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EMBEDDINGS OF CONCAVE FUNCTIONS AND
DUALS OF LORENTZ SPACES

Gord Sinnamon

Abstract
A simple expression is presented that is equivalent to the norm of
the Lp

v → Lq
u embedding of the cone of quasi-concave functions in

the case 0 < q < p < ∞. The result is extended to more general
cones and the case q = 1 is used to prove a reduction principle
which shows that questions of boundedness of operators on these
cones may be reduced to the boundedness of related operators on
whole spaces. An equivalent norm for the dual of the Lorentz
space

Γp(v) =

{
f :

(∫ ∞

0

(f∗∗)pv

)1/p

< ∞

}

is also given. The expression is simple and concrete. An applica-
tion is made to describe the weights for which the Hardy Little-
wood Maximal Function is bounded on these Lorentz spaces.

1. Introduction

The behaviour of the collection of non-negative, non-increasing func-
tions in weighted Lebesgue spaces is well understood. Since [6] and
[9] in the early 50’s, techniques involving properties of monotone func-
tions have been used effectively to address a wide variety of questions
in weighted norm inequalities, interpolation theory, and function space
theory. For a few of the many see [1], [3], [7], [8], [13], [14], [15],
[16], [17]. The study of the collection of concave functions has also had
its successes. See [4], [5], [10], [11] and references there. Concave func-
tions arise naturally in interpolation theory and much of the recent work
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shows that they are of equal importance in weighted norm inequalities
and function spaces.

Rather than working with the collection of non-increasing, concave
functions, it is common to study the cone of quasi-concave functions.
This is the set of non-negative functions f defined on (0,∞) such that
f(x) is non-decreasing and f(x)/x is non-increasing. Passing between
the two collections is routine and the latter is more convenient for various
reasons. The embedding question for this cone is a key to effectively
using properties of concave functions: For which indices p and q and
which weights u and v are the quasi-concave functions in Lp

v also in Lq
u?

Various partial answers to this question are available. The case 0 <
p ≤ q < ∞ in particular has been simply characterized and in [10], [11]
very tight bounds on the norm of the embedding have been given. For
the case 0 < q = 1 < p < ∞ sufficient conditions which are similar but
not identical to the necessary ones were obtained in [17].

A complete answer to the embedding question was given in [5] but the
conditions given are complicated and difficult to apply. Our object here is
to give simple necessary and sufficient weight conditions that characterize
the embedding of the cone of quasi-concave functions from Lp

v to Lq
u. We

also give explicit upper and lower bounds on the norm of the embedding.
This is accomplished in Theorem 2.6 and the embedding question for
more general cones is answered in Theorem 2.7. In Section 3, the results
are applied to give a reduction principle for operators acting on such
cones. This shows the equivalence of the boundedness of an operator
on the cone with the boundedness of two related operators on related
spaces.

The dual of the Lorentz space Γp(v) is characterized in Section 4.
Theorem 4.1 gives a simple expression that is equivalent to the norm
in the associate space, the Köthe dual. As an application, in Section 5
we give weight conditions to characterize the boundedness of the Hardy-
Littlewood Maximal Function between Lorentz spaces.

To study quasi-concave functions we need an operator on non-negative
functions whose images are quasi-concave functions. Although the gener-
alized Stieltjes transformation h �→

∫ ∞
0

x
x+th(t) dt is used for this purpose

by some authors, we will adopt the equivalent operator

h �→
∫ ∞

0

min(1, x/t)h(t) dt

which is also popular. The lack of smoothness in the kernel min(1, x/t)
will not bother us. It is important to note that the results we obtain
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can easily be re-cast in term of generalized Stieltjes transformations if
desired.

The weighted Lebesgue spaces already referred to are defined as fol-
lows. If v is a non-negative, Lebesgue measurable function (a weight)
on (0,∞) then the weighted Lebesgue space Lp

v is the collection of
Lebesgue measurable functions f on (0,∞) for which

‖f‖p,v ≡
{(∫ ∞

0
|f |pv

)1/p
, 0 < p < ∞

ess sup{x:v(x)>0} |f(x)|, p = ∞
is finite. If v ≡ 1 we drop the weight and write Lp and ‖f‖p.

Throughout the paper, products of the form 0 · ∞ are taken to be
zero. For an index p we define p′ by 1/p + 1/p′ = 1. We say that the
expressions C and A are equivalent and write C ≈ A provided there are
positive constants k and K such that kA ≤ C ≤ KA. The constants
depend only on the indices p and q. We keep track of the constants
in the statements of theorems but will often avoid such details in the
proofs, preferring to focus on essential features. In particular the ex-
tended Minkowski inequality for 0 < s < ∞,

min(1, 21/s−1)(‖f1‖s + ‖f2‖s) ≤ ‖f1 + f2‖s

≤ max(1, 21/s−1)(‖f1‖s + ‖f2‖s)
(1.1)

will be used repeatedly in the form

‖f1 + f2‖s ≈ ‖f1‖s + ‖f2‖s.(1.2)

2. Hardy inequalities and concave functions

In this section we give necessary and sufficient conditions on indices p,
q and weights u, v for the cone of quasi-concave functions in Lp

v to be
embedded in Lq

u when 0 < q < p < ∞. We also give upper and lower
bounds for the norm of this embedding. This result is in Theorem 2.6
while an analogue for more general cones may be found in Theorem 2.7.
See also Theorem 3.1. Corresponding known results for the case 0 < p ≤
q < ∞ are stated in Proposition 2.8.

We begin by looking at the embedding into Lq
u of a smaller cone

in L1
v. Known weighted Hardy inequalities are used to give a weight

characterization in this situation. From there we expand the cone to
include all quasi-concave functions and then use an invariance property
of the cone of quasi-concave functions to pass from L1

v to Lp
v.

Let L+ denote the collection of non-negative, measurable functions
on (0,∞). We say f ∈ L+ is quasi-concave and write f ∈ Ω0,1 provided
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f(x) is non-decreasing and f(x)/x is non-increasing. More generally, if
α + β > 0 we write f ∈ Ωα,β provided xαf(x) is non-decreasing and
x−βf(x) is non-increasing.

As mentioned we begin with weighted Hardy inequalities. Define the
Hardy and dual Hardy operators Hα and Hβ by

Hαh(x) = x−α

∫ x

0

tαh(t) dt and Hβh(x) = xβ

∫ ∞

x

t−βh(t) dt.

The sum of the two will arise frequently so for α + β > 0 we introduce
the operator

Hβ
αh(x) = Hαh(x) +Hβh(x)

=
∫ ∞

0

min((t/x)α, (x/t)β)h(t) dt, h ∈ L+.
(2.1)

Since we always suppose that α + β > 0, the second form for Hβ
α

makes it clear that xαHβ
αh(x) is non-decreasing and x−βHβ

a h(x) is non-
increasing whenever h ∈ L+. That is, Hβ

αL
+ ⊆ Ωα,β . It also makes it

easy to check that∫ ∞

0

(Hβ
αh1)h2 =

∫ ∞

0

h1(Hα
β h2), h1, h2 ∈ L+.(2.2)

Proposition 2.1. Suppose 0 < q < 1 and U, V ∈ L+. If V is non-
increasing and C0 is the least C for which(∫ ∞

0

(∫ x

0

h

)q

U(x) dx
)1/q

≤ C

∫ ∞

0

hV, h ∈ L+,

then

(1−q)(1−q)/qC0 ≤
(∫ ∞

0

V q/(q−1)(H0U)q/(1−q)U

)(1−q)/q

≤C0/(q(1−q)).

If V is non-decreasing and C∞ is the least C for which(∫ ∞

0

(∫ ∞

x

h

)q

U(x) dx
)1/q

≤ C

∫ ∞

0

hV, h ∈ L+,

then

(1−q)(1−q)/qC∞≤
(∫ ∞

0

V q/(q−1)(H0U)q/(1−q)U

)(1−q)/q

≤C∞/(q(1−q)).

Proof: The estimate for C0 is from [16, Theorem 3.3] and the one for C∞
follows from the first by inversion (x → 1/x) on the half line.
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These weighted Hardy inequalities can be combined to give a weight
characterization for the boundedness of the L1

v → Lq
u embedding of a

sub-cone of the quasi-concave functions. This sub-cone is the image L+

under the map H1
0 . Note that

H1
0h(x) =

∫ ∞

0

min(1, x/t)h(x) dx =
∫ x

0

∫ ∞

y

h(t)
dt

t
dy

is non-decreasing and concave for all h ∈ L+. In particular, H1
0h is

quasi-concave.

Theorem 2.2. If 0 < q < 1 and u, v ∈ L+ then

sup
f∈H1

0L+

‖f‖q,u

‖f‖1,v
≈

(∫ ∞

0

(H0
1v)

q/(q−1)(H0
qu)q/(1−q)v

)(1−q)/q

.(2.3)

More precisely, if the above equivalence is C ≈ A then m(q)A ≤ C ≤
M(q)A where

m(q) = min(2−1, 21−1/q)q(1 − q) and

M(q) = max(21/q−1, 2)(1 − q)1−1/q.
(2.4)

Proof: We prove only the equivalence and leave the careful tracking of
constants to the interested reader. The supremum in (2.3) above is the
least constant C for which(∫ ∞

0

(H1
0h)qu

)1/q

≤ C

∫ ∞

0

(H1
0h)v, h ∈ L+.(2.5)

Since ∫ ∞

0

(H1
0h)v =

∫ ∞

0

h(H0
1v)

the inequality (2.5) may be rewritten as(∫ ∞

0

(∫ x

0

h(t) dt+ x

∫ ∞

x

h(t)
dt

t

)q

u(x) dx
)1/q

≤C

∫ ∞

0

h(t)H0
1v(t) dt.

By (1.2),

C ≈ C0 + C∞(2.6)

where C0 and C∞ are the least constants for which(∫ ∞

0

(∫ t

0

h(t) dt
)q

u(x) dx

)1/q

≤C0

∫ ∞

0

h(t)H0
1v(t) dt, h∈L+,(2.7)
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and (∫ ∞

0

(
x

∫ ∞

x

h(t)
dt

t

)q

u(x) dx
)1/q

≤C∞

∫ ∞

0

h(t)H0
1v(t) dt, h∈L+,(2.8)

hold, respectively. Since H0
1v is non-increasing, the first part of Propo-

sition 2.1, with V = H0
1v and U = u, applied to (2.7) shows that

C0 ≈
(∫ ∞

0

(H0
1v)

q/(q−1)(H0u)q/(1−q)u

)(1−q)/q

.

To estimate C∞ we replace h(t)/t by h(t) in (2.8) and apply the second
part of Proposition 2.1, with V (t) = tH0

1v(t) and U(x) = xqu(x). Note
that tH0

1v(t) is non-decreasing. We get

C∞ ≈
(∫ ∞

0

(H0
1v)

q/(q−1)(Hqu)q/(1−q)u

)(1−q)/q

.

Adding the last two estimates and appealing to (2.6) yields

C ≈
(∫ ∞

0

(H0
1v)

q/(q−1)(H0
qu)q/(1−q)u

)(1−q)/q

which completes the proof.

The connection between the cone of quasi-concave functions and the
sub-cone H1

0L
+ is well understood. The next lemma sets out the features

of this relationship that we require here.

Lemma 2.3. Let f be a quasi-concave function and let f̃ be the least
concave majorant of f . Then 1

2 f̃ ≤ f ≤ f̃ and f̃ is the pointwise limit
of an increasing sequence of functions in H1

0L
+.

Proof: The definition of quasi-concave in [2, Definition 2.5.6] is slightly
stronger than the one we give here, requiring that f also satisfy f(x) = 0
if and only if x = 0. However, it is easy to see that only the zero function
is lost by this restriction. Thus, [2, Proposition 2.5.10] applies and we
see that a quasi-concave function f satisfies 1

2 f̃ ≤ f ≤ f̃ .
Since f̃ is non-negative and concave, we see that a = limx→0 f(x) and

b = limx→∞ f(x)/x exist and are non-negative. We may therefore write
f̃(x) = a+bx+g(x) where g is a non-negative, concave function satisfying
limx→0 g(x) = limx→∞ g(x)/x = 0. If we take hn(t) = anχ(0,1/n)(t)
then H1

0hn(x) is a non-decreasing sequence which converges pointwise
to the constant function a as n → ∞. If we take hn(t) = btχ(n,n+1)(t)
then H1

0hn(x) is a non-decreasing sequence which converges pointwise
to the function bx as n → ∞. To complete the proof it remains to
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show that g is also the pointwise limit of a non-decreasing sequence of
functions in H1

0L
+.

The concave function g(x) has a derivative for almost every x, g′(x)
is non-increasing and since limx→0 g(x) = limx→∞ g(x)/x = 0 we have
g(x) =

∫ x

0
g′(t) dt and limx→∞ g′(x) = 0. Set

hn(t) = (g′(t) − g′((n+ 1)t/n))/ log((n+ 1)/n)

and check that∫ ∞

y

hn(t)
dt

t
=

∫ (n+1)y/n

y

g′(t)
dt

t

/∫ (n+1)y/n

y

dt

t
.

These averages of g′ form a non-decreasing sequence indexed by n which
converges to g′(y) for almost every y. It follows that the functions

H1
0hn(x) =

∫ x

0

∫ ∞

y

hn(t)
dt

t
dy

form a non-decreasing sequence in H1
0L

+ which, by the Monotone Con-
vergence Theorem, converges to∫ x

0

g′(y) dy = g(x).

This completes the proof.

With this, Theorem 2.2 extends to the quasi-concave functions.

Corollary 2.4. Suppose 0 < q < 1 and u, v ∈ L+.

sup
f∈Ω0,1

‖f‖q,u

‖f‖1,v
≈

(∫ ∞

0

(H0
1v)

q/(q−1)(H0
qu)q/(1−q)u

)(1−q)/q

.

More precisely, if the above equivalence is C ≈ A then m(q)A ≤ C ≤
2M(q)A where m and M are given by (2.4).

Proof: The lower bound requires only the observation that H1
0L

+ ⊆
Ω0,1. For the upper bound we apply Lemma 2.3 to choose a non-
decreasing sequence fn of functions in H1

0L
+ which converges pointwise

to the least concave majorant f̃ of f . By Theorem 2.2 and the Monotone
Convergence Theorem,

‖f‖q,u ≤ ‖f̃‖q,u = lim
n→∞

‖fn‖q,u≈ lim
n→∞

‖fn‖1,v =‖f̃‖1,v ≤ 2‖f‖1,v.

The main advantage of working with Ω0,1 rather than H1
0L

+ is this
simple observation: Suppose p > 0.

If f(x)p = g(xp) then f ∈ Ω0,1 if and only if g ∈ Ω0,1.(2.9)
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This gives us the means of introducing Lp-norms into the denominator.

Lemma 2.5. Suppose p, q ∈ (0,∞) and u, v ∈ L+. Then

sup
f∈Ω0,1

‖f‖q,u

‖f‖p,v
=

(
sup

g∈Ω0,1

‖g‖q/p,U

‖g‖1,V

)1/p

where V and U are defined by

V (xp) dxp = v(x) dx and U(xp) dxp = u(x) dx.(2.10)

Proof: The substitution in (2.9) yields the equivalence. We note that U
and V have been defined so that a change of variable yields ‖f‖p

q,u =
‖g‖q/p,U and ‖f‖p

p,v = ‖g‖1,V .

Now we are ready to give our estimate of the norm of the Lp
v → Lq

u

embedding of the cone of quasi-concave functions.

Theorem 2.6. Suppose that 0 < q < p < ∞, 1/r = 1/q − 1/p, and
u, v ∈ L+. Then

sup
f∈Ω0,1

‖f‖q,u

‖f‖p,v
≈

(∫ ∞

0

(H0
pv)

−r/p(H0
qu)r/pu

)1/r

.(2.11)

More precisely, if the equivalence is C ≈ A then m(q/p)1/pA ≤ C ≤
(2M(q/p))1/pA where m and M are defined by (2.4).

Proof: Lemma 2.5 reduces the proof to an application of Corollary 2.4
with q replaced by q/p and u and v replaced by the weights U and V
from (2.10). That is,

sup
f∈Ω0,1

‖f‖q,u

‖f‖p,v
=

(
sup

g∈Ω0,1

‖g‖q/p,U

‖g‖1,V

)1/p

≈
(∫ ∞

0

H0
1V (t)−r/pH0

q/pU(t)r/pU(t) dt
)1/r

.

Note that (q/p)/(1 − q/p) = r/p. We simplify this by making the sub-
stitution t → tp and using (2.10) to obtain

(∫ ∞

0

H0
1V (tp)−r/pH0

q/pU(tp)−r/pu(t) dt
)1/r

.(2.12)
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Now we make the substitution x → xp in the integral forms of H0
1V and

H0
q/pU and use (2.10) again to get

H0
1V (tp) =

∫ ∞

0

min(x/tp, 1)V (x) dx

=
∫ ∞

0

min((x/t)p, 1)v(x) dx = H0
pv(t)

and

H0
q/pU(tp) =

∫ ∞

0

min((x/tp)q/p, 1)U(x) dx

=
∫ ∞

0

min((x/t)q, 1)u(x) dx = H0
qu(t).

Replacing these in (2.12) completes the proof of equivalence and we omit
the tracking of constants.

Theorem 2.6 is readily extended to a result for more general cones than
the quasi-concave functions. Recall that Ωα,β is the collection of non-
negative functions f such that xαf(x) is non-decreasing and x−βf(x) is
non-increasing.

Theorem 2.7. Suppose that 0 < q < p < ∞, 1/r = 1/q − 1/p, and
u, v ∈ L+. If α+ β > 0 and Hβ

αL
+ ⊆ F ⊆ Ωα,β then

sup
f∈F

‖f‖q,u

‖f‖p,v
≈

(∫ ∞

0

(Hpα
pβ v)

−r/p(Hqα
qβ u)r/pu

)1/r

.(2.13)

More precisely, if the above equivalence is C≈A then (1/2)m(q/p)1/pA ≤
C ≤ (2M(q/p))1/pA where m and M are defined by (2.4).

Proof: Set ρ = 1/(α+ β) and for each f ∈ F define gf by

gf (x) = xαρf(xρ).

Set F0,1 = {gf : f ∈ F} and note that for each f ∈ F , gf (x) is non-
decreasing and gf (x)/x is non-decreasing. Thus F0,1 ⊆ Ω0,1. Also, if
f = Hβ

αh for some h ∈ L+ then the change of variable t → tρ yields

gf (x) =
∫ ∞

0

min(1, x/t)[tαρh(tρ)ρtρ−1] dt

so gf ∈ H1
0L

+. Thus H1
0L

+ ⊆ F0,1 ⊆ Ω0,1.
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The change of variable x → xρ shows that

‖f‖p,v = ‖gf‖p,V and ‖f‖q,u = ‖gf‖q,U

where

V (x) = x−pαρv(xρ)ρxρ−1 and U(x) = x−qαρu(xρ)ρxρ−1.

We have

sup
f∈F

‖f‖q,u

‖f‖p,v
= sup

g∈F0,1

‖g‖q,U

‖g‖p,V
≈ sup

g∈Ω0,1

‖g‖q,U

‖g‖p,V

where the last equivalence relies on Lemma 2.3. Thus, by Theorem 2.6,
we have

sup
f∈F

‖f‖q,u

‖f‖p,v
≈

(∫ ∞

0

(H0
pV )−r/p(H0

qU)r/pU

)1/r

.

The definitions of U and V above and the changes of variable x → x1/ρ

followed by t → t1/ρ show that

H0
pV (t1/ρ) = t−pαHpα

pβ v(t),

H0
qU(t1/ρ) = t−qαHqα

qβ u(t),

and so

sup
f∈F

‖f‖q,u

‖f‖p,v
≈

(∫ ∞

0

H0
pV (t)−r/pH0

qU(t)r/pU(t) dt
)1/r

=
(∫ ∞

0

H0
pV (t1/ρ)−r/pH0

qU(t1/ρ)r/pt−qαu(t) dt
)1/r

=
(∫ ∞

0

Hpα
pβ v(t)

−r/pHqα
qβ u(t)r/pu(t) dt

)1/r

.

This completes the proof.

Next we present a statement of the corresponding result in the case 0 <
p ≤ q < ∞. This result is taken from [10, Theorem 3] and formulated
in our notation to facilitate comparision with Theorem 2.7.

Proposition 2.8. Suppose that 0 < p ≤ q < ∞ and u, v ∈ L+. If
α+ β > 0 and Hβ

αL
+ ⊆ F ⊆ Ωα,β then

sup
f∈F

‖f‖q,u

‖f‖p,v
≈ sup

t>0
[Hpα

pβ v(t)]
−1/p[Hqα

qβ u(t)]1/q.

More precisely, if the above equivalence is C ≈ A then A ≤ C ≤ 2A.
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3. A reduction principle for operators acting on cones

An operator may be unbounded as a map from Lp
v to Lq

u and yet
still map a cone in Lp

v boundedly into Lq
u. Theorem 3.2 gives a result

that reduces questions of boundedness on the cones Ωα,β to boundedness
of related operators between whole spaces. We begin by working with
the weight condition in (2.13) to give an equivalent expression in a less
compact but more convenient form.

To avoid introducing additional notation, we use the expression x−α

in several places as a substitute for the power function f defined by
f(x) = x−α. The same applies to the expression xβ .

Theorem 3.1. Suppose that 0 < q < p < ∞, 1/r = 1/q − 1/p, and
u, v ∈ L+. If α+ β > 0 and Hβ

αL
+ ⊆ F ⊆ Ωα,β then

sup
f∈F

‖f‖q,u

‖f‖p,v
≈

(∫ ∞

0

Hqαu(t)r/qHpα
pβ v(t)

−r/qHpβv(t)
dt

t

)1/r

+
‖x−α‖q,u

‖x−α‖p,v

+
(∫ ∞

0

Hqβu(t)r/qHpα
pβ v(t)

−r/qHpαv(t)
dt

t

)1/r

+
‖xβ‖q,u

‖xβ‖p,v
.

More precisely, if the above equivalence is C ≈ A then

C ≤ 23/q max(1, r(α+ β))1/rA,

and

2−1/p−3min(21/r−1/p, 21/p−1/r)
(
q

p

)1/p(q
r

)1/q

min(1, r(α+ β))1/rA≤C.

Proof: By the Monotone Convergence Theorem it is enough to estab-
lish the theorem in the case that u is compactly supported in (0,∞).
Under this assumption we apply Theorem 2.7, break the right hand
side of (2.13) into two pieces and integrate by parts in each. Since
Hqα

qβ u = Hqαu+Hqβu we have

sup
f∈F

‖f‖q,u

‖f‖p,v
≈

(∫ ∞

0

(Hpα
pβ v)

−r/p(Hqα
qβ u)r/pu

)1/r

≈
(∫ ∞

0

(Hpα
pβ v)

−r/p(Hqαu)r/pu

)1/r

(3.1)

+
(∫ ∞

0

(Hpα
pβ v)

−r/p(Hqβu)r/pu

)1/r

.(3.2)
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For (3.1) first check that(
−q

r

) d

dt

(
t−q/αHqαu(t)

)r/q

=
(
t−qαHqαu(t)

)r/p
t−qαu(t)

and
d

dt

(
t−pαHpα

pβ v(t)
)−r/p

= r(α+ β)
(
t−pαHpα

pβ v(t)
)−r/q

t−pα−1Hpβv(t).

Then

∫ ∞

0

Hpα
pβ v(t)

−r/pHqαu(t)r/pu(t) dt

=
∫ ∞

0

(
t−pαHpα

pβ v(t)
)−r/p (

t−qαHqαu(t)
)r/p

t−qαu(t) dt

= −q

r

(
t−qαHqαu(t)

)r/q
(
t−pαHpα

pβ v(t)
)−r/p

∣∣∣∣
∞

0

+ q(α+ β)
∫ ∞

0

(
t−qαHqαu(t)

)r/q
(
t−pαHpα

pβ v(t)
)−r/q

t−pα−1Hpβv(t) dt

=
q

r

‖x−α‖r
q,u

‖x−α‖r
p,v

+ q(α+ β)
∫ ∞

0

Hqαu(t)r/qHpα
pβ v(t)

−r/qHpβv(t)
dt

t
.

The limit of
(
t−qαHqαu(t)

)r/q
(
t−pαHpα

pβ v(t)
)−r/p

=
(∫ ∞

t

u(x)
dx

xqα

)r/q (∫ ∞

0

min(xpβt−p(α+β), x−pα)v(x) dx
)−r/p

as t → ∞ is zero because u is compactly supported and the limit as
t → 0 is ‖x−α‖r

q,u/‖x−α‖r
p,v by the Monotone Convergence Theorem.

For (3.2) a similar argument shows that∫ ∞

0

Hpα
pβ v(t)

−r/pHqβu(t)r/pu(t) dt

=
q

r

‖xβ‖r
q,u

‖xβ‖r
p,v

+ q(α+ β)
∫ ∞

0

Hqβu(t)r/qHpα
pβ v(t)

−r/qHpαv(t)
dt

t
.

Substituting the results of these two calculations into (3.1) and (3.2) and
applying (1.2) completes the proof of equivalence. As usual, we omit the
tedious tracking of constants.
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Now we present our reduction principle. We suppose that T is an
integral operator with non-negative kernel, that is,

Tf(y) =
∫ ∞

0

f(x)k(x, y) dx

for some non-negative k.

Theorem 3.2. Suppose that 1 < p < ∞, 1 < s < ∞, and v, w ∈ L+. If
α+ β > 0 and Hβ

αL
+ ⊆ F ⊆ Ωα,β then

T : F ∩ Lp
v → Ls

w

if and only if

THα : Lp
v1

→ Ls
w,(3.3)

THβ : Lp
v2

→ Ls
w,(3.4)

if x−α ∈ Lp
v then T (x−α) ∈ Ls

w, and(3.5)

if xβ ∈ Lp
v then T (xβ) ∈ Ls

w.(3.6)

Here v1 and v2 are defined by

v1(t) = tp−1Hpα
pβ v(t)

pHpβv(t)1−p and v2(t) = tp−1Hpα
pβ v(t)

pHpαv(t)1−p.

Moreover, if C is the norm of the embedding T : F ∩ Lp
v → Ls

w and

A = sup
f∈L+

‖THαf‖s,w

‖f‖p,v1

+ sup
f∈L+

‖THβf‖s,w

‖f‖p,v2

+
‖T (x−α)‖s,w

‖x−α‖p,v
+

‖T (xβ)‖s,w

‖xβ‖p,v

then C ≈ A with constants depending only on p, q, α, and β.

Proof: The adjoint operator T ′ is given by

T ′g(x) =
∫ ∞

0

k(x, y)g(y) dy

so that ∫ ∞

0

(Tf)g =
∫ ∞

0

f(T ′g), f, g ∈ L+.

We also have (Hα)′ = Hα and (Hβ)′ = Hβ . It follows that (THα)′ =
HαT ′ and (THβ)′ = HβT

′. Also, the dual spaces of Ls
w, Lp

v1
, and

Lp
v2

with respect to Lebesgue measure on (0,∞) are the spaces Ls′

w1−s′ ,
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Lp′

v1−p′
1

, and Lp′

v1−p′
2

, respectively. Thus (3.3) and (3.4) are equivalent to

HαT ′ : Ls′

w1−s′ → Lp′

v1−p′
1

(3.7)

HβT
′ : Ls′

w1−s′ → Lp′

v1−p′
2

.(3.8)

Now we set up an application of Theorem 3.1. The boundedness of
T : F ∩ Lp

v → Ls
w is expressed by the finiteness of

sup
f∈F

‖Tf‖s,w

‖f‖p,v
= sup

f∈F,g∈L+

∫ ∞
0

(Tf)g
‖f‖p,v‖g‖s′,w1−s′

= sup
f∈F,g∈L+

∫ ∞
0

f(T ′g)
‖f‖p,v‖g‖s′,w1−s′

.

(3.9)

Theorem 3.1 with u = T ′g, q = 1 and r = p′ shows that (3.9) is equiva-
lent to

sup
g∈L+

[(∫ ∞

0

HαT ′g(t)p′
Hpα

pβ v(t)
−p′

Hpβv(t)
dt

t

)1/p′

+
‖x−α‖1,T ′g

‖x−α‖p,v

+
(∫ ∞

0

HβT
′g(t)p′

Hpα
pβ v(t)

−p′
Hpαv(t)

dt

t

)1/p′

+
‖xβ‖1,T ′g

‖xβ‖p,v

]
‖g‖−1

s′,w1−s′ .

Since ‖x−α‖1,T ′g =
∫ ∞
0

T (x−α)g and ‖xβ‖1,T ′g =
∫ ∞
0

T (xβ)g this last
expression is finite if and only if (3.7), (3.8), (3.5), and (3.6) all hold.

The reduction principle above easily extends to operators from F ∩
Lp

v → Y for a general Banach Function Space Y . It is simply a matter
of replacing Ls

w by Y and Ls′

w1−s′ by the associate space Y ′ in the proof
above.

4. Lorentz spaces

The Lorentz space Γp,λ(v) is defined to be the collection of λ-measur-
able functions such that

‖f‖Γp,λ(v) ≡ ‖f∗∗‖p,v < ∞.

Here f∗∗(x) = 1
x

∫ x

0
f∗ and f∗ is the non-increasing rearrangement of f

with respect to the measure λ. Refer to [2] for definitions and basic
results regarding rearrangements and rearrangement-invariant spaces.
We will assume that λ is a resonant measure space, that is, that λ
is totally σ-finite and either non-atomic or completely atomic with all
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atoms having equal measure. In this case Γp,λ(v) is a rearrangement-
invariant Banach Function Space provided p ≥ 1 and v satisfies

0 <
∫ t

0

v(x) dx+ tp
∫ ∞

t

v(x)
dx

xp
< ∞, for 0 < y < ∞.(4.1)

The associate space, Γp,λ(v)′, consisting of all λ-measurable functions g
for which

‖g‖Γp,λ(v)′ ≡ sup
f∈Γp,λ(v)

∣∣∫ fg dλ
∣∣

‖f‖Γp,λ(v)
< ∞

is also a rearrangement-invariant Banach Function Space. In many cases
the associate space may be identified with the usual Banach space dual.
Precise conditions for this to occur may be found in [2].

When λ is Lebesgue measure on the half line we drop the measure
and write Γp(v) and Γp(v)′ for the Lorentz space and its associate space.

Our objective here is to give a simple expression which is equivalent
to the associate norm ‖g‖Γp,λ(v)′ .

In [5, Theorem 3.1], under the modest assumptions that
∫ ∞
0

v(x) dx =
∞ and

∫ ∞
0

v(x) dx/xp = ∞, a weight w is constructed so that Γp(v)′ =
Γp′(w), with equivalent norms. Also, in [4] and upcoming work by
A. Gogatishvili and R. Kerman, a simple formula for such a w is given.
Our equivalent norm for Γp(v)′ is closely related but breaks ‖g‖Γp(v)′

into two parts corresponding to the size, g∗, and the smoothness g∗∗−g∗

of g. Note that the last two terms in (4.2) below are only present in the
excluded cases, when

∫ ∞
0

v(x) dx < ∞ or
∫ ∞
0

v(x) dx/xp < ∞.

Theorem 4.1. Suppose 1 < p < ∞, (S, λ) is a resonant measure space,
and v satisfies (3.1). If g is a λ-measurable function on S then

‖g‖Γp,λ(v)′ ≈ ‖g∗‖p′,v0 + ‖g∗∗ − g∗‖p′,v∞ + V0‖g∗‖∞ + V∞‖g∗‖1(4.2)

where

v0(t) =
1
t

(
1
tp

∫ t

0

v(x) dx+
∫ ∞

t

v(x)
dx

xp

)−p′
1
tp

∫ t

0

v(x) dx,

v∞(t) =
1
t

(
1
tp

∫ t

0

v(x) dx+
∫ ∞

t

v(x)
dx

xp

)−p′ ∫ ∞

t

v(x)
dx

xp
,

(4.3)

V0 =
(∫ ∞

0

x−pv(x) dx
)−1/p

, and V∞ =
(∫ ∞

0

v(x) dx
)−1/p

.

The constants in the equivalence (4.2) depend only on p.
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Remark. It is not difficult to see that V0 is non-zero if and only if L1
λ ⊆

Γp,λ(v) and V∞ is non-zero if and only if L∞
λ ⊆ Γp,λ(v). This explains

the appearance of the terms involving ‖g∗‖∞ and ‖g∗‖1 and shows that,
despite their appearance as technical byproducts of integration by parts
in Theorem 3.1, they are an essential feature of the theory.

Proof: Proving Theorem 4.1 will occupy us for the rest of this section.
There are four steps in the proof:

1. Reduction to the case that λ is Lebesgue measure on (0,∞).

2. Proof in the case that g∗ is an integral.

3. Proof in the case that the associate norm of g is finite.

4. Elimination of the remaining case.

The first step is readily accomplished by appealing to the Luxemburg
Representation Theorem. Observe that Γp(v) represents the norm Γp,λ(v)
in the sense of [2, Theorem 2.4.10]. That is,

‖f‖Γp,λ(v) = ‖f∗‖Γp(v) for all f ∈ Γp,λ(v).

It follows that the associate norm is represented in the same way so

‖g‖Γp,λ(v)′ = ‖g∗‖Γp(v)′ for all g ∈ Γp,λ(v)′.

In view of this is it enough to prove Theorem 4.1 in the case that λ is
Lebesgue measure on (0,∞).

The second step is to prove the theorem in the case that g∗ is an
integral, specifically that

g∗(t) =
∫ ∞

t

u(x)
dx

x

for some u ∈ L+. In this case we have

‖g‖Γp(v)′ = sup
f∈Γp(v)

∣∣∫ ∞
0

fg
∣∣

‖f‖Γp(v)
= sup

f∈L+

∫ ∞
0

f∗g∗

‖f∗∗‖p,v

= sup
f∈L+

∫ ∞
0

f∗∗u

‖f∗∗‖p,v
= sup

F∈F

∫ ∞
0

Fu

‖F‖p,v

where F = {f∗∗ : f ∈ L+}. Since xf∗∗(x) =
∫ x

0
f∗ is non-decreasing

and f∗∗(x) is non-increasing we see that F ⊆ Ω1,0. On the other hand,
let h ∈ L+ and set f(y) =

∫ ∞
y

h to see that

H0
1h(x) =

∫ ∞

0

min(t/x, 1)h(t) dt =
1
x

∫ x

0

∫ ∞

y

h(t) dt dy = f∗∗(x).
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It follows that H0
1L

+ ⊆ F ⊆ Ω1,0 so we may apply Theorem 3.1 with
q = 1, r = p′, α = 1, and β = 0 to get

‖g‖Γp(v)′ ≈
(∫ ∞

0

H1u(t)p′
Hp

0v(t)
−p′

H0v(t)
dt

t

)1/p′

+
‖x−1‖1,u

‖x−1‖p,v

+
(∫ ∞

0

H0u(t)p′
Hp

0v(t)
−p′

Hpv(t)
dt

t

)1/p′

+
‖1‖1,u

‖1‖p,v
.

The terms above involving u can all be written in terms of g∗.

‖x−1‖1,u =
∫ ∞

0

u(x)
dx

x
= g∗(0) = ‖g∗‖∞.

‖1‖1,u =
∫ ∞

0

u(x) dx =
∫ ∞

0

∫ ∞

t

u(x)
dx

x
dt =

∫ ∞

0

g∗(t) dt = ‖g∗‖1.

H1u(t) = t

∫ ∞

t

u(x)
dx

x
= tg∗(t).

H0u(t) =
∫ t

0

u(x) dx =
∫ t

0

∫ t

y

u(x)
dx

x
dy

=
∫ t

0

g∗(y) − g∗(t) dy = t(g∗∗(t) − g∗(t)).

These substitutions give the desired result in the case that g∗ is an
integral. The second step is complete.

We now pass to the third step and assume that ‖g‖Γp(v)′ < ∞. The
first thing to establish is that limt→∞ g∗(t) = 0. For each positive inte-
ger n set fn = 1

nχ(0,n) and note that f∗∗
n (t) = min(1/n, 1/t). By (4.1)

and the Dominated Convergence Theorem, ‖fn‖Γp(v) → 0 as n → ∞.
Since g has finite Γp(v)′-norm we see that 1

n

∫ n

0
g∗ =

∫ ∞
0

f∗
ng

∗ also
tends to zero as n → ∞. Because g∗ is monotone this implies that
limt→∞ g∗(t) = 0 as desired.

Now for γ > 1 define

uγ(x) = (g∗(x) − g∗(γx))/ log(γ) and gγ(t) =
∫ ∞

t

uγ(x)
dx

x
.

Note that g∗γ = gγ . The results of Step 2 apply so we have

‖gγ‖Γp(v)′ ≈ ‖g∗γ‖p′,v0 + ‖g∗∗γ − g∗γ‖p′,v∞ + V0‖g∗γ‖∞ + V∞‖g∗γ‖1.(4.4)
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Using the fact that limt→∞ g∗(t) = 0 we can express gγ as a moving
average of g∗:

gγ(t) =
1

log(γ)

∫ ∞

t

g∗(x) − g∗(γx)
dx

x
=

∫ γt

t

g∗(x)
dx

x

/ ∫ γt

t

dx

x
.

It follows that for each t, gγ(t) is non-decreasing as γ decreases to 1 and
that gγ(t) converges to g∗(t) for almost every t.

By the Monotone Convergence Theorem, we have

lim
γ↓1

(
‖g∗γ‖p′,v0 + V0‖g∗γ‖∞ + V∞‖g∗γ‖1

)
= ‖g∗‖p′,v0 +V0‖g∗‖∞+V∞‖g∗‖1.

Because Γp(v)′ is a Banach Function Space we also have

lim
γ↓1

‖gγ‖Γp(v)′ = ‖g∗‖Γp(v)′ = ‖g‖Γp(v)′ .

In order to conclude that (4.2) holds we still need to show that

lim
γ↓1

‖g∗∗γ − g∗γ‖p′,v∞ = ‖g∗∗ − g∗‖p′,v∞ .(4.5)

It is evident that the pointwise limit of g∗∗γ − g∗γ is g∗∗ − g∗. By the
Dominated Convergence Theorem, (4.5) will follow once we show that
2 log(2)(g∗∗2 − g∗2) is in Lp′

v∞ and dominates g∗∗γ − g∗γ for 1 < γ ≤ 2.
Since g∗2 ≤ g∗ and ‖g∗‖Γp(v)′ < ∞ we have ‖g∗2‖Γp(v)′ < ∞ because
Γp(v)′ is a Banach Function Space. In view of (4.4) this implies that
‖g∗∗2 − g∗2‖p′,v∞ < ∞ and hence 2 log(2)(g∗∗2 − g∗2) is in Lp′

v∞ .
To see that 2 log(2)(g∗∗2 − g∗2) dominates g∗∗γ − g∗γ we calculate as

follows:

log(γ)(g∗∗γ (t) − g∗γ(t))

=
1
t

∫ t

0

∫ γy

y

g∗(x)
dx

x
dy −

∫ γt

t

g∗(x)
dx

x

=
1
t

∫ t

0

g∗(x)
∫ x

x/γ

dy
dx

x
+

1
t

∫ γt

t

g∗(x)
∫ t

x/γ

dy
dx

x
−

∫ γt

t

g∗(x)
dx

x

= (1 − 1/γ)g∗∗(t) − 1
γt

∫ γt

t

g∗(x) dx

= (1 − 1/γ)
(
g∗∗(t) − 1

γt− t

∫ γt

t

g∗
)
.
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If 1 < γ ≤ 2 then 1 − 1/γ ≤ log(γ). Also, for each t the moving
average 1

γt−t

∫ γt

t
g∗ is a non-increasing function of γ. Thus

g∗∗γ (t) − g∗γ(t) =
1 − 1/γ
log(γ)

(
g∗∗(t) − 1

γt− t

∫ γt

t

g∗
)

≤ g∗∗(t) − 1
2t− t

∫ 2t

t

g∗

= 2 log(2)(g∗∗2 (t) − g∗2(t)).

This completes Step 3, showing that (4.2) holds whenever its left hand
side is finite.

If both sides are infinite then (4.2) holds trivially. Step 4 of the proof
is to eliminate the remaining case by showing that if the right hand side
of (4.2) is finite then so is the left hand side. For each positive integer n,
define gn = min(nχ(0,n), g

∗) and note that g∗n = gn. The sequence g∗n
is non-decreasing and converges pointwise to g∗ as n → ∞ so gn → g
in the Banach Function Space Γp(v)′. To show that ‖g‖Γp(v)′ < ∞ we
show that the norms ‖gn‖Γp(v)′ are bounded independently of n. To do
this we note that (4.1) implies that

‖gn‖Γp(v)′ ≤ ‖nχ(0,n)‖Γp(v)′ < ∞
so the results of Step 3 apply and we have

‖gn‖Γp(v)′ ≈ ‖g∗n‖p′,v0 + ‖g∗∗n − g∗n‖p′,v∞ + V0‖g∗n‖∞ + V∞‖g∗n‖1.

Again it is easy to handle three of the terms. Since g∗n ≤ g∗ we have
‖g∗n‖p′,v0 ≤ ‖g∗‖p′,v0 , ‖g∗n‖∞ ≤ ‖g∗‖∞, and ‖g∗n‖1 ≤ ‖g∗‖1. Therefore,
the sum of these three terms is bounded independently of n by the right
hand side of (4.2) which is assumed to be finite.

The fourth term, ‖g∗∗n −g∗n‖p′,v∞ , is also bounded by a multiple of the
right hand side of (4.2) but a little more work is required to demonstrate
this. The function g∗n is non-increasing and bounded by n. Therefore
it takes the value n on an interval of the form (0, tn) for some tn ≥ 0.
When 0 < t < tn we have g∗∗n (t) − g∗n(t) = 0. When tn < t < n we have
g∗∗n (t) − g∗n(t) = g∗∗n (t) − g∗(t) ≤ g∗∗(t) − g∗(t). When t > n we have

g∗∗n (t) − g∗n(t) = g∗∗n (t) =
1
t

∫ t

0

g∗n ≤ 1
t

∫ n

0

g∗ =
n

t
g∗∗(n).

Thus

‖g∗∗n − g∗n‖p′,v∞ ≤ ‖g∗∗ − g∗‖p′,v∞ + ng∗∗(n)
(∫ ∞

n

v∞(t)
dt

tp′

)1/p′



508 G. Sinnamon

and our object is to show that the last two summands are bounded by
the right hand side of (4.2). The first is trivially so and we write the
second as

n(g∗∗(n)−g∗(n))
(∫ ∞

n

v∞(t)
dt

tp′

)1/p′

+ng∗(n)
(∫ ∞

n

v∞(t)
dt

tp′

)1/p′

.(4.6)

Observe that t(g∗∗(t)− g∗(t)) =
∫ t

0
g∗∗(y)− g∗(t) dy is non-decreasing so

n(g∗∗(n) − g∗(n))
(∫ ∞

n

v∞(t)
dt

tp′

)1/p′

≤
(∫ ∞

n

(g∗∗(t) − g∗(t))p′
v∞(t) dt

)1/p′

≤ ‖g∗∗ − g∗‖p′,v∞ .

The second term in (4.6) requires some integration using (4.3).

np′
∫ ∞

n

v∞(t)
dt

tp′ = −np′

p′

(∫ t

0

v(x) dx+ tp
∫ ∞

t

v(x)
dx

xp

)1−p′ ∣∣∣∣∣
∞

n

≤ 1
p′

(
1
np

∫ n

0

v(x) dx+
∫ ∞

n

v(x)
dx

xp

)1−p′

=
∫ n

0

v0(t) dt+
1
p′

(∫ ∞

0

v(x)
dx

xp

)1−p′

.

Therefore,

ng∗(n)
(∫ ∞

n

v∞(t)
dt

tp′

)1/p′

≤
(∫ n

0

g∗(t)p′
v0(t) dt+

1
p′
‖g∗‖p′

∞

(∫ ∞

0

v(x)
dx

xp

)1−p′)1/p′

≤
(
‖g∗‖p′

p′,v0
+

1
p′
‖g∗‖p′

∞V p′

0

)1/p′

.

Which is bounded by (a multiple of) the right hand side of (4.2). This
completes Step 4 and the proof of Theorem 4.1.



Concave Functions and Lorentz Duals 509

We remark that the term ‖g∗∗ − g∗‖p′,v∞ in (4.2) may be replaced by

sup
h∗≤g∗

‖h∗∗ − h∗‖p′,v∞ .

Although this new term may be substantially larger than ‖g∗∗−g∗‖p′,v∞

for example when g∗ is constant, the equivalence (4.2) is not affected due
to the presence of the other terms. Indeed, the proof of Theorem 4.1 is
simpler with the new term in place.

5. The Hardy-Littlewood Maximal Function

The reduction principle in Theorem 3.2 can be used to give criteria
to determine whether or not the Hardy-Littlewood Maximal Function
is bounded between Lorentz spaces. If f is a locally integrable function
on Rn we define Mf to be

Mf(x) = sup
1

µn(Q)

∫
Q

|f | dµn

where the supremum is taken over all cubes Q containing x whose sides
are parallel to the axes. Here µn denote Lebesgue measure on Rn.

Theorem 5.1. Suppose p, q ∈ (1,∞) and u, v ∈ L+. Define V by

V (t) =
1
tp

∫ t

0

v(x) dx+
∫ ∞

t

v(x)
dx

xp
.

Then M : Γp,µn
(v) → Γq,µn

(u) if and only if: Either 1 < p ≤ q < ∞,
and all of

sup
y>0

(∫ ∞

y

u(x)
dx

xq

)1/q (∫ y

0

(log(y/t))p′−1V (t)1−p′ dt

t

)1/p′

,

sup
y>0

(∫ ∞

y

(log(x/y))qu(x)
dx

xq

)1/q

V (y)−1/p,

sup
y>0

(∫ ∞

y

u(x)
dx

xq

)1/q (
p′

∫ y

0

V (t)1−p′ dt

t
− V (y)1−p′

)1/p′

, and

sup
y>0

(∫ y

0

u(x) dx
)1/q

(ypV (y))−1/p
,
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are finite; or 1 < q < p < ∞, 1/r = 1/q − 1/p, and all of

∫ ∞

0

(∫ ∞

y

u(x)
dx

xq

)r/p (∫ y

0

(log(y/t))p′−1V (t)1−p′ dt

t

)r/p′

u(y)
dy

yq
,

∫ ∞

0

(∫ ∞

y

(log(x/y))qu(x)
dx

xq

)r/q

V (y)−r/q d(−V (y)),

∫ ∞

0

(∫ ∞

y

u(x)
dx

xq

)r/q(
p′
∫ y

0

V (t)1−p′ dt

t
−V (y)1−p′

)r/q′
d(ypV (y))
ypV (y)p′ , and

∫ ∞

0

(∫ y

0

u(x) dx
)r/p

(ypV (y))−r/p
u(y) dy

are finite.

Proof: We cite [2, Theorem 3.8] for the well known equivalence (Mf)∗ ≈
f∗∗. It implies that M : Γp,µn(v) → Γq,µn(u) if and only if

sup
f∈L+

(∫ ∞
0

(
1
x

∫ x

0
f∗∗)q

u(x) dx
)1/q

(∫ ∞
0

(f∗∗)pv
)1/p

< ∞.

That is,

T : F ∩ Lp
v → Lq

u(5.1)

where T is the operator TF (x) = 1
x

∫ x

0
F and F = {f∗∗ : f ∈ L+}. As

we observed in Part 2 of the proof of Theorem 4.1, H0
1L

+ ⊆ F ⊆ Ω1,0.
Thus, we can apply Theorem 3.2 with α = 1, β = 0, and Ls

w = Lq
u to

see that (5.1) holds if and only if

TH1 : Lp
v1

→ Lq
u,(5.2)

TH0 : Lp
v2

→ Lq
u,(5.3)

if x−1 ∈ Lp
v then T (x−1) ∈ Lq

u, and

if 1 ∈ Lp
v then T (1) ∈ Lq

u.
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Since T (x−1) ≡ ∞ and T (1) ≡ 1 the latter two conditions reduce to

u ≡ 0 or
∫ ∞

0

v(x)
dx

xp
= ∞,(5.4)

and ∫ ∞

0

v < ∞ =⇒
∫ ∞

0

u < ∞.(5.5)

The conditions (5.2) and (5.3) reduce to weighted norm inequalities for
which necessary and sufficient conditions are known. Our task now is
to simplify the known conditions using the definitions of v1 and v2 from
Theorem 3.2. We have

v1(t) = tp−1

(∫ t

0

v(x) dx+ tp
∫ ∞

t

v(x)
dx

xp

)p (∫ t

0

v(x) dx
)1−p

and

v2(t) = tp−1

(∫ t

0

v(x) dx+ tp
∫ ∞

t

v(x)
dx

xp

)p (
tp

∫ ∞

t

v(x)
dx

xp

)1−p

.

In terms of V these become

ptp
′
v1(t)1−p′

= V (t)−p′ d

dt
(−V (t)) and(5.6)

pv2(t)1−p′
= (tpV (t))−p′ d

dt
(tpV (t)).(5.7)

The operator in (5.2) is

TH1f(x) =
1
x

∫ x

0

1
y

∫ y

0

tf(t) dt dy =
1
x

∫ x

0

log(x/t)tf(t) dt

so, with g(t) = tf(t), we see that (5.2) holds if and only if the inequality(∫ ∞

0

(∫ x

0

log(x/t)g(t) dt
)q

u(x)
dx

xq

)1/q

≤C

(∫ ∞

0

g(t)pv1(t)
dt

tp

)1/p

(5.8)

holds for some C > 0 and all g ∈ L+. By [18, Theorems 1 and 2], (5.8)
holds if and only if: Either 1 < p ≤ q < ∞,

sup
y>0

(∫ ∞

y

u(x)
dx

xq

)1/q(∫ y

0

(log(y/t))p′
tp

′
v1(t)1−p′

dt

)1/p′

< ∞,(5.9)

and

sup
y>0

(∫ ∞

y

(log(x/y))qu(x)
dx

xq

)1/q(∫ y

0

tp
′
v1(t)1−p′

dt

)1/p′

<∞;(5.10)
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or 1 < q < p < ∞, 1/r = 1/q − 1/p,

∫ ∞

0

(∫ ∞

y

u(x)
dx

xq

)r/p (∫ y

0

(log(y/t))p′
tp

′
v1(t)1−p′

dt

)r/p′

u(y)
dy

yq
<∞,

(5.11)

and

∫ ∞

0

(∫ ∞

y

(log(x/y))qu(x)
dx

xq

)r/q(∫ y

0

tp
′
v1(t)1−p′

dt

)r/q′

yp′
v1(y)1−p′

dy<∞.

(5.12)

The operator in (5.3) is

TH0f(x) =
1
x

∫ x

0

∫ ∞

y

f(t) dt dy =
1
x

∫ x

0

tf(t) dt+
∫ ∞

x

f(t) dt,

a sum of two Hardy operators. Thus (5.3) holds if and only if the two
weighted Hardy inequalities(∫ ∞

0

(∫ x

0

g(t) dt
)q

u(x)
dx

xq

)1/q

≤ C

(∫ ∞

0

g(t)pv2(t)
dt

tp

)1/p

and (∫ ∞

0

(∫ ∞

x

f(t) dt
)q

u(x) dx
)1/q

≤ C

(∫ ∞

0

f(t)pv2(t) dt
)1/p

hold for some constant C > 0 and all g ∈ L+ and f ∈ L+ respectively.
The conditions (see [12]) under which these hold are: Either 1 < p ≤
q < ∞,

sup
y>0

(∫ ∞

y

u(x)
dx

xq

)1/q (∫ y

0

tp
′
v2(t)1−p′

dt

)1/p′

< ∞,(5.13)

and

sup
y>0

(∫ y

0

u(x) dx
)1/q (∫ ∞

y

v2(t)1−p′
dt

)1/p′

< ∞;(5.14)

or 1 < q < p < ∞, 1/r = 1/q − 1/p,∫ ∞

0

(∫ ∞

y

u(x)
dx

xq

)r/q(∫ y

0

tp
′
v2(t)1−p′

dt

)r/q′

yp′
v2(y)1−p′

dy<∞,(5.15)
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and ∫ ∞

0

(∫ y

0

u(x) dx
)r/p(∫ ∞

y

v2(t)1−p′
dt

)r/p′

u(y) dy<∞.(5.16)

Using the properties (5.4) and (5.5) and the substitutions (5.6) and
(5.7) to eliminate v1 and v2, (5.9), (5.10), (5.13), and (5.14) can be
simplified to yield the four weight conditions given in the case 1 < p ≤
q < ∞. Similarly, (5.11), (5.12), (5.15), and (5.16) simplify to yield the
four weight conditions given in the case 1 < q < p < ∞.

We have shown that the weight conditions given in the statement of
the theorem, together with (5.4) and (5.5), are necessary and sufficient
for the boundedness of M . All that remains is to show that (5.4) and
(5.5) are consequences of the weight conditions.

Write V (t) =
∫ ∞
0

max(t, x)−pv(x) dx to see that V (t) ≤ V (0) =∫ ∞
0

v(x) dx/xp. If V (0) < ∞ then for any y > 0,∫ y

0

log(y/t)p′−1V (t)1−p′ dt

t
≥ V (0)1−p′

∫ y

0

log(y/t)p′−1 dt

t
= ∞.

In view of this, the first weight condition in either the case 1 < p ≤ q < ∞
or the case 1 < q < p < ∞ can hold only if u is almost everywhere 0.
Thus (5.4) holds.

If
∫ ∞
0

v < ∞ it follows that ypV (y) is bounded above and hence
the fourth weight condition in either the case 1 < p ≤ q < ∞ or the
case 1 < q < p < ∞ would fail unless

∫ ∞
0

u < ∞. Thus (5.5) also holds.
This completes the proof.

We would like to thank the referee for pointing out that the weight
conditions (5.4) and (5.5) follow from the others in Theorem 5.1.

Since (Mf)∗ ≈ f∗∗ the boundedness of M : Γp,µn(v) → Λq,µn(u) re-
duces to a straightforward application of Theorems 2.7 and 2.8 with
α = 1 and β = 0. Here Λq,µn

(u) = {f : ‖f∗‖q,u < ∞}.
Theorem 5.2. Let p, q ∈ (1,∞) and u, v ∈ L+. Then M : Γp,µn

(v) →
Λq,µn(u) if and only if: Either 1 < p ≤ q < ∞ and

sup
y>0

(∫ y

0

u(x) dx+yq

∫ ∞

y

u(x)
dx

xq

)1/q(∫ y

0

v(x) dx+yp

∫ ∞

y

v(x)
dx

xp

)−1/p

is finite; or 1 < q < p < ∞, 1/r = 1/q − 1/p, and∫ ∞

0

(∫ y

0

u(x) dx+yq

∫ ∞

y

u(x)
dx

xq

)r/p(∫ y

0

v(x) dx+yp

∫ ∞

y

v(x)
dx

xp

)−r/p

u(y) dy

is finite.
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