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INTRODUCTION :

ON A THEOREM OF M . FUJII

M.O . Ajetunmobi

In 1967 M . Fujii [21 computed the KO-i - rings of the

complex projective spaces . We give a modified proof here using

some results by S .G . Hoggar [31 . Our method seems direct and

easier to handle and it has been applied to compute the KO-i -

groups of the complex flag manifolds of lengths 2 and 3 [11 .

The result we reproved is Theorem 2 of Fujii [21 .
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Cohomology of Ipn-1 (0)

Let XR be the realified bundle of the canonical bundle,

X, over IPn-1 (Q) . Then the second Stiefel-Whitney class

w2 (xR)

	

is the mod 2 reduction of

	

C1(X) .

	

Put

	

x = w2 (xR),

then an additive basis for H*(IPn-l (¢) ; T.L 2 )

	

is given by xl

subject to the condition xn = o .

The Poincaré polynomial for IPn-l (0)

	

is given by
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. t) = 1 + t2 + t4 + . . . . . + t2(n-1)

KO-i (IP n-1 (0» .

From (1), it is clear that the 2kth Betti number,

0 2k = 1

	

for 0 < k < n-1,

	

thus the ranks of KO*(IPn-1 (0))

are determined as follows using lemma (2 .4) of [31 :

for all values of n .
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for n odd and this completes the free part .

For the torsion part, consider the Atiyah-Hirzebruch

spectral sequence which converges to KOp+q(IP,-1(¢)), see

[2] . Consider the sequence of differentials

(2) Ep-2, q+12

For

	

q = 0,4(mod 8),

	

E2'q

	

gives the free part cf

	

KOp+q

which is determined . For the torsion part, we need only consider

q = -l, -2(mod 8) . For

	

q = -1 -(mod 8) (2) becomes
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The map EZ'q -	EP+2,q-1 is zero for p = 0,4 (mod 8)

(2a)

	

and is an isomorphism for

	

p = 2,6(mod 8)

	

if

	

E2'q 70 .

Thus

(2b)2(n-2) = 0,4(mod 8) and for n odd, 2(n-2) - 2,6(mod 8),

thus the differential

is an isomorphisms for n odd and zero for n even using (2a)

and (2b) . Hence
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and Ep ,-1 = 0 otherwise .
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KO-3 = 2Z 2 - part KO-4 = 0 and

KO-5 = zz2 - part KO-6 = 0 .

Now, we show that t.he

	

E3-terms survive to

	

E ,

	

for q = -1(mod 8) . .

Let

	

E0,-1 = a 2Z

	

,

	

E2(n-1),-1 =

	

~zz	( n
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Consider the differential

E0,-1
r

E0,-1
2
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Thus E0' -1 = aa 2 .

even)

dr

	

Er'-r , Er'-r = 0 except r - 0,2,4(mod 8)

and d r = 0 for r = 0, 4(mod 8)

	

because it maps a finite

group to a free group . Thus, we are left with the case

r "= 2(mod 8) .

	

In this case, we claim that dr = 0 for

r - 2(mod 8) .

Proof of claim : It suffices to show that d10 = 0 . From the zero

differential

E2'-2 , we see that E3' -1 =

dr (xs ) = sxs-1 dr (x), finishing the claim.

Also for n evRn, we consider the differential

generated by xo and since d10 is a derivation we have

dio(x0) = 0 from the formula

is
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except r _ 0,2,6 (mod 8) using the property of KO* (*) and

dr =

	

0 .	for

	

r =

	

0,6

	

(mod

	

8),

	

see

	

[31 .

	

When

	

r =

	

2 (mod

	

8 )
E2(n-1)-r,r-2 i s a free group which survives to E.. Thus

dr = 0 for all r % 3 .

We consider the filtrations

where
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Fp'q = Ker(KOP+q (X)

X = IPn-1 (V) 1

Thus KO 1 = a2 for all n .

Also KO2n-3 = KO-3 for n = 0(mod 4)

and KO2n-3 = KO-7 for n _ 2(mod 4)

finishing the proof of the theorem .

KOP lq(Xp-l ))

and E.

	

= 0 for either p or q odd .
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