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DENSITY ESTIMATES ON A PARABOLIC SPDE

D. Márquez-Carreras1 and M. Mellouk2

Abstract
We consider a general class of parabolic spde’s

∂uε
t,x

∂t
=

∂2uε
t,x

∂x2
+

∂

∂x
g(uε

t,x) + f(uε
t,x) + εσ(uε

t,x)Ẇt,x,

with (t, x) ∈ [0, T ]× [0, 1] and εẆt,x, ε > 0, a perturbed Gaussian
space-time white noise. For (t, x) ∈ (0, T ] × (0, 1) we prove the
called Davies and Varadhan-Léandre estimates of the density pε

t,x

of the solution uε
t,x.

1. Introduction

In this paper we deal with the perturbed parabolic stochastic partial
differential equation (spde)

∂uε
t,x

∂t
=
∂2uε

t,x

∂x2
+

∂

∂x
g(uε

t,x) + f(uε
t,x) + εσ(uε

t,x)Ẇt,x,(1.1)

(t, x) ∈ [0, T ]×[0, 1], ε > 0, with initial condition uε
0,x = ξ(x) and Dirich-

let’s boundary conditions uε
t,0 = uε

t,1 = 0. The process {Ẇt,x, (t, x) ∈
[0, T ] × [0, 1]} is a space-time white noise on a complete probability
space (Ω,F , P ); σ, f, g : R → R are smooth functions and ξ is some
real-valued function defined on [0, 1].

If σ = f = 0 and g(r) = r2/2, the above equation is called Burgers
equation. It arises connection with the study of turbulent fluid motion
and the literature attaches great importance to this fact (see, for in-
stance, [4]). Recently, Burgers equation perturbed by space-time white
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noise has been considered in several papers ([8], [9], [12] and the refer-
ences therein). As g = 0, (1.1) is a stochastic reaction-diffusion equation,
what has also been studied intensively (see, for instance, [25], [1]).

The equation (1.1) can be rigorously formulated as an integral evolu-
tion equation

(1.2) uε
t,x = Gt(x, ξ) + ε

∫ t

0

∫ 1

0

Gt−s(x, y)σ(uε
s,y)W (ds, dy)

−
∫ t

0

∫ 1

0

∂Gt−s

∂y
(x, y)g(uε

s,y) ds dy +
∫ t

0

∫ 1

0

Gt−s(x, y)f(uε
s,y) ds dy,

where Gt(x, y) is the fundamental solution of the heat equation on
[0, T ] × [0, 1] with Dirichlet’s boundary conditions and Gt(x, ξ) =∫ 1

0
Gt(x, y)ξ(y) dy (see Appendix for more information about this fun-

damental solution). Basic results concerning existence and uniqueness
of solution of (1.1) are given in [12]. Under more restrictive assump-
tions on the coefficients (f , g and σ smooth enough), Morien [20] has
established that, for each fixed (t, x) ∈ (0, T ] × (0, 1) and ε ∈ (0, 1], uε

t,x

is an infinitely differentiable functional in the sense of Malliavin Cal-
culus. Adding a strict ellipticity hypothesis, Morien has checked that
uε

t,x possesses a C∞ density y → pε
t,x(y) with respect to the Lebesgue

measure. Considering the stochastic Burgers equation, i.e. g(r) = r2/2,
and assuming a nondegeneracy condition on the diffusion coefficient,
Zaidi and Nualart [26] have proved that the law of the solution is ab-
solutely continuous. Applying techniques of Malliavin Calculus together
with the Cole-Hopf transformation and assuming that the dispersion σ
does not depend on uε

t,x and 1/K ≤ σ ≤ K for some constant K > 0,
J. Léon et al. [18] have shown that uε

t,x has a smooth density at all point
(t, x) ∈ (0, T ] × (0, 1).

Let H denote the Cameron-Martin space associated with the Brownian

sheet {Wt,x, (t, x)∈ [0, T ]×[0, 1]}, and set ‖h‖H=
(∫ T

0

∫ 1

0
|ḣs,y|2 ds dy

)1/2

,

with ḣs,y = ∂2hs,y/∂s∂y. For any h ∈ H, let {Sh
t,x, (t, x) ∈ [0, T ]× [0, 1]}

be the solution of the deterministic evolution equation

(1.3) Sh
t,x = Gt(x, ξ) +

∫ t

0

∫ 1

0

Gt−s(x, y)σ(Sh
s,y)ḣs,y ds dy

−
∫ t

0

∫ 1

0

∂Gt−s

∂y
(x, y)g(Sh

s,y) ds dy +
∫ t

0

∫ 1

0

Gt−s(x, y)f(Sh
s,y) ds dy.
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We set, for y ∈ R,

d2(y) = inf
{

1
2
‖h‖2

H, h ∈ H, Sh
t,x = y

}
.(1.4)

Out first aim is to prove the called Davies estimate for the density pε
t,x,

which is the upper bound version of Aronson’s estimates. The heat kernel
case was studied by Davies [10]. Kusuoka and Stroock [14] have dealt
with the diffusion processes, they have obtained a complete approach in
a small time using the scaling property of the Brownian motion. For
the semigroup pt(x, ·) associated with the generator of a diffusion, they
obtained the upper and the lower bounds of the form 1/

√
t times an

exponential term related to the distance associated with the generator.
In our paper we do not have the scaling property, we will work in

terms of parameter ε which produces small perturbations of the solution
to (1.1). Combining exponential estimates of the tail probabilities and
Malliavin Calculus, we will prove that the upper bound of pε

t,x(y) is of
the form 1/ε times an exponential term of the type

−
C|y − S0

t,x|2
ε2

for every ε ∈ (0, 1), y ∈ R, where S0
t,x is the solution to (1.3) as h = 0.

A similar result for one-dimensional wave equation perturbed by a white
noise has been analysed by Léandre and Russo [17].

Secondly we analyse the logarithmic estimates for the density pε
t,x,

these estimates are known as Varadhan-Léandre estimates. Assuming
some conditions on the coefficients as in [20], we prove that, for fixed
(t, x), the density pε

t,x decreases exponentially as ε converges to 0 as
follows

exp
{
−d

2(y)
ε2

}
.

In the diffusion case, due to scaling property, this problem is related to
the study of the density in small time. We refer to [15], [16] for such
kind of estimates. The reaction-diffusion problem, i.e. g = 0 in (1.1),
has been treated by Millet and Sanz-Solé [19].

The paper is organized as follows. In the next section we formulate
the statements of the main results as Theorems 2.1 and 2.2. Section 3
is devoted to the proof of Theorem 2.1. In Section 4, we prove Theo-
rem 2.2 and analyse the finiteness of d2(y) defined in (1.4). In Section 5
we apply the result of Section 3 to the reaction-diffusion equation. The
arguments of Sections 3 and 4 depend on accurate estimates of the Green
function Gt(x, y), which are given as an Appendix. For all notions and
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notations concerning the Malliavin Calculus, using along the paper, we
refer to [21], [22]. As usual, all constants are denoted by C, indepen-
dently of their values.

2. Statement of the main results

This section is devoted to enunciate the main results of the article.
We introduce the following hypothesis on the coefficients and the ini-

tial condition:
(H1) f, g, σ : R → R and C∞-functions with bounded derivatives of any

order greater than one, σ is uniformly bounded and ξ ∈ C([0, 1]).
(H2) There exists C > 0 such that inf{|σ(x)|; x ∈ R} ≥ C.
Along the paper we fix t ∈ (0, T ] and x ∈ (0, 1).

Theorem 2.1 (Davies estimate). Assume (H1) and (H2). Then, there
exist some constants C1, C2 > 0 such that

pε
t,x(y) ≤ C1

ε
exp

{
−
|y − S0

t,x|2
C2ε2

}
,

for any y ∈ R and ε ∈ (0, 1).

Remark. Although we assume (H1) in order to obtain Theorem 2.1, the
proof still goes through under weaker conditions.

Theorem 2.2 (Varadhan-Léandre estimate). Under (H1) and (H2),

lim
ε↓0

ε2 log pε
t,x(y) = −d2(y),(2.1)

with d2(y) defined in (1.4).

Remark. The boundedness of σ is needed to ensure existence and
smoothness of pε

t,x [20].

3. Davies estimate

In this section our main purpose is the proof of Theorem 2.1. In
order to prove it we need some technical lemmas. The first one is an
exponential estimate of the tail probabilities.

Lemma 3.1. Assume f , g Lipschitz and σ Lipschitz and bounded. For
any p ∈ [1,∞), there exists ρ > 0 large enough such that

sup
0<ε≤1

E

(
exp

{
p|uε

t,x − S0
t,x|2

ρε2

})
<∞.
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Proof: For (t, x) ∈ [0, T ] × [0, 1], according to (1.2) and (1.3), clearly

|uε
t,x − S0

t,x| ≤
∣∣∣∣
∫ t

0

∫ 1

0

∂Gt−s

∂y
(x, y)

(
g(uε

s,y) − g(S0
s,y)

)
ds dy

∣∣∣∣
+

∣∣∣∣
∫ t

0

∫ 1

0

Gt−s(x, y)
(
f(uε

s,y) − f(S0
s,y)

)
ds dy

∣∣∣∣
+ ε

∣∣∣∣
∫ t

0

∫ 1

0

Gt−s(x, y)σ(uε
s,y)W (ds, dy)

∣∣∣∣ .
Hence, Lipschitz’s conditions on f and g, Schwarz’s inequality, (6.1) and
(6.2) yield the existence of a constant C > 0 such that

|uε
t,x − S0

t,x|2 ≤ ε2
∣∣∣∣
∫ t

0

∫ 1

0

Gt−s(x, y)σ(uε
s,y)W (ds, dy)

∣∣∣∣
2

+ C

∫ t

0

1√
t− s

sup
0≤y≤1

|uε
s,y − S0

s,y|2 ds.

Using Gronwall’s Lemma, we obtain

sup
0≤t≤T

sup
0≤x≤1

|uε
t,x − S0

t,x|2 ≤ Cε2
∥∥∥∥
∫ ·

0

∫ 1

0

G·−s(∗, y)σ(uε
s,y)W (ds, dy)

∥∥∥∥
2

∞
.

Therefore, since σ is uniformly bounded, an exponential inequality for
stochastic integrals involving the Green kernel Gt(x, y) (see Lemma 3.2
in [23] or also [24]) implies that there exist some positive constants r0
and C0, such that

P

{
|uε

t,x − S0
t,x|2

ε2
> r

}

≤ P

{∥∥∥∥
∫ ·

0

∫ 1

0

G·−s(∗, y)σ(uε
s,y)W (ds, dy)

∥∥∥∥
2

∞
>

r

C

}
≤ exp

{
− r

C0

}
,

for any r ≥ r0.
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Now, let r0, C0 > 0 be as before and choose ρ > 0 large enough such
that C0p < ρ. Then, Fubini’s stochastic theorem and the suitable choice
of ρ give

E

(
exp

{
p|uε

t,x − S0
t,x|2

ρε2

})
≤ epr0/ρ + E

(∫ 1
ε2 |uε

t,x−S0
t,x|2

r0

p

ρ
e

p
ρ y dy

)

≤ epr0/ρ +
∫ ∞

r0

p

ρ
e(

p
ρ− 1

C0
)y dy

< +∞.

This concludes the proof of the lemma.

For any ε ∈ (0, 1), we consider the random variable defined by

ûε
t,x =

uε
t,x − S0

t,x

ε
.

Assume (H1). Standard arguments based on Burkholder’s, Hölder’s and
Gronwall’s inequalities (see [20, Proposition 5.1]) yield for any k ∈ N,
p ≥ 1,

sup
0<ε<1

sup
t,x

‖uε
t,x‖k,p ≤ C,(3.1)

sup
0<ε<1

sup
t,x

‖ûε
t,x‖k,p ≤ C,(3.2)

where ‖ · ‖k,p denotes the norm of the Sobolev space D
k,p, that is, for

k ∈ N, p ≥ 1,

‖F‖p
k,p = E(|F |p) +

k∑
j=1

E(‖DjF‖p
Hj )

(see [22] for basic definitions).
It only remains to study the Malliavin matrix γε

t,x of uε
t,x.

Lemma 3.2. Assume (H1) and (H2). For any p ≥ 1, ε ∈ (0, 1),

‖(γε
t,x)−1‖p ≤ Cε−2,(3.3)

where γε
t,x =

∫ t

0

∫ 1

0
|Dr,zu

ε
t,x|2 dr dz and ‖ · ‖p is the Lp(Ω)-norm.
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Proof: Let Mε
t,x(r, z) be the solution of

Mε
t,x(r, z) = Gt−r(x, z) + ε

∫ t

r

∫ 1

0

Gt−s(x, y)σ′(uε
s,y)Mε

s,y(r, z)W (ds, dy)

−
∫ t

r

∫ 1

0

∂Gt−s

∂y
(x, y)g′(uε

s,y)Mε
s,y(r, z) ds dy

+
∫ t

r

∫ 1

0

Gt−s(x, y)f ′(uε
s,y)Mε

s,y(r, z) ds dy.

Clearly, the Malliavin derivative of uε
t,x is given by the following equation

Dr,zu
ε
t,x = 1{r<t}εσ(uε

r,z)M
ε
t,x(r, z).

Hence,

γε
t,x = ε2

∫ t

0

∫ 1

0

σ(uε
r,z)

2Mε
t,x(r, z)2 dr dz.

Computations similar to those used to prove Proposition 5.2 in [20] show
that there exists a constant C > 0 such that

sup
0<ε<1

E

(∫ t

0

∫ 1

0

σ2(uε
r,z)M

ε
t,x(r, z)2 dr dz

)−p

< C,

for any p ≥ 1. Consequently, (3.3) is satisfied.

We are now ready to give the proof of Theorem 2.1.

Proof of Theorem 2.1: Let y ∈ R and ρ > 0 large enough. By a change
of variable and the stochastic integration by parts formula of Malliavin
Calculus (see, for instance, Proposition 3.2.1 in [22]), if δ{y} denotes the
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Dirac δ-function at y, then

pε
t,x(y) = E

{
δ{y}(uε

t,x)
}

= exp

{
−
|y − S0

t,x|2
ρε2

}
E

{
δ{y}(uε

t,x) exp

{
|uε

t,x − S0
t,x|2

ρε2

}}

=
1
ε

exp

{
−
|y − S0

t,x|2
ρε2

}
E

{
δ{0}(ûε

t,x) exp

{
|uε

t,x − S0
t,x|2

ρε2

}}

=
1
ε

exp

{
−
|y − S0

t,x|2
ρε2

}
E

{
1{ûε

t,x>0}D
∗
(
Dûε

t,x(γ̂ε
t,x)−1

× exp

{
|uε

t,x − S0
t,x|2

ρε2

})}
,

(3.4)

where γ̂ε
t,x = γε

t,x/ε
2 and D∗ denotes the adjoint operator of D, also

called the Skorohod integral (see [22]).
First, notice that (3.4) is well-defined. Indeed, by Lemma 3.1, the

exponential term of (3.4) belongs to D
1,p
loc uniformly in ε ∈ (0, 1) for

any p ≥ 1 and ρ > 0 large enough. Finally, similar arguments as in
Proposition 6 in [13] (see also [2, Lemma 3.36]), together (3.2) and
Lemma 3.2, yield

E

∣∣∣∣∣1{ûε
t,x>0}D

∗
(
Dûε

t,x(γ̂ε
t,x)−1 exp

{
|uε

t,x − S0
t,x|2

ρε2

})∣∣∣∣∣ <∞,

and this completes the proof of the theorem.

Remark. As g = 0, we deal with the well-known stochastic heat equation
and S0

t,x in Theorem 2.1 is the solution to the following deterministic
evolution equation

vt,x = Gt(x, ξ) +
∫ 1

0

∫ 1

0

Gt−s(x, y)f(vs,y) ds dy.

4. Varadhan-Léandre estimate

In order to prove Theorem 2.2, we need two lemmas proved by Nu-
alart [22]. These lemmas are presented for general Wiener function-
als following the formulation in the case of diffusions processes of Ben
Arous’s and Léandre’s method (see [3]).
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Let {W (h), h ∈ H} be an arbitrary Gaussian family. We recall that a
random variable F : Ω → R is said to be nondegenerate if F ∈ D

∞(R) =⋂
k≥1

⋂
p≥1 D

k,p(R) and the Malliavin matrix γF = 〈DF,DF 〉H satisfies
γ−1

F ∈ ∩p≥1L
p(Ω).

Lemma 4.1 ([22, Proposition 4.4.1]). Consider a family {F ε, 0 < ε <
1} of nondegenerate random variables, and a function Φ ∈ C1

p(H,R) such
that

lim
ε↓0

1
ε

(
F ε

(
w +

h

ε

)
− Φ(h)

)
= Z(h),

in the topology of D
∞, for each h ∈ H, where Z(h) is a random variable

in the first Wiener chaos with variance γΦ(h). Define

d2
R(y) = inf

{
1
2
‖h‖2

H, Φ(h) = y, γΦ(h) > 0
}
, y ∈ R.

Then, if pε denotes the density of F ε,

lim inf
ε↓0

ε2 log pε(y) ≥ −d2
R(y).

Lemma 4.2 ([22, Proposition 4.4.2]). Let {F ε, ε ∈ (0, 1)} be a family
of nondegenerate random variables satisfying

i) sup
0<ε<1

‖F ε‖k,p <∞, for each k ≥ 1, p ∈ [1,∞).

ii) For any p ≥ 1, there exists N(p) ∈ [1,∞) such that ‖γ−1
F ε ‖p ≤

ε−N(p) for every ε ∈ (0, 1].
iii) The family {F ε, ε ∈ (0, 1)} satisfies a large deviation principle on

R with rate function I(y), y ∈ R.
Then, if pε denotes the density of F ε,

lim sup
ε↓0

ε2 log pε(y) ≤ −I(y).

We next check that uε
t,x satisfies the requierements of Lemma 4.1 and

Lemma 4.2. These two lemmas give, repectively, a lower and an upper
bound of

lim
ε↓0

ε2 log pε
t,x(y).

Assumption (H1) implies that for fixed (t, x) ∈ [0, T ] × [0, 1], the map-
ping h ∈ H �→ Sh

t,x, defined in (1.3), is infinitely Fréchet differentiable.
Furthermore, the Fréchet derivative of Sh

t,x is given by

DSh
t,x(k) =

∫ T

0

∫ 1

0

Dr,zS
h
t,xk̇r,z dr dz, k ∈ H,
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with Dr,zS
h
t,x = 1{r<t}σ(Sh

r,z)ηt,x(r, z), and ηt,x(r, z) solves the following
equation

ηt,x(r, z) = Gt−r(x, z)

+
∫ t

r

∫ 1

0

Gt−s(x, y)
[
σ′(Sh

s,y)ḣs,y + f ′(Sh
s,y)

]
ηs,y(r, z) ds dy

−
∫ t

r

∫ 1

0

∂Gt−s

∂y
(x, y)g′(Sh

s,y)ηs,y(r, z) ds dy.

(4.1)

The proof of the following lemma is inspired by Lemma 2.5 in [19].

Lemma 4.3. Assume (H1) and (H2). Then, for any h ∈ H,

γh
t,x :=

∫ T

0

∫ 1

0

|Dr,zS
h
t,x|2 dr dz > 0.

Remark. γh
t,x is the analogue of the Malliavin matrix in the deterministic

case.

Proof of Lemma 4.3: Using the strict ellipticity (H2), the proof of the
lemma is reduced to check

J(t, x) :=
∫ t

0

∫ 1

0

η2
t,x(r, z) dr dz > 0.

Fix µ > 0 such that 0 < µ < {t∧x∧ (1−x)}. Then J(t, x) ≥ 1
2J1(t, x)−

J2(t, x), with

J1(t, x) =
∫ t

t−µ

∫ x+
√

µ

x−√
µ

G2
t−r(x, z) dr dz,

J2(t, x) =
∫ t

t−µ

∫ x+
√

µ

x−√
µ

(
ηt,x(r, z) −Gt−r(x, z)

)2

dr dz.

(4.2)

By applying Lemma 6.1 there exist a ≥ 1, C > 0 such that, for each
0 < µ < inf

(
t, x2

a2 ,
(1−x)2

a2

)
,

J1(t, x) ≥ C
√
µ.(4.3)

Let ψt(u, x) :=
∫ t

t−µ

∫ 1

0
η2

u,x(r, z) dr dz, in order to deal with J2(t, x), we
will prove the following

sup
t−µ≤u≤t
0≤x≤1

ψt(u, x) ≤ C
√
µ.(4.4)
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Let (u, x) ∈ [t− µ, t] × [0, 1], then

ψt(u, x) ≤ C(A1 +A2 +A3 +A4),

with

A1 =
∫ t

t−µ

∫ 1

0

G2
u−r(x, z) dr dz,

A2 =
∫ t

t−µ

∫ 1

0

[∫ u

r

∫ 1

0

Gu−s(x, y)σ′(Sh
s,y)ḣs,yηs,y(r, z) ds dy

]2

dr dz,

A3 =
∫ t

t−µ

∫ 1

0

[∫ u

r

∫ 1

0

Gu−s(x, y)f ′(Sh
s,y)ηs,y(r, z) ds dy

]2

dr dz,

A4 =
∫ t

t−µ

∫ 1

0

[∫ u

r

∫ 1

0

∂Gu−s

∂y
(x, y)g′(Sh

s,y)ηs,y(r, z) ds dy
]2

dr dz.

The estimate (6.1) implies that A1 ≤ C
√
µ. Schwarz’s inequality, Fu-

bini’s theorem and (6.1) imply

A2 ≤ C‖h‖2
H

∫ t

t−µ

∫ 1

0

G2
u−s(x, y)

{∫ t

t−µ

∫ 1

0

η2
s,y(r, z) dr dz

}
ds dy

≤ C‖h‖2
H

∫ t

t−µ

1√
u− s

sup
0≤y≤1

ψt(s, y) ds.

With less effort, A3 can be estimated as A2. However, the term A4

has a special deal as consequence of the derivative of the Green kernel.
Schwarz’s inequality, (6.3), (6.2) and Fubini’s theorem imply

A4 ≤ C

∫ t

t−µ

∫ 1

0

[∫ u

r

∫ 1

0

∣∣∣∣∂Gu−s

∂y
(x, y)

∣∣∣∣ ds dy
]

×
[∫ u

r

∫ 1

0

∣∣∣∣∂Gu−s

∂y
(x, y)

∣∣∣∣ η2
s,y(r, z) ds dy

]
dr dz

≤ C
√
µ

∫ t

t−µ

1√
u− s

sup
0≤y≤1

ψt(s, y) ds.

Consequently, Gronwall’s lemma gives (4.4).
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From (4.1) and (4.2) we obtain

J2(t, x) ≤ C(B1 +B2),

with

B1 =
∫ t

t−µ

∫ 1

0

[∫ t

r

∫ 1

0

Gt−s(x, y)
[
σ′(Sh

s,y)ḣs,y

+f ′(Sh
s,y)

]
ηs,y(r, z) ds dy

]2

dr dz,

B2 =
∫ t

t−µ

∫ 1

0

[∫ t

r

∫ 1

0

∂Gt−s

∂y
(x, y)g′(Sh

s,y)ηs,y(r, z) ds dy
]2

dr dz.

As before, Schwarz’s inequality, Fubini’s theorem, (4.4) and (6.2) yield
B1 ≤ Cµ. Using the same computations as A4, we have B2 ≤ Cµ. Thus,

J2(t, x) ≤ Cµ.

Hence, choose µ > 0 small enough, we obtain J(t, x) > 0.

Set Uε,h
t,x = uε

t,x(ω + h
ε ), ε ∈ (0, 1), h ∈ H, (t, x) ∈ [0, T ] × [0, 1]. The

process {Uε,h
t,x , (t, x) ∈ [0, T ] × (0, 1]} satisfies the following evolution

equation

Uε,h
t,x = Gt(x, ξ) + ε

∫ t

0

∫ 1

0

Gt−s(x, y)σ(Uε,h
s,y )W (ds, dy)

−
∫ t

0

∫ 1

0

∂Gt−s

∂y
(x, y)g(Uε,h

s,y ) ds dy

+
∫ t

0

∫ 1

0

Gt−s(x, y)
{
σ(Uε,h

s,y )ḣs,y + f(Uε,h
s,y )

}
ds dy.

By uniqueness of solution, U0,h
t,x = Sh

t,x. Consider also the process
{Zh

t,x, (t, x) ∈ [0, T ] × [0, 1]} defined by

Zh
t,x =

∫ t

0

∫ 1

0

Gt−s(x, y)σ(Sh
s,y)W (ds, dy)+

∫ t

0

∫ 1

0

Gt−s(x, y){σ′(Sh
s,y)ḣs,y

+ f ′(Sh
s,y)}Zh

s,y ds dy −
∫ t

0

∫ 1

0

∂Gt−s

∂y
(x, y)g′(Sh

s,y)Zh
s,y ds dy.
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Notice that Zh
t,x is Gaussian. Define

Ûε,h
t,x =

Uε,h
t,x − Sh

t,x

ε
, ε ∈ (0, 1).

Assuming (H1), one can easily check that there exists C > 0 such that

sup
0<ε≤1

sup
t,x

E
(
|Uε,h

t,x |p
)
≤ C, ∀ p ∈ [1,∞).(4.5)

Moreover, Gronwall’s lemma and (4.5) imply

lim
ε↓0

sup
x,t

E
(
|Uε,h

t,x − Sh
t,x|p

)
= 0,(4.6)

for any p ≥ 1.
Applying the mean-value theorem to the functions σ, f , g, and using

the typical argument based on Hölder’s and Burkholder-Davis-Gundy’s
inequalities, Gronwall’s lemma and (4.6) we can ensure that

Lp − lim
ε↓0

(Ûε,h
t,x − Zh

t,x) = 0,(4.7)

for any p ≥ 1, uniformly in [0, T ] × [0, 1].
We can also generalize the last convergence in the following way,

D
∞ − lim

ε↓0
(Ûε,h

t,x − Zh
t,x) = 0.(4.8)

Indeed, since Sh
t,x is deterministic, Zh

t,x Gaussian and due to (4.7), in
order to prove (4.8) we only need to check

lim
ε↓0

E


∣∣∣∣∣

∫ T

0

∫ 1

0

(
1
ε
Dr,zU

ε,h
t,x −Dr,zZ

h
t,x

)2

dr dz

∣∣∣∣∣
p/2


 = 0,

lim
ε↓0

E


∣∣∣∣∣

∫
[0,T ]j×[0,1]j

(
1
ε
Dj

r,zU
ε,h
t,x

)2

dr dz

∣∣∣∣∣
p/2


 = 0, j = 2, 3, . . . ,

p ∈ [1,∞). The validity of these two limits can be shown recursively.
Finally we state a consequence of the large deviation principle proved

by Cardon-Weber [5].

Proposition 4.4. Assume (H1). Then the family of random variables
{uε

t,x, ε ∈ [0, 1]} satisfies a large deviation principle with rate func-
tion I = d2 defined in (1.4).

We can now prove Theorem 2.2.
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Proof of Theorem 2.2:

Upper bound: Let F ε = uε
t,x be the solution to (1.2). Lemma 3.2, Propo-

sition 4.4 and the estimate (3.1) ensure that the hypothesis i)–iii) of
Lemma 4.2 are fullfilled. Hence,

lim sup
ε↓0

ε2 log pε
t,x(y) ≤ −d2(y).

Lower bound: Let Φ(h) = Sh
t,x, Z(h) = Zh

t,x, F ε = uε
t,x. The assump-

tions of Lemma 4.1 are satisfied because of the Fréchet differentiability
of Sh

t,x and (4.8).
Moreover, by uniqueness of solution,DSh

t,x =DZh
t,x. Then, Lemma 4.3

implies d2(y) = d2
R(y). Consequently,

lim inf
ε↓0

ε2 log pε
t,x(y) ≥ −d2(y).

Finally, we analyse the finiteness of d2(y) defined by (1.4). This is
related to the topological support of the probabilty distribution of uε

t,x.
By [6]

o︷ ︸︸ ︷
suppP ◦ (uε

t,x)−1 = {z : ∃h ∈ H s.t. Sh
t,x = z}.(4.9)

By [11], the set suppP ◦ (uε
t,x)−1 is a closed interval on R. Then, we

have

Proposition 4.5. Assume (H1), (H2) and the functions f , g, are
bounded. Then

{z ∈ R : d2(z) <∞} = R.

Proof: Suppose σ > σ0 > 0. Hölder’s inequality, (6.1) and (6.2) imply

|Gt(x, ξ)| ≤ k1,∣∣∣∣
∫ t

0

∫ 1

0

Gt−s(x, y)f(Sh
s,y) ds dy

∣∣∣∣ ≤ ‖f‖∞k2t,

∣∣∣∣
∫ t

0

∫ 1

0

∂Gt−s

∂y
(x, y)g(Sh

s,y) ds dy
∣∣∣∣ ≤ ‖g‖∞k3

√
t,

for some finite constants k1, k2, k3. By Lemma 6.1, there exist positive
constants C and µ such that∫ t

0

∫ 1

0

Gt−s(x, y)σ(Sh
s,y) ds dy ≥ σ0C

√
µ.
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Let ν be a strictly positive number. For any z ∈ R, define

ḣ(1)
s,y =

|z| + ν + k1 + k2t‖f‖∞ + k3

√
t‖g‖∞

C
√
µσ0

,

ḣ(2)
s,y = −ḣ(1)

s,y.

One can check that
Sh(2)

t,x < z < Sh(1)

t,x .

Since the topological support is a closed interval, z ∈
o︷ ︸︸ ︷

suppP ◦ (uε
t,x)−1.

Then, from (4.9), there exists h̄ ∈ H such that Sh̄
t,x = z.

We can use a similar argument when the coefficient σ is negative.

Remark. Varadhan-Léandre estimate for the stochastic heat equation
(i.e. g = 0) have been found by Millet and Sanz-Solé [19]. In this case, we
refer to [13] for more information about the set {‖h‖2

H, h ∈ H, Sh
t,x = y},

and consequently, about d2.

5. Particular case: Stochastic heat equation

Consider now the solution of the stochastic evolution equation

(5.1) ūε
t,x = Gt(x, ξ) +

∫ t

0

∫ 1

0

Gt−s(x, y)σ(ūε
s,y)W (ds, dy)

+
∫ t

0

∫ 1

0

Gt−s(x, y)f(ūε
s,y) ds dy,

that means, the solution to (1.2) as g = 0. For h ∈ H, the skeleton
associated with (5.1) is defined by

(5.2) ψh
t,x = Gt(x, ξ) +

∫ t

0

∫ 1

0

Gt−s(x, y)σ(ψh
s,y)ḣs,y ds dy

+
∫ t

0

∫ 1

0

Gt−s(x, y)f(ψh
s,y) ds dy.

Theorem 2.1 implies the following result.

Corollary 5.1. Assume (H1) and (H2). There exist some constants
C1, C2 > 0 such that

p̄ ε
t,x(y0) ≤

C1

ε
exp

{
− d̄

2(y0)
C2ε2

}
, 0 < ε < 1.(5.3)

Here p̄ ε
t,x denotes the density of ūε

t,x and d̄2(y) is the equivalent to (1.4)
as g = 0.
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Remark. In this particular case (the stochastic heat equation), for any
y0 ∈ R, we are able to find a particular element of H with a special
structure such that applied to the skeleton is equal to y0.

Proof of Corollary 5.1: Let (t, x) ∈ [0, T ]× [0, 1] be fixed. We will prove
that, for any y0 ∈ R, there exists h(0) ∈ H satisfying ψh(0)

t,x = y0 and
‖h(0)‖H ≤ C|y0 − ψ0

t,x|, for some positive constant C depending on σ, f
and the Green kernel. Then, d̄2(y0) ≤ 1

2‖h(0)‖2
H, and this fact implies

(5.3).
For any (u, z) ∈ [0, T ] × [0, 1], define

(5.4) 7(u, z) = Gu(z, ξ) +
∫ u

0

∫ 1

0

Gu−s(z, y)f(ψ0
s,y) ds dy

+
∫ u

0

∫ 1

0

Gu−s(z, y)k̇t,x(s, y) ds dy,

where

k̇t,x(s, y) = Gt−s(x, y)(y0 − ψ0
t,x)

(∫ t

0

∫ 1

0

G2
t−r(x, v) dr dv

)−1

.

Then, kt,x(·, ·) ∈ H and it satisfies 7(t, x) = y0.
For any (s, y) ∈ [0, T ] × [0, 1] set

ḣ(0)
s,y = −

f(7(s, y)) − f(ψ0
s,y) − k̇t,x(s, y)

σ(7(s, y))
.(5.5)

Then, (5.4) and (5.5) imply

7(u, z) = Gu(z, ξ) +
∫ u

0

∫ 1

0

Gu−s(z, y)σ(7(s, y))ḣ(0)
s,y ds dy

+
∫ u

0

∫ 1

0

Gu−s(z, y)f(7(s, y)) ds dy,

and, by uniqueness of solution, 7(u, z) = ψh(0)

u,z for any (u, z) ∈ [0, T ] ×
[0, 1]. In particular ψh(0)

t,x = y0. Moreover, from (5.5), we have

‖h(0)‖2
H ≤ C(A1 +A2),
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with

A1 =
∫ T

0

∫ 1

0

(
f(7(s, y)) − f(ψ0

s,y)
σ(7(s, y))

)2

ds dy,

A2 =
∫ T

0

∫ 1

0

(
k̇t,x(s, y)
σ(7(s, y))

)2

ds dy.

Then, it is easy to check that ‖h(0)‖2
H ≤ C|y0 − ψ0

t,x|2.

6. Appendix

Let Gt(x, y) denote the fundamental solution to the heat equation
with Dirichlet’s boundary conditions. That means

Gt(x, y)=
1√
4πt

+∞∑
n=−∞

[
exp

{
− (y − x− 2n)2

4t

}
−exp

{
(y + x− 2n)2

4t

}]
.

We recall the following properties, for every x, y ∈ [0, 1], t ∈ [0, T ], β > 0,

Gt(x, y) ≤
C√
t
exp

(
− (y − x)2

4t

)
,

sup
0≤x≤1

∫ 1

0

|Gt(x, y)|β dy ≤ Ct−
β
2 + 1

2 ,(6.1)

sup
0≤x≤1

∫ 1

0

∣∣∣∣∂Gt

∂y
(x, y)

∣∣∣∣β dy ≤ Ct−β+ 1
2 ,(6.2)

∫ t+h

t

∫ 1

0

∣∣∣∣∂Gt+h−s

∂y
(x, y)

∣∣∣∣β dy ds ≤ Cβh
3
2−β ,(6.3)

for h > 0, 0 < β <
3
2
.

We refer to [7] and [20] for the proof of results on this Green kernel.

Lemma 6.1 (Lemma 3.1 in [19]). There exists a ≥ 1 such that for any
(t, x) ∈ (0, T ] × (0, 1), 0 < µ < inf

(
t, x2

a2 ,
(1−x)2

a2

)
,∫ t

t−µ

∫ x+
√

µ

x−√
µ

G2
t−s(x, y) ds dy ≥ C

√
µ,

where C = 1
4

√
2
π

(
1 − 1√

2π

)
.
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Sup. (4) 21(3) (1988), 307–331.
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