLE

Figure A-1 shows the Hasse diagram (no tran-
sitivity relations considered) of a poset P
(|P{=6). Numbers between parenthesis indi—-

cate weights.

The Sperner-Erdds problem that is faced is to
find the Maximal Weighted 2-Independent Set,
I2 in P.

Figure A-2 shows the 3-copy graph of P, P3

’

including two additional vertices s{source)
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and t (sink) for building up the correspon--

ding flow network. Weights on vertices are

avoided (same as in P).

Heavy lines represent a Max Flow over this -
network, numbers over these heavy lines are

the flow values.

This yields a Max Flow (P3)=5.
in P3 is {(110)1 (613)1 (71

3ﬁ and so the corresponding 3-chain cover

The corres--

ponding cut C'3
in P is
1,6,

3 = {2,3,4,5}

Therefore

3, _
X%P w(x) - MAX FLOW (P~) =

702
6() )

5(2)

3 ig. A-
20} (3) Fig. A-1

Hasse diagram of P

i{z)

-
N

T

{12) z2) /02D @2:“i?:::;’/// (32)
;4’1:::::::5;"’//

) 20)

5 a0 60 _ A6 _A )

60) (7.0)

Fig. A-2
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