Pub. Mat. UAB
Vol. 29 No 2-3 Nov. 1985

ON A THEOREM OF M. FUJII

M.O. Ajetunmobi

INTRODUCTION:
In 1967 M . Fujii $[2]$ computed the KO^{-1} - rings of the complex projective spaces. We give a modified proof here using some results by S.G. Hoggar [3]. Our method seems direct and easier to handle and it has been applied to compute the $k 0^{-i}$ groups of the complex flag manifolds of lengths 2 and 3 |II.

The result we reproved is Theorem 2 of Fujii [2].

Theorem [2, p. 142]
The KO^{-i} - groups of $\mathbb{P}^{\mathrm{n}-1}(\not \subset)$ are as follow
i $n \equiv 2$ (mod 4)
$0 \quad(2 t+1) \quad z+Z_{2}$
$n=4 t+2$
$n=4 t$
\mathbb{Z}_{2}
$(\mathrm{t}+1) \boldsymbol{Z}+\mathbb{Z}_{2}$
$t=\left[\frac{n-1}{2}\right]$
3
$4 \quad(t+1) 2$
0
\mathbb{Z}_{2}
0
$(t+1) 2 Z$

$$
t=\left[\frac{n-1}{2}\right]
$$

6
$(t+1) Z$
$(t+1) \pi$
(t) Z
$t=\left[\frac{n-1}{2}\right]$
7
\mathbb{Z}_{2}
0

Cohomology of $p^{n-1}(\not q)$
Let λ_{R} be the realified bundle of the canonical bundle, λ, over $\mathbb{P}^{n-1}(\mathbb{Q})$. Then the second Stiefel-Whitney class $w_{2}\left(\lambda_{R}\right)$ is the mod 2 reduction of $C_{1}(\lambda)$. Put $x=w_{2}\left(\lambda_{R}\right)$, then an additive basis for $H^{*}\left(P^{n-1}(\not \varnothing) ; Z_{2}\right)$ is given by x^{i} subject to the condition $x^{n}=0$.

$$
\begin{align*}
& \text { The Foincaré polynomial for } \mathbb{P}^{n-1}(\mathscr{C}) \text { is given by } \\
& P\left(\mathbb{P}^{n-1}(\varnothing), t\right)=1+t^{2}+t^{4}+\ldots+t^{2(n-1)} \tag{1}
\end{align*}
$$

$K O^{-1}\left(\mathbb{P}^{n-1}(\not \subset)\right)$.
From (1), it is clear that the $2 k^{\text {th }}$ Betti number, $\beta_{2 k}=1$ for $0 \leqslant k \leqslant n-1$, thus the ranks of $K^{*}\left(\mathbb{P}^{n-1}(\varnothing)\right)$ are determined as follows using lemma (2.4) of [3]:
$\operatorname{rank} K O^{\circ}=\operatorname{rank} k O^{-4}=\sum_{k=0}^{\left\{\frac{n-1}{2}\right\}} \beta_{4 k}=\left\lceil\frac{n-1}{2}\right\rceil+1$ for all values of n.

Also, rank $\mathrm{KO}^{-2}=\operatorname{rank} K O^{-6}=\sum_{\mathrm{k}=\mathrm{O}}^{\left[\frac{n-1}{2}\right]} \beta_{4 \mathrm{k}+2}=\left\{\frac{\mathrm{n}-1}{2}\right]+1$ for n even and
$\operatorname{rank} k O^{-2}=\operatorname{rank} k O^{-6}=\sum_{k=0}^{\left[\frac{n-2}{2}\right]} \beta_{4 k+2}=\left\{\frac{n-2}{2}\right\rceil+1=\frac{n-1}{2}$
for n odd and this completes the free part.

For the torsion part, consider the Atiyah-Hirzebruch spectral sequence which converges to $K_{0}{ }^{p+q}\left(\mathbb{P}^{n-1}(\mathscr{L})\right)$, see [21. Consider the sequence of differentials

$$
\begin{equation*}
E_{2}^{p-2, q+1} \longrightarrow \mathrm{~d}_{2} \longrightarrow E_{2}^{p, q} \xrightarrow{d_{2}} E_{2}^{p^{+2, q-1}} \tag{2}
\end{equation*}
$$

For $q=0,4(\bmod 8), E_{2}^{p, q}$ gives the free part of K^{p+q} which is determined. For the torsion part, we need only consider $q \equiv-1,-2(\bmod 8)$. For $q=-1(\bmod 8)(2)$ becomes

$$
E_{2}^{p-2,8 t} \xrightarrow{d_{2}} E_{2}^{p, 8 t-1} \longrightarrow E_{2}^{d_{2}} \rightarrow E_{2}^{p+2,8 t-2}
$$

The map $E_{2}^{p, q} \longrightarrow E_{2}^{p^{+2}, q^{-1}}$ is zero for $p \equiv 0,4(\bmod 8)$ (aa) and is an isomorphism for $p \equiv 2,6(\bmod 8)$ if $E_{2}^{p, q} \neq 0$. Thus $E_{3}^{0,-1} \cong E_{2}^{O,-1}=\mathbb{Z}_{2}$ for all n. For n even, $(2 b) 2(n-2) \equiv 0,4(\bmod 8)$ and for $n \operatorname{odd}, 2(n-2) \equiv 2,6(\bmod 8)$, thus the differential

$$
E_{2}^{2(n-2), 8 t} \xrightarrow{d_{2}^{2(n-2), 8 t)}} E_{2}^{2(n-1),-1}
$$

is an isomorphisms for n odd and zero for n even using (aa) and (ab). Hence

$$
E_{3}^{2(n-1),-1}= \begin{cases}0 & n \text { odd } \tag{3}\\ \mathbb{Z}_{2} ; & n \text { even }\end{cases}
$$

and $E_{3}^{p,-1}=0$ otherwise.

For $q \equiv-2($ möa 8$),(2)$ becomes

$$
E_{2}^{p-2,-1 .} \xrightarrow{\prime} E_{2}^{p,-2: ~ a n d ~ u s i n g ~ l e m m a ~}
$$

(2.4) in $[3]$ we have

$$
\mathrm{E}_{3}^{\mathrm{p} ; 2}=\left\{\begin{array}{l}
\mathbb{Z}_{2} ; \text { for } p: 2,6(\bmod 8), \quad \mathrm{p} \neq 0 \tag{4}\\
0 ; \text { otherwise } .
\end{array}\right.
$$

and $E_{3}^{0,-2}=Z_{2}$:
Now, for $n=1(m o d 4), 2(n-1) \equiv 0$ (mod 8),
for $n \equiv 3(\bmod 4), 2(n-1) \equiv 4(\bmod 8)$,
for $n \equiv 2(\bmod 4), 2(n-1) \equiv 2(\bmod 8)$, and
for $n \equiv 0(\bmod 4), 2(n-1) \equiv 6(\bmod 8)$.
Thus, by comparing (3) with (4) and using leman (2.1) in [3], we have: for n odd,

$$
\begin{aligned}
& \mathrm{KO}^{-3}=\mathbb{Z}_{2}-\text { part } \mathrm{KO}^{-4}=0 \\
& \mathrm{KO}^{-5}=\mathbb{Z}_{2}-\text { part } \mathrm{KO}^{-6}=0 \text { and } \\
& \mathrm{KO}^{-7}=\mathbb{Z}_{2}-\text { part } \mathrm{KO}^{\circ}=0
\end{aligned}
$$

For $n \equiv 0(\bmod 4)$, we have
$\therefore \mathrm{x}=$

$$
\begin{aligned}
& \mathrm{KO}^{-5}=\mathbb{Z}_{2} \text { - part } K O^{-6}=0 \text { and } \\
& \mathrm{KO}^{-7}=\mathbb{Z}_{2} \text { - part } K O^{\circ}=0
\end{aligned}
$$

Also for $n \equiv 2(\bmod 4)$, we have

$$
\begin{aligned}
& K O^{-3}=Z_{2} \text { - part } K O^{-4}=0 \text { and } \\
& K O^{-5}=Z_{2} \text {-part } K O^{-6}=0 .
\end{aligned}
$$

Now, we show that the E_{3}-terms survive to E_{∞}, for $q \equiv-1$ (mod 8). Let $E_{3}^{0,-1}={ }^{\alpha} Z_{2}, E_{3}^{2(n-1),-1}=\beta_{Z} Z_{2}$ (n even)
Consider the differential

$$
E_{r}^{0,-1}-d_{r} E_{r}^{r,-r}, E_{r}^{r,-r}=0 \text { except } r \equiv 0,2,4(\bmod
$$

and $d_{r}=0$ for $r=0,4(\bmod 8)$ because it maps a finite group to a free group. Thus, we are left with the case $r: 2(\bmod 8)$. In this case, we claim that $d_{r}=0$ for $\mathrm{r}=2(\bmod 8)$.

Proof of claim: It suffices to show that $d_{10}=0$. From the zero i differential

$$
E_{2}^{0,-i} \xrightarrow{d_{2}} E_{2}^{2,-2} \text {, we see that } E_{3}^{0,-1}=\mathbb{Z}_{2} \text { is }
$$

generated by x° and since d_{10} is a derivation we have $d_{10}\left(x^{\circ}\right)=0$ from the formula

$$
d_{r}\left(x^{s}\right)=s x^{s-1} d_{r}(x), \text { finishing the claim. }
$$

Thus $E_{\infty}^{0,-1}={ }^{\alpha} Z_{2}$.
Also for n even, we consider the differential

$$
E_{r}^{2(n-1)-r, r-2}-\underline{S}_{r} E_{I}^{2(n-1),-1} E_{r}^{2(n-1)-r, r-2}=0
$$

except $t \equiv 0,2,6$ (mod 8) using the property of $\mathrm{KO}^{*}(*)$ and
$d_{r}=0$ for $r \equiv 0,6(\bmod 8)$, see $\{3]$. When $r \equiv 2(\bmod 8)$
$E_{r}^{2(n-1)-r, r-2}$ is a free group which survives to E_{∞}. Thus
$\alpha_{r}=0$ for all $r \geqslant 3$.
We consider the filtrations

$$
\begin{aligned}
& K_{0}{ }^{-1}=F^{0,-1} \supset F^{1,-2} \supset \ldots \supset F^{n-1,-n} \supset F^{n,-n-1}=0 \\
& \text { and } K 0^{2 n-3}=F^{0,2 n-3} \supset F^{1,2 n-4} \supset \ldots \supset F^{n-1, n-2} \supset 0
\end{aligned}
$$

where

$$
\begin{gathered}
{ }^{\alpha} \mathbb{Z}_{2}=E_{\infty}^{0,-1}=F^{0,-1} /_{F^{1},-2,{ }^{\beta} \mathbb{Z}_{2}=E_{\infty}^{2(n-1),-1}=F^{2(n-1),-1} / F^{2 n-1,-2}}^{F^{p, q}=\operatorname{Ker}\left(K_{0}^{p+q}(X) \longrightarrow O^{p+q}\left(X^{p-1}\right)\right)} \\
X=\mathbb{P}^{n-1}(\varnothing), \text { and } E_{\infty}^{p, q}=0 \text { for either } p \text { or } q \text { odd. }
\end{gathered}
$$

Thus $K O^{-1}=Z_{2}$ for all n.
Also $K O^{2 n-3}=K^{-3}$ for $n \equiv O$ (mod 4)
and $K O^{2 n-3}=\mathrm{KO}^{-7}$ for $\mathrm{n} \equiv 2(\bmod 4)$
finishing the proof of the theorem.

References

(I) AJETUNMOBI, M.O.: Ph.D. thesis University of Ibadan, Nigeria. 1984.
(2) FUJII, Michikazu: Ko-groups of projective spaces, Osaka Journ. Math. 4 (1967) pp. 141-149.
(3) HOGGAR, S.G.: On KO-theory of Grassmannian, Quart. Journ. Math., Oxford Ser. (2) $20(1969)$ pp. 447 - 463.

Rebut el 15 de febrer del 1985

Mathematics Department,
University of Ibadan
Ibadan
NIGERIA

