FULL APPROXIMABILITY OF A GLASS OF PROBLEMS
OVER POWER SETS

G. AUSIELLO, A. MARCHETTI SPACCAMELA, M. PROTASI

In this papen nesulits conceaning structural and approximability pnopen;{eA o4
the subclass of NP-Complete Optimlzation problems, defined over a Lattice ahre

consddened.
proximatlon

Finszt, vanious approaches to the concept of Fully Polynomial Ap-
Scheme are presented with application to sevenal hnown problems

An the class of NP-Complete Optimization ProblLems.

Secondly, a characterdization of §ull Approximability for the class o4 Max ----

Subset Problems L4 introduced.

1. INTRODUCTION

The aim of this paper is to discuss methods

for the full approximation of combinatorial

problems and to study the full approximabili
ty of a class of NP-complete optimization =--
problems defined over a lattice. Most combi
natorial optimization problems can be natura
lly defined as optimization problems over --
lattices according to the ground algebraic -
structure of the set of feasible solutions.

For example the problem of graph colouring -
can be viewed as an optimization problem ---
over a partition lattice, the problem of mi-
nimum spanning trees is an optimizatioﬁ pro-
In /1 / a large -
class of optimization problems was formalized

blem over a matroid, ecc.

as the class of max~-subset problems over —--
power sets and some basic properties of these
problems were studied. Despite its simple -
characterization the class of max-subset pro
blems is indeed sufficiently general to in--
clude problems with very different properties
with respect to approximability. In fact -
this class includes many problems which are
known to be non fully approximable and, at --
the same time, practically all known exampks

of fully approximable NP-complete problems.

The existence of good approximations to the
solution of hard optimization problems has -

been studied by several authors /8/./2/,/4/

/5/, etc.).

What is more interesting for the development
of our work is that 1) the techniques used -
in proving the full approximability of a pro
blem are essentially based on variations of

dynamic programming, 2) generally single pro
blems (and not classes of problems) have been

shown to be fully approximable.

In particular as regards 2) many difficulties -
arise when tfying to find general natural --
conditions for the approximability and des--
pite of the interest for this type of results
few steps have been made in this direction -

/17, /13/).

In order to establish a connection between —--
good approximability of hard problems and --

the intrinsic combinatorial properties which

characterize such problems it is useful to -

restrict ourselves to considering max-subset

problems and the properties of the set of —-

their feasible solutions.

In the whole we can say that three possible
research areas are worth-while of beeing pur-
sued: 1) to find new simple methods of full -
approximation, 2) to give general conditions

for the full approximability of a class of --
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problems, 3) to introduce new approximate al
gorithms of lower complexity for problems --
which are already known to be fully approxi-

mable.

In this paper we will be concerned with —----

points 1 and 2). In fact, in 3. we will
consider a new method for showing the full -
approximability. Its computational complexi
ty will be studied and its advantages with -
respect to the classical schemes will be al-
so shown. Instead in 4. we will give a
sufficient condition for the full approxima-
pility of a subclass of max-subset problems

which 1s based on the structural properties

of the set of feasible solutions and which -~
is verified by the most important problems =

which are known to be fully approximable.

2. A FULLY POLYNOMIAL APPROXIMATION SCHEME

Given an NP-complete optimization problem 4
with measure m the following definitions cap

ture the concept of good approximability.

DEFINITION 2.1. A is an e—approximate algo—-—-
rithm for 4 if, given any instance x€4, we
have

*

m ()-m(A(x))| <« |
m*(X) B

where m*(x) is the measure of the optimal --

solution of the instance x.

DEFINITION 2.2. A problem 4 is said to be
a) polynomially approximable if given any
e > 0 there exists an e-approximate algo-
rithm for 4 which runs in polynomial time; --—
p) fully polynomially approximable if A 1is
polynomially approximable and there exist -
a polynomial g such that; given any ¢ ,
the running time of the e-approximate al-
gorithm is bounded by q(|x|,1/).
DEFINITION 2.3. A constructive method that
for any given ¢ provides the corresponding
pélynomial e —approximate algorithm AE is -
said to be a polynomial approxzimation scheme
(PAS). Besides if, for every €, the rmnﬁné
time of a is bounded by q(|x|, 1/¢) for -
some polyégmial q we say that the scheme is a

fully polynomial approximation scheme.

As we said in the introduction the main aim
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of this paper is to characterize optimiza---
tion problems belonging to the class of max-
subset problems which are fully approximable
and hence we will only consider fully polyno
mial approximation schemes for this class of
problems.

DEFINITION 2.4. A NP max-subset problem A -

over an alphabet I is a quadruple
A = INPUT, F, 7, m ) where

INPUT: is a polynomially decidable subset of
L™ (set of instances)
*

F : INPUT * P P(Z ) is a polynomially com-
putable mapping that to every input x
associates a finite set of (encodings

of) objects

m : 1s a polynomially decidable property
of subsets of F(x)
m : F(INPUT) N(where F(INPUT)= U P(F(x)))
X € INPUT —>

is the measure that, given x, asso---
ciates a non negative integer to —--—--

every subset of F(x).

DEFINITION 2.5. Given an instance x of a NP

max-subset problem 4,

1) the search space of x is the lattice L,
of the powerset P(F(x)) under inclusion

2) the set of feasible solutions of x is the
subsemilattice SOL(x), which is formed by
elements of Lx which satisfy

3) the optimal solutions of x are the ele---

ments of SOL(x) for which m is maximal.

The definitions can be extended to minimiza-
tion problems by inverting the lattice orde-
ring.

Examples 3 graph problems = Max-clique, Min
node cover, node deletion, arc -
deletion, max-subgraph

: set problems = Max-set packing,-
min-set covering, min hitting --
set

: mathematical programming = Max-
Knapsack, max subset sum

: problems of scheduling theory

: problems on matroids and indepen
dent systems

(For the definitions of the above problems

see /2/).

As a detailed example let us consider the -

0-1 knapsack problem



. . é
maxi:icixi subject toz:iaixi b xiéi{O,l}

In this case we have:

INPUT = (2n+l)-tuples of positive inetgers

{CyrenerCyi @senaayib V

F((cl,...,cn; ajree-say; b)) = {cl,...,cn}
({C. see.sC. D&a. +... + a. =5b
w({ J]_, ’ JK} jl jK
K
m({c, ,s..,C. })} = s C.
o Ix izt i

The fundamental technigue for constructing -
fully polynomial approximation schemes are -
all based on the classic dynamic programming
scheme. This scheme, in the case of max sub

set problems can be summarized

= g
for all items i in F(x) do
for all sets Sj in L do
if Sj U {i} satisfies 7

then
begin insert Sle {i} in L;
eliminate dominated
end elements

end
for

take the best solution in L.

It is easy to see that the number of steps -
of the algorithm is proportional to the num-
ber of items in F(x) times the lenght of the
list L.

Clearly variations of this scheme are dbtained

by <considering different conditions of --

dominance between elements.

In the case of knapsack we can define the fo

llowing dominance rule:

Given two sets S' and S" in L we say that S’

is dominated by S"

if § : Cici < § : c. and

i€s” i€g *
j{: a.,a, < z : a,
i€gr 11 g *

Clearly the elimination of §' does not intro
duce any error.

Therefore we can obtain the following exact
algorithm for the knapsack problem:

Qtiestté - V. 5, n.° 1 (Marg 1981)

Algorithm A
L: #;
for i =1to n do
for all sets Sj in L do
; <
if j€Sj aj+a; b
then
beging L: = LU(S. U {il})
eliminate all S' & L
such that 3 s" €L

<z

. c. c.
JES' ] jes" 3
and
2a, C

a. a.
jesl] j€S"j

end
end
end

take the best solution in L.

To evaluate the complexity of the above algo
rithm it is sufficient to see that, at each
step, the number of solutions contained in -
the list L is less than

I

n
min (b, 2: a. , 2: c.).
=1 )

=1
So With a suitable implementation of the eli
mination step it is not hard to see that the
complexity of algorithm Ay is
n

n
O(n~min(b,§: aj , 2: cj )), which means a -
j=1

i=1

complexity exponential in the size of the in
put, as we use a binary encoding for the nunm
bers of the input.

‘It is also possible to obtain the elements of
the optimal solution without increasing the

overall complexity of the algorithm (see /5/).

In order to achieve a fully polynomial appro
xXimation scheme the first technigque which --
was used for finding an approximate solution
to the knapsack problem was based on scaling
- - €.
all coefficients a; by a factor K aMAX/n
This technique is summarized by the followng
algorithm
Algorithm A

2
for 1 = 1 to n do
c! =k'c,
j i
end;

Apply algorithm Al taking as input
(ci...,cﬁ; al...,aﬁ;b)
take the best solution and multiply

it for k.



If m(Az(x)) is the value of the approximate
solution we have that

m ﬂx)—m(Az(x)) £ n'k

On the other side we can assume (w.l.o.g.)
that

E
>
m (x) > CMax *

it follows that

m*(x)—m(Az(X)) én-k e
m*(x) “MAx

With respect to the running time we have ---
that the complexity of the algorithm is ----
0(n- (2el)).

Due to the scaling we have that -

n-c 2

Zc',L—NI_AL)_(zn_
i - k €

So the overall complexity is o2y,

€
Algorithm A, can be improved in several dif-
ferent ways obtained by Ibarra and Kim /14/

and Lawler /5/.

Ibarra and Kim use a better lower bound P ba

sed on the value G of the greedy algorithm

td
1]

max {G,cMAX }

It allows to use a bigger scaling factor k'
_e.P

n

Therefore the co%plexity of the algorithm -
is 0(n %?) = O(EE). Besides this the items
are separated in small and large items, Al-
gorithm Al is applied only to large items -
and afterwards the solutions obtained are -

improved using a greedy procedure.

So the computational complexity of the algo_
rith is 0(n 1lg +;% 1g %). Lawler uses a k-
median finding routine to avoid the ordering —-
of the elements to obtain the lower bound.
So the complexity is lowered to 0(n 1lg % +
=5)1g1/e) -
tor (the larger is the profit of the ele---

Finally a variable scaling fac-

ment the larger is the scaling factor) ----

allows to get 0 (n 1lg % + %q.
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3, DIFFERENT FULLY POLYNOMIAL APPROXIMATION
SCHEMES

The fully polynomial approximation scheme --
described in Par. 2, although very useful --

for many problems, suffers some drawbacks.

In fact in order to find the fully polyno---
mial approximation scheme we need to know --
good bounds to m* and this is a severe limi
tation to the generality of the method as it
can be easily seen if we simply switch from

max knapsack to min knapsack problems.

Another limitation of this scheme is that it
cannot be applied for solving other NP-com--
plete optimization problems which instead --
can be shown to be fully approximable by ---
other methods such as the product knapsack -
problem.

Due to these facts the search for general --
full approximation schemes has been pursued
with the aim of finding results which, des--
pite a slight loss in efficiency could be --
applied to a broader class of problems and -
that could provide some insight in the pro--
perties of fully approximable problems and -

in their characterization.

The first attempt to provide such a general

scheme was the condensation algorithm due to
Moran /6/. With respect to the dynamic pro-
gramming schema (Al) the elimination step is
performed by eliminating more partial solu--

tions and therefore introducing an error.

More precisely we say that S" dominates S'

if (1-6) Zc.
i€s' &
2

s *

< and
i€s w© i

a,
icsm *

where § = min{gz,%z },the condensing parame-
ter, is the relative error introduced in the
dominance test. As there is a propagation -
of the error then the total relative error -

is at least § 2

£¢ . Moreover the running -
time, as analyzed by Moran, is 0(max{|x4l,
]le /52} ) when applied to variants of max

subset sum and max subset-product problems.

A different approach which leads to a more

efficient algorithm is js based on the technique



of variable partitioning (as opposed to the
constant partitioning technigue introduced -
by Sahni /8/). This method is based on the
partitioning of the range of the measure in-
to intervals of exponentially increasing —--
size and on an elimination rule which preser

ves only one solution for every interval.

To allow a better understanding of the ad---
vantages of this approach the method and the
results will be given for the 0/1 knapsack -
and the 0/1 product knapsack. It can be in-
mediately extended to other fully approxima-
ble problems.

More in detail the method is as follows.

Let R be the range of the possible values of
the measure. 1In a general NP-complete max-
subset problem, and therefore in our cases R

is smaller than 2P([x|) for some polynomial
P and as we will see the whole development -
of the algorithm allows us to refer only to
this general bound without reguiring anyv more
The ---
range R is then partitioned into K intervals
@,ml)lpa,ma),...[mK_l,mK) where m, = (l+e/n)%
Let us denote TS the i-th interval.

. . *
precise estimate of a bound for m .

The elimination rule for the 0/1 knapsack is
the following:

Given two sets S' and S", S' is dominated by
s" if
if ::C_GT., ::c,e LN s
ics' t i' fggni 5Ty 3 =4 and
Zai = a .
i€s?’ iesn 1

Clearly changing the sums in products we —---
have the elimination rule for the 0/1 product
knapsack.

In every interval there will be at most one
feasible solution and hence, at each itera--
tion, we will have, at most R elements in --
the list.

THEOREM 2.1. The variable partitioning me--

thod provides a fully polynomial approxima--
tion scheme for the 0/1 knapsack and the 0/1
product knapsack.

PROOF. The error that may result by using -

this algorithm may be bounded as follows. At
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stage i at most the error A ,= m;-m;_ ,

arise; in the worst case this error may hap-

may -—-

pen at every stage. Since there are n sta--

ges and since A, < A, we have that
i i+

1

mo(x) -m(a (x))] £ na,
| X € lMAX

. P4 *
where iuax & m (x)<m,

is such that m,
Lyax
From the above inegualities we deduce that -

the overall error is

i i -1
n’ Go-ma (0)| n[(1+ £)TMAX_ (1,5) MAX }

m (x) ‘ (1 + ﬁ)

=g

—

TMax”

As far as the complexity is concerned, the
number of steps of the given algorithm is as
usual a function of n and the lenght of the
list L. In this case the number of solu----
tions which may be preserved in L is equal -
to the number of intervales K which should -
satisfy the following inequalities.

(e HF

< 2p(lxp) K log(l+ 2)< p([x])

K < pUx[

- 3
log(l+ H)

Hence with a suitable implementation the --

complexity of the method is

0(n.,—x]) _

€
log(l + E)

Therefore in the case of knapsack we have -
that the range R is bounded by n-ay,y and

therefore in this case we have a complexity

log n + log a
o( . MAX)

log(l + €/n)

while in the case of product knapsack

0<n2. __iiigigyg_>
log(l + €/n)
QED

The complexity of the method could be impro
ved in two directions; a) from a general --
point of view using together the variable -
partitioning with Sahni's fixed partioning

b) for a single problem, exploiting some --
particular features. For instance some ---

ideas by Ibarra, Kim and Lawler for the ---



Knapsack could also be applied in our case.

However we Will not describe these results
further because they are obvius extensions
and because in this paper we are interested
in the general characteristics of the sche-
me and in defining conditions which guaran-
tee its applicability.

4, A SUFICIENT CONDITION FOR THE FULL APPRO-
XIMABILITY OF MAX SUBSET PROBLEMS

The results shown in the preceding paragraph
suggest to introduce an abstract characteri-
zation of the condition of dominance that --
allows the elimination of feasible solutions

and to establish on this basis a conditimof

full approximability for max-subset problems.

For this purpose we have to require that the
satisfaction of the property T by a feasible
solution of a max subset problem is "measu-
red" by a function f (which generalizes the
concept of occupancy as it appears in knap--
sack problems) .
DEFINITION 3.1. A max subset problem 4 is
said to be regular if there exists a polyno
mially computable set function £ with inte-
ger value such that the following conditions —-
hold:

1. for every SEP(F(x)) f(S)£0 iff x(S)

2. ¥ £(¢) £ £(8) , m(¢) £ m(S)

3, VSl,Sz and any disjoint S3

£(s)) € £(s,)> £(s;V s3)éf(szu S3)

m(s)) € m(s,)~ m(s;U 83) £ m(s,Us,)

4, Vsl,s2 and disjoint S3

. n(s;) m(s,U Sy
m($)) = m(s,) m(5,) ~ W(S,U 5y

In /1/ two weaker properties of max-subset
problems were introduced, namely the heredi
tarity of the property

¥S),5, S, € S, + (7(5,)

and monotonicity of the measure
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PROPOSITION 3.1. A regular max-subset pro--

blem has the properties of hereditarity and
monotonicity.

PROOF. Let S, = 4.

1
Since property 2 of definition 3.1 guarantees
f(ﬁ)éf)sz) and m(ﬂ)ém(sz) for every S
given any S

27 then,
5 and S3, property 3 of definition
3.1 implies

m (S

£ m(SZlJ §3) (monotonicity)

3)

and f (S3) < f(52 V] 53)

that is w(S2 U S3) — W(S3) (hereditarity)
QED

On the other side the property of regularity
is indeed strictly stronger than hereditarity
and monotonicity.

PROPOSITION 3.2. Max~clique is hereditary -

and monotone but is not regular.

PROOF. The fact that max-clique is heredita

ry and monotone is trivial. On the other --
side whatever f we choose there will be ins-

tances of the problem and sets S S, of

17 S2v 83
nodes such that Sl and 52 are nodes of com--
plete subgraphs, SlL)S3 corresponds to a com
plete subgraph, SZL)S3 corresponds to a non
complete subgraph. Then we would have f(Sl)
a, £ (8,)= b for some negative a and b.---
W.l.0.g. let b g a.

It

At the same time f(SlUS3)
= ¢ £ 0 while f(S2 U S3) >0. So we would --
have f(52)<‘f(sl) but f(SZUS3) > f(SlUS3

QFED
Examples of

problems that the -

knapsack -~

satisfy
definition of regularity are

product knapsack, some scheduling —---~---
The fact that all these problems

are also known to be fully approximable is -

problems,

not surprising because we may prove the fol-
lowing theorem:

THEOREM 3.3. A regular NP-complete max-sub-

set problem is fully approximable.

PROOF. Let us consider the following algo--

rithm based on Moran's approach

10



§= min(% P E)

L: = #
for all items 1 in F(x) do
for all sets S.
if Sju{i}
then

in L do
satisfies 7
begin insert S.U{il} in
L; {elimination step}
eliminate all elements
S'€ L for which there
exists S" & L such that

(1- E)m(S')ém(S") and

£(s') = £(s")
end

end
end

take the best solution in L.

As regards the analysis of the error we oOb-

serve that, at each step, the error introdu

ced by eliminating S and keeping S is at -
most % . By property 3 of definition 3.1 -

we have that for each subset T
with 8!

(disjoint -~
and S8") if S'UU T is feasible then
also S"U T is feasible.

have that if m(s")

By property 4 we
£ m(S') then

m{s"U T) o m(S")

> 2] - g
m(sT, T) m(ST)

n o’

in the other case by property 3 we have that
m(S"U T) =2 m(S'U T).

Hence there is a propagation of the error in
troduced at each step; since there are n ---
. The ~--
computational complexity of the algorithm is,
with a suitable implementation, 0(n £) when

£ is the maximum number of partial solutions
in the list L.

steps the total error is n . % < e

As there exists a polynomial
p(]F(x)I) such that m(F(x)) < ZP(IF(X)I)=
2PAn) ; ye have that £ = 0(lgg F(x)) = —-—-

1n F(x) PUFX)|)
0 (=) 0¢ 5 ).

Therefore the complexity of the algorithm is

0 (p(mmax)n®, 2)).
QED
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