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FATOU AND KORANYI-VAGI TYPE THEOREMS ON
THE MINIMAL BALL

NGUYEN VIET ANH

Abstract

In this paper we develop the H? (p > 1) theory on the mini-
mal ball. After identifying the admissible approach regions, we
establish theorems of Fatou and Koranyi-Vagi type on this ball.

1. Introduction and statement of our main results

It is well-known from the work of Stein [17] that holomorphic func-
tions of HP class on a bounded domain in C" with C?-boundary converge
almost everywhere to their boundary values, provided the limit is taken
inside certain natural approach regions. Boundary behavior of H? func-
tions on smooth domains is rather well understood, see for example [6],
[9], [10], [11], etc.

In this paper we are interested in Fatou type theorems for H? (p > 1)
functions and Koranyi-Vagi type theorems on a non piecewise smooth
domain: The minimal ball B,. This is the convex circular domain defined
for n > 2 by

B, :={2€C": |z +|zez2 <1},

where zew := >""_| z;w;. This is the unit ball with respect to the norm

j=1

N.(z) :=+]z]?+ |z02|, ze€C"™

The norm N := % was introduced by Hahn and Pflug [4], and was

shown to be the smallest complex norm in C" with the following prop-
erties N(x) = |z| for z € R™ and N(z) < |z| for z € C".

Set V := {z € C"\ {0} : z e z =0}. The singular part of the bound-
ary of B, is obviously the set 0B, NV. The regular part 0B, \ V consists
of all strictly pseudoconvex points. Moreover B, is neither homogeneous
nor Reinhardt (see [5], [13]). Function theory on the minimal ball was
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studied by several authors (see [12], [14], [15], [8], [7], [18]). In his recent
work [19], E. H. Youssfi developed a method for computing the Bergman
and Szego kernel of a new class of pseudoconvex domains including the
minimal ball. His paper is the main motivation for the present work. As
in [8], [19], our method consists of two steps. At the first step we study
the problem on an auxiliary complex manifold M. At the second step
we transplant the results obtained on the complex manifold M to B, by
means of a proper holomorphic mapping.

This paper is organised as follows: In the first section we define the
admissible approach regions for the minimal ball B, and state our main
results.

In Section 2 we give some properties of the system of admissble ap-
proach regions.

In Section 3 we discuss theorems of Fatou type and Kordnyi-Vagi type
on the complex manifold M. We next transplant these results to B, in
Section 4 in order to prove our main Theorems A, B and C below.

We now identify the admissible approach regions.

Definition 1.1. For o > 1 and { € 0B,, we let the “admissible ap-
proach region” D ({) be the set of all z € B, such that

1= (2.0) - /(02T 0 < S0 N2

where (.,.) denotes the standard Hermitian inner product.

min
ee{—1,1}

Definition 1.2. A function f defined on B, is said to have admissible
limit A at a point ¢ € 9B, if f converges to A\ along D (() for every
a > 1.

The question naturally arises how the system of admissible approach
regions is different from the system of approach regions defined by
E. Stein (see [17, p. 32]). Part (i) of Proposition 2.1 below asserts
that on any compact set in the regular part of dB,, these two systems
are, in a sense, equivalent to each other. Furthermore, part (ii) of that
proposition says that the admissible approach regions are tangential to
the regular part OB, \ V in the complex tangential directions. Note that
the Kordnyi approach regions for the Euclidean balls of C™ also have
this geometric property.



FaTOoU AND KORANYI-VAGI TYPE THEOREMS 51

In order to state our main results we need some notations. Let
it be a positive Borel measure on 9B, and p > 0. Then the Hardy
space HP(B,, i) is defined by

HP(B*MU') =q/f€ H(B*)v Hf”?[p B. ‘= sup |fr|p dp < oo o,
(Bup) 0<r<1aIB

where f, denotes the dilated function defined for N.(z) < 1 by f,(z) :=
f(rz).

Let 6 be the Lebesgue surface measure of B, \ V. Throughout the
paper, S, and Pp, denote the Szegd and Poisson-Szegd projection of B,
(with respect to the measure 6) respectively. The letter C' will denote a
finite constant that is not necessarily the same at each occurence.

Our first main result is the following

Theorem A. If f € HP(B,,|[Ce(|°df), p>1 and s € R,
(i) then f has finite admissible limits f* a.e. [0] on OB« and f* €
LP(0B., | o |* df);
(it) if moreoverp > 1 and —2 < s < 2p—2, then f = Sp, [f*] = Ps.[f"].
Theorem A (or Fatou type theorem for the minimal ball) is only
proved here for p > 1. It seems to be of interest to know whether part (i)

of this theorem holds for all p > 0. The Hardy spaces H? (B, |(o(] B dd)
appear naturally in studying the HP theory associated to the minimal
ball (see the works [8], [7], [19]).
Next, if u € C(B.) and « > 1, the maximal function Myu: OB, —
[0, 00] is defined by
(Mau)(C) := sup{|u(z)| : z € D(¢)}-
We now state the second main result.

Theorem B. If 1 < p < o0 and —2 < s < oo, then for every f €
HP(B., | o (| df),

(i) / (Mo Q) 1C 0 C[* dB(C) < C(s, 0,p) / FOPIC s CIF dB(C),

OB, OB,

(@) Hm [lf* = frlloeeom. cecls a0y = 0

and || f|| zrv 8. coc|s a0y = | f" || Lo (0B, .|coc|® a0)-

Theorem B should be compared with the analogous results (Theo-
rems 5.6.5 and 5.6.6 of [16]) in the case of the Euclidean unit ball.
Finally our third main result is the following
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Theorem C. Let 1 <p<ooanda>1. If§-2<s< 371’—2, then
there exists C(s, a,p) < oo such that

[ M8 AP (¢ ol db(6) < Clsanp) [ 1QIPIC » J* aB(C)
OB, OB,
for all f € LP(0B,,|C o ¢|* db).

We note that an analogue of Theorem C in the case of the Euclidean
unit ball is the classical Koranyi-Végi theorem (Theorem 6.3.1 of [16]).

2. Some properties of the system of admissible approach
regions

We have the following

Proposition 2.1. (i) For a > 1 and ¢ € 0B, \ 'V, let Ay(C) be the
classical approach region [17, p. 32] defined by

(21) Aa(Q):={z€B.:|(z— (,ve) | <ad(z), |z — (|* < (@ —1)d(2)} .

Here v denotes the unit outward normal at ( and §(z) is the dis-
tance from z to OB.. (Notice that since B, is convez, §(z) is smaller
than the distance from z to the tangent space at (.) Let K be a
compact in OB, \ V. Then there exist 3, > 1 such that

(2.2) Aa(Q) € D5(Q)  and  DL(C) € Ay (Q), V(e K.

(i1) For a > 1 and ¢ € 0B, \ 'V, the admissible approach region D} (()
is tangential to OB, \ V in the direction of TE(BIB* \ V).

Proof: The proof of assertion (ii) is postponed until Section 4. Here we
only prove assertion (i).
A little calculation gives that

Ce( Ce( _ b
\f(gl—’_ClK <.| 7Cn+Cn|C C|> and <C7VC>_\/§

For z € B,, let w € 0B, such that ||z—w| = d(z). A geometric argument
shows that w € 9B, \ V and w — z = §(2)v,,. This, combined with (2.3),

implies

(23) ve=

5
Zkzwk—%<wk+m%), Vi<k<n.

Next, substituting the latter equation into the expression of N2(z) and
using the equality N?(w) = 1, we obtain, after some simplifications,

(24)  1— N2%(2) = min {2|w o w|, V25(2)(2 - \/55(2))} .
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Now we prove the first assertion in (2.2). Consider ¢ € K and z € A, ().
By (2.1) and (2.3), we get

(2.5) < aV26(z).

)

k=1

n

Thus for z close enough to (,

‘1@,@«/@-@@’ <

_|_

N (m eS¢
S ’“<C’“+<"’<-<|>|

/ —— © Ce(
(z02)(Ce O_kzz:l Zk-Ckm

From (2.5), we have I < av/25(z).
We now estimate I1:

=1+11I

11 = |\/<-<(¢z-z— VEe O~y T 3~ ) mi

2=C
= 0(|z = (") < V2M(a - 1)é(2),

where the last inequality follows from (2.1) and the assumption that
z € An(¢), M is a constant that depends only on K.

Suppose z is close enough to the boundary of B, and [ satisfies the
following condition

(2.6) a+M(a—1)<ﬁ<l—?5(2)> .
Then we obtain
'1 (20— (e )T o\ < av/35(=) + VEM (o — 1)5(2)

= V26(2) (o + M(a — 1))

B

(1= N2(2),

where the last inequality follows from (2.4) and (2.6).
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We have shown that if z € A, (¢) and z is close to ¢, then z € Dj(().

This, combined with the identity |J Dj(¢) = B., proves that there
Bs>1
exists 3 large enough which verifies A, (¢) C D3(C), V¢ € K.

To prove the second assertion in (2.2) let ¢ € K and z € D%(({), z is
close to (. Then

2= (P <|z—CP+|Vzez—/Co(f

=1+ N2(2) — 2Re ((Z,C) + \/(zoz)((og)) .

Since z € DX(C), we get Re ((z,() + (25'2')(('0) >1-501-
N2(z)). Thus

2= (P <14+ N2E) =2 [1= S(1 = N2(2)] = (= (1 - N2(2)).

On account of (2.4) and the last inequality, it follows that |z — (|? <
2v/2(av—1)8(2). Hence we can choose 7 such that y—1 > 2v/2(a—1). Tt
now remains to show that | (z — ¢, v¢) | < v0(z). The rest of our proof is
similar to the previous proof of the first assertion in (2.2), this completes
the proposition. O

Remark 2.2. Assertion (i) can not be sharpened. None of the two asser-
tions in (2.2) holds if K is replaced by the whole regular part of 9B.. In
other words, the two systems of approach regions are not globally equiv-
alent. This result can be shown by slightly modifying the arguments in
the proof of assertion (i).

3. Analysis on the complex manifold M

The complex manifold M is defined by
M=M,:={2€C"™\{0}:z02=0 and [z]<1}.

The manifold M := {z € C"™ : z @ 2 = 0 and |z| = 1} is endowed with

the unique probability O(n + 1, R)-invariant measure o. This measure

is induced by Haar measure of O(n + 1,R) (see [8]). Set M := M U OM.
From the work in [19], the Szegt kernel of M is given by

14+ (z,w)

——— for z € M and w € M.
(1= (z,w))"

(3.1) Sm(z, w) =
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By exploiting this explicit formula, we shall establish the theorems of
Fatou, Koranyi and Koranyi-Vagi type on M using the standard tech-
niques for the unit ball in Rudin’s book [16]. The work of Stein [17]
would not give these results directly since an analogue of the potential
theory on Euclidean spaces has not been available yet in the context of
the manifold M.

Definition 3.1. For a € M, b € M,
d(a,b) := |1 — (a,b)|2.
For w € OM, 6 > 0,
Q(w,d) :=={n e M : d(w,n) < d}.
It is clear that for every U € O(n + 1,R),
d(Ua,Ub) :=d(a,b), and U(Q(w,d)) =Q(Uw,?J).

Observe that OM is a submanifold of the unit sphere of C**!. Then
by Proposition 5.1.2 of [16], d is a metric on OM. Now we define a
system of approach regions for M.

Definition 3.2. For ¢ > 1 and w € OM, we let the approach re-
gion D, (w) be the set of all z € M such that

!
1= (zw)| < 51—z,
The following proposition will be very useful.

Proposition 3.3. There exist two constants 0 < Cp,Cy < 0o such that
0 (Q(a,9))
62n
Proof: Since O(n + 1,R) acts transitively on OM and o,d,Q(.,d) are
O(n + 1,R)-invariant, we may suppose without loss of generality that

%, %, 0,..., O) € OM and 9 is sufficiently small.
Consider the function H = (Hy,..., H,): OM — S?"~1 defined by

VaeOM and 0 < § < V2:0y < < Cs.

o

(3.2)  Hi(z):= RO Hy(z) := h(i),...,Hn(z) = h(er)’

where S?”~! is the unit sphere of C" and
2
Z1 129

h(z)—\/ﬁﬁ

We now prove that H is locally diffeomorphic near the point a.

+ 232+ + [zp4a 2, 2 € OML
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Write w = H(z). Since z € OM, we have
*IJF*Z Z2+---+Z721
Thus )
BB g ud
h(z) 2w ’

This, combined with equation (3.2), gives the following system

|21 ]? + -+ |zpga]? = 1

21 2wf—w§—~~—wi

h(z) 242w,

20 i(2w%+w§+---+wi)
h(z) — 2v2uw,

z3 Zn4+1 __
_h(z) = W2,..., R(2) = Wn.

It follows easily that the equation w = H(z) has a unique solution for
every w near (1,0,...,0). Therefore H is locally diffeomorphic near a.

Now, let Q5 denote the standard nonisotropic ball of radius § in S?"—!
centered at (1,0,...,0) (See [16, p. 65].) We shall prove the following
fact

(33) H(Q(CL, 6)) - Q\/§5 and Q5 C H(Q(av \/36))7
provided 9 is sufficiently small.

If z € Q(a, d), then by Definition 3.1 we get ‘1 — % + ”7% < §%. This
implies
Z1 iZQ
3.4 1-— <|1——=+4+—F
B -wlsi- 24
1 Z1 7:22 2 < 1 >
o —1) -2 2 (———1).
(h(Z) ) V2 V2 h(z)
On the other hand
1 1 — h(z)?
35) 0<———1=
R C RS ESY
s al0ea-a) .
h(z)(h(z) + 1) ’

for z & a, because of h(a) = 1.
By virtue of (3.4) and (3.5), we conclude that |1 — w;| < 362, which
proves the first assertion in (3.3).
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To prove the second assertion in (3.3) let w € Q5. Since H is locally
diffeomorphic near a, we can write w = H(z). Then |Hy(z)| > 1 — §2.
By virtue of the definition of H; in (3.2) the last inequality implies that

(1— 622
-1

. 2
Z1 129

V2 V2

Using this estimate, we obtain

(sl 4+ lznaa )

z1 iZQ

V2 V2

lz3” + - + |zna?
(182

2
L=z + |z + -+ lzn|* > +lzs? + o+ 2

>

Thus
(3.6) |23 + -+ |zn1 P <1l — (1 = 8%)% and |21 > + |22]® > (1 — 62)*.
On the one hand, using the second estimate in (3.6) we get

. 2
zZ1 129 z1
- _ — + —=

V2 V2 V2 V2

On the other hand, using the first estimate in (3.6) we have for z = q,

iZg 2 _|21 +’i22|2

(3.7) -

=21+l — >(1-06%)?

o1 izl R+ R+

2 B 2|Zl 7’L'2,’2|2 2|217’L‘22‘2

(s 2n11]2)” _(-a — §2)2)

5 < < 20*.
2 ‘21 — i22|
Putting this estimate into (3.7), we obtain
2
1 &2 242 4 2
— ——=| >(1-6°)"—25>1-36".
5 ( )
This implies
2
_ 2 1— |2 — 22
0< 1 . 1—h(z) < V2 2 <2527
h(z) h(z)(h(z) +1) = R(z)(h(z) +1)

for z = a.
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Finally, using the last inequality and the assumption that w € Q5 we

obtain
z1 129 1 Z1 129 2 2 2
1— =4+ Z < l—wu|+ [ — -1 | = - =2| <62 +25% = 36°.
V2 \/§_| . (h(Z) > V2 V2

The proof of (3.3) is now complete.

Next, let 7 denote the Lebesgue surface measure on S?”~!. Then it
is clear that there exists a smooth function g defined in a small neigh-
borhood U(a) of a such that g(z) # 0 and do(z) = g(z).H* dr(z) for
z € U(a). We therefore obtain the estimate

o (Q(a,0)) = / g H"dr < méi(x) lgl - / dr < Cy6™™,
zeU(a
Q(a,&) Q\/§6
where the first inequality follows from the first assertion in (3.3) and the
second one from Proposition 5.1.4 of [16].
A similar argument using the second assertion in (3.3) shows that
o (Q(a,d)) > C16%".
The proof of Proposition 3.3 is complete. O

Remark 3.4. An immediate consequence of the above proposition is that
the triple (OM, o, d) is a space of homogeneous type.

Proposition 3.5. Ifn € OM, ¢ € OM, z € D,((), |z| = r, then
11— (n, Q)| <4all—(zmn)]

and

o (1 r)2(1 — r2)" 1
e )

Proof: Note that OM C S?"*!. Then the first estimate follows from
Lemma 5.3.4 of [16].
From (3.1), the Poisson-Szego kernel of M is given by

w1 ()
= o) 1+ (22)

Applying the first estimate to the above formula, our second estimate
follows. 0

(3.8) Pu(z,w) for zeM and we OM.

Definition 3.6. If v € C(M) and « > 1, the maximal function M,u:
OM — [0, 00] is defined by

(Myu)(w) :=sup {|u(z)] : z € Do (w)}.
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If © is a complex measure on OM, My denotes its radial Hardy-
Littlewood maximal function in the space (OM, o, d), Sm|y] is its Szegd
integral and Py[p] is its Poisson-Szegd integral.

The following theorem can be regarded as Koranyi type theorem on M.

Theorem 3.7. To every oo > 1 corresponds a constant C(o) < 0o such
that the inequality

Mo Pulp] < C(a) My

holds for every complexr measure p on OM.

Proof: We apply Propositions 3.3 and 3.5. The proof given in Theo-
rem 5.4.5 of [16] is valid in the context of the space of homogeneous
type (OM, o, d) making the obviously necessary changes. O

The arguments which have been used in Theorems 5.4.9 and 5.4.10 of [16]
give the following

Proposition 3.8. If u is a complex measure on OM and Dy denotes its
derivative in the space (OM, o, d), then Py[u] has finite admissible limits
(Pmlu])* a.e. [o] on OM and

(3.9) (Pulp])*(w) = (Dp)(w) a.e. [o] on OM.

If moreover 1 < p < oo and f € LP(OM, o), then

(3.10) / MoPulf]? do < Clasp) / fI? do
oM oM

Definition 3.9. For (,w € OM, o > 1, § > 0, we define a maximal
difference

A(C,w,,d) :=sup|Sm(z,n) — Sm(z,w)|,
the supremum being taken over all n € Q(w,d) and over all z € D, (¢).
Theorem 3.10. If w € OM, a > 1, § > 0, then
(3.11) / Al w,a,8)do(C) < Cla),
R(w,5)
where R(w,d) := OM \ Q(w, 29).

Proof: First observe that in fact the method given in Lemma 6.1.1 of [16]
proves the following
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Fact. Suppose (,n,w € OM C $?"*! d(w,n) < §, d(w,() > 26, and
2z € Do(C). Then for every k € N we have

1 1
(1=(zm)F (1= (zw)*
Combining this fact, formula (3.1) and Definition 3.9, we get

< (160)F 151 — (¢ w) [7F 2.

1 1

(=) (1— ()"
Cw ’ 1 - 1
Pla=Gmr T~ (= (e !

A(¢w, a,8) < 2sup

< 2(160)" 1)1 — (¢, w) [TV + (160)"8[1 — (C,w) | TR

Therefore,
(3.12) A(¢,w,a,8) < 2(160)™(1 + 162)8|1 — (¢, w) | 7"~ =.

On account of (3.12), estimate (3.11) is reduced to proving the fol-
lowing inequality
(3.13) [ n-ortao <5

R(w,?)

We now apply the arguments of Proposition 3.3: Suppose without loss
of generality that w := (%, %,O, e ,O) € OM and 6 < dp, dp is suffi-
ciently small. By virtue of (3.3), we get

11— (Cw) [T 2 do(C)
Q(w,200)\Q(w,20)
< / 3741 — (H(C), H(w)) | do(C)
Q(w,260)\H*1(Q%5>
<c [ pemriems
§2n=I\Q 2_;
V3

where in the last inequality we apply Theorem 6.1.3 of [16].
Thus inequality (3.13) is proved, and the theorem is thereby con-
cluded. |
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Proposition 3.11. If1 <p < oo, f € L?(OM, 0), u = Pum[f], and
up(w) = ulrw) (0<r<1, we M)

then |ur||Lp(aM,U) < ||f||Lp(aM,o)'
If also p < oo then

Jim ltr = fll Lo om0y = 0

Proof: The proofs of Proposition 3.3.3 and Theorem 3.3.4 in [16] work
with trivial changes making use of formula (3.8). O

Theorem 3.12. Suppose F' € HP?(M, o).
(i) If p > 1 then there is a f € LP(OM, o) such that F = Pylf].
(ii) If p =1 then there is a measure p on OM such that F = Py[p].

Proof: We shall indicate briefly that the proof of Theorem 4.3.3 in [16]
works. The fact that SO(n+1,R) acts transitively on M plays a crucial
role here. Instead of the unitary group we now use the group SO(n+1,R)
endowed with its Haar measure di/. We define

Glz) = / FUWU)dU, ¥z eM,
SO(n+1,R)

where h: SO(n + 1,R) — [0,00) is a continuous function that satisfies
fSO(nH,R) hU) di = 1.

Similarly as in [16, p. 57], we establish that there is a sequence r; — 1
such that the dilated functions {G,,} of G converges uniformly to a
function g € C(OM) i.e. ¢, = sup |G(r,w) — g(w)| — 0.

weOM

Since G, € AM) (:= C(M) N H(M)), we obtain, by the reproducing
property of the Poisson-Szego kernel,
G(riz) = /PM(z,w)G(mw) do(w), VzeM.
oM
Thus

1G(ri2) — Pulg)(2)] = / Pua(z, w)(G(riw) — g(w)) do(w)
M

<. / Py (z,w) do(w) =¢; — 0.
OM
This implies that G(z) = Pu[g](z) for all z € M.
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The rest of the proof follows the same lines as that given in [16,
pp. 57-58]. |

The following result can be regarded as Fatou type theorem on M.

Theorem 3.13. (i) To every p > 1, a > 1 corresponds a constant
C(a,p) < o0 such that

/ Mo fI? do < Cl I g o
oM

for every f € HP(M, o).

(ii) Suppose that 1 < p < oo, f € HP(M,0) and let f* denote the
admissible limits of f. Then f*(w) exists a.e. on OM and moreover
when p > 1 we have

lim /|f Frw)|P do(w) = 0.

r—1-—

Proof: Consider f € HP(M,o0) (p > 1). According to Theorem 3.12,
there exists a function p € LP(OM, o) (or a complex measure if p = 1)
such that f = Py[u]. By virtue of Proposition 3.11, ||f|lara,e) =
|l e (90,0 Therefore part (i) follows from estimate (3.10) in Proposi-
tion 3.8.

Applying equation (3.9) of Proposition 3.8 to the equation f = P[u],
we obtain f* = Du. The proof of Theorem 5.6.6 in [16] also works using
part (i). This finishes part (ii). d

Theorem 3.14. (i) Ifp>1 and f € HP(M, o) then f* € HP(OM, o)
and f = Sulf*] = Pulf*]. Here HP(OM, o) denotes the closure of
the algebra A(M) in LP?(OM, o).
(ii) The map f — (SM[f])* is the orthogonal projection of L?(OM, o)
onto H?(OM, o), and

/|M Sulf dagc(a)/|f|2da
OM

for every f € L*(OM, o).
Proof: The proofs of Theorems 5.6.8 and 5.6.9 in [16] are also valid in

this context making use of Theorem 3.13. O

Finally, combining Theorem 3.10 and part (ii) of Theorem 3.14, the
arguments which have been used in Theorems 6.2.2 and 6.3.1 of [16]
prove the following Koranyi-Vagi type theorem on M.
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Theorem 3.15. If 1 < p < oo and o > 1, there exists a constant
C(a,p) < oo such that

/ IMoSulfIl? do < Cla.p) / P do
OM OM

for every f € LP(OM, o).
Ifp=1 and a > 1, there exists a constant C(«a, 1) < 0o such that for
every A > 0 and for every complex measure p on OM,

o{w € IM : |(MySulp])(w)| > A} < C(a, 1)HT”

4. Proofs of the main theorems

In what follows we shall use the function F' as well as its two local
inverses ¢ and v introduced in [12, p. 919]. In this section we transplant
the results established in Section 3 to the minimal ball by means of the
proper holomorphic mapping F'.

If f: B.\{0} — Cis ameasurable function and if z=(z1, ..., 2p41) €
M, we set

(4.1) (T)(2) = znp1(fo F)(2) = znt1 (215 -y 2n)-

We recall the following identities from the work in [19]:

N « Cs df
(42 8 =) = G DL for e aBAY.
where C3 is a constant that depends only on the dimension n, and
(4.3) SuoT[f] =ToSg,[f], forfe L*9B.,0).

In view of Definitions 1.1 and 3.2, we deduce that

(4.4) DL (Q) = F(Da(9(€))) = F(Da(4(C)), V(€ IBLNV.

We now complete the proof of Proposition 2.1.

Proof of assertion (ii) of Proposition 2.1: Since the approach regions on
M are the Kordnyi approach regions on the unit ball of C"** restricted
on M, D, (¢) is tangential to OM in the direction of Tg(@M) fora > 1 and
¢ € OM. In addition, F'is locally biholomorphic. Therefore assertion (ii)
of Proposition 2.1 follows from identity (4.4). O

The following lemma will be very useful.
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Lemma 4.1. For each p > —1, there exist two constants 0 < Cy(p),
C5(p) < oo such that

S w2 dow)
(a,0)

(45) Cy < “ < (s,

52n+2p

where a = (a1, ...,0,41) € OM with a4 =0 and 0 < § < /2.

Proof: Observe that OM,,_; = {a € OM,, : ap+1 = 0}. Since SO(n,R)
acts transitively on OM,,_1, we may suppose without loss of generality
that a := (%, %,0,

Using the local diffeomorphism H constructed in (3.2) together with
its properties (3.3), inequality (4.5) is reduced to proving the following
estimate

e 0) € OM as in the proof of Proposition 3.3.

J 16 l?? dr(0)

Q
(46) 04 < W < 05.

We now prove (4.6). Applying formula 1.4.4(1) in [16], we get

/ G dr ()
Qs

n—1 e
:< 2 )/(1_““2)'2) SXtiioai<oz el dva(As, Ao),

Bo
where Y is the characteristic function, By is the unit ball of C? and vs

is the Lebesgue measure on C? so normalized that vo(Bg) = 1.
Fubini’s theorem shows that the right side of the last equation equals

C'/X{\)\1|<1,|17)\1|<52}dm(/\l)
C

/ (1= a2 = Paf2) 3 A0 dim(As),
A2]<y/1—|A1]2

where m is the ordinary Lebesgue measure of C.
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Using the beta function, since p > —1, the inner integral of the ex-
pression above is equal to

Cc(1— |)\1|2)"+p_2B(n -2,p+1).

Hence we get

(4.7) / Cu? dr(¢) = C- / (1= M )™P2 dm(),
Qs E(5)

where E(8) :={\ € C: |\ <1and |1 — \| < §?}.

In view of (4.7), the arguments which have been used in Proposi-
tion 5.1.4 of [16] establish (4.6). Therefore, the proof of the lemma is
complete. O

Proof of Theorem A: Take any k € N such that kp > 2s + 2. Consider
the function g € H(M) defined by

(4.8) g(z) =2k f(F(2)), VzeM.

By virtue of formula (4.2) we have, for 0 < r < 1,
/|9(7“w)|p do(w) < / (w1 [P T2 f(rF (w)) [P do(w)
oM oM

e / FrCQ)[PIC o ¢[* dB(C) < oo,

OB,

since f € HP(B.,, | o {|* db).

The latter estimate gives that g € HP(M, o). By part (ii) of Theo-
rem 3.13 the boundary value g*(w) exists almost everywhere with re-
spect to the measure o on OM. This, combined with formula (4.2), iden-
tity (4.4) and equation (4.8) gives that f has admissible limits almost
everywhere with respect to the measure 6 on JB,.

Since r{ € D%(¢) for 0 < r < 1 and a > 2, the admissible con-
vergence of f implies that the dilated functions f, converge to f* #-al-
most everywhere on 0B,. Therefore it follows from Fatou’s lemma that
f* € LP(OB., |C @ (|* df). This completes the proof of part (i).
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Taking Theorem B for granted, we now prove part (ii). By part (ii)
of Theorem B, we have

(19 i / £0r€) = £ (QOPIC o CI* dbi(C) =
Using (4.9) and applying the Holder’s inequality, we see that for each

z € B, there exists a constant C'(z) < oo such that

S.[1(2) = £(2)] = lim |Sa.[f" — £](2)]

p—1

< Q 1S5, (2,0)|7T |¢ o (7T d0<<>)
B..

. hm (é/ [f(r¢) — fH(OPIC 8 ¢|* db(C ))

(4.10) B
< O(2) Q [ [P0 do<w>)
M

- Tim /|f rC) — FHOPIC o C[* dB(C)

=

ks
P

< 0:C(2) Tim /Ifrc OPICecl o) | =o,

where the second inequality follows from formula (4.2) and the third one
comes from Lemma 4.1 and the hypothesis on s.

This yields f = Sg,[f*]. The identity f = Pp_[f*] can be proved in
the same way. O

In order to prove Theorems B and C we need some lemmas.
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We recall from the work of Calderdn [2] that the weight function u(w),
p(w) > 0, is said to belong to the class A, of Muckenhoupt (1 < p < 00)
if

sup M(p,a,8) < oo,
a€dM, 0<5<v2

where
(411) M(a,0) sy [ s dotw)
) ,a,0) = w) do(w
g o@Qao) J
Q(a,d)
p—1
' ()7 do(w)
w) =1 do(w
o@Qo) J "
Q(a’é)
Lemma 4.2. Consider the weight function ps(w) := |wn41]?*, s € R,

in the space of homogeneous type (OM, o,d). Then us belongs to the
class Ap of Muckenhoupt if —1 < s <p—1.

Proof: Take two sequences {a*} C OM and {6y} C R such that

. sup M (ps,a,0) = lHim M (us,a, 61);
A€M, 0<5</2 koo
° klirn ak =ad, klim O0x = dp-

There are three cases to consider.

Case (1): 69 > 0. Then

sup M (s, a,08) = M(ps,a®, ).
a€dM, 0<5<V2

Since s > —1 and ;_51 > —1, it follows from Lemma 4.1 that
[ wuw)do(w) < oo and [ u(w)p;—ll do(w) < oo. Hence
Q(a®,d0) Q(a®,d0)

M (ps,a®,dp) < oo.
Case (2): 5o = 0 and a” € OM,,_;. Then

sup M (s, a,6) < limsup M (ps,a,d).
a€OM, 0<6<V2 5—0

Applying Lemma 4.1 to the equation (4.11), we obtain

lim sup M (u,a’,6) < Cs(s) {05 ( i )] < 0.
5—0 p—1
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Case (3): 5o = 0 and a® & OM,,_;. It is easy to see that

. —2:\P—1
lim M (p,0°,6) = a1 [** (Jab 40| 77)" =1,

In any case we always have sup M(ps,a,d) < oo, this estab-
a€dM, 0<5<V/2
lishes the lemma. O

If u € C(M), the radial maximal function M;,qu: OM — [0, oo] is defined
by

(4.12) (Miaqu)(w) := sup |u(rw)|, Vw € oM.

1
s<r<1

Lemma 4.3. To every p>0 and a>1 corresponds a constant C(a,p) <
oo such that

[(Mou)(w)|P < Cle,p) - M (|Mraqul”) (w),
for every uw € H(M) and w € OM.

Proof: For z € M, let T, be the complex tangent space to M at z and let
7. be the orthogonal projection of C**! onto T,. Write z = r(, ( € OM.
Pick the vectors (o, . . ., (ny Cnt1 S0 that {(, o, ..., (n} is an orthonormal
basis for T, and {(,(a,.-.,Cn,Cne1} is an orthonormal basis for C™+1.
For any 6 > 0, consider

n+1
P(z,8):={ w=rC+A+ > NG N <8, M| < 6%, j=2,...,n+ 1},

j=2

P(z,8):= w=rC+A+D_ N [AI<6, [N <62, j=2,...,n ¢ CT..

Jj=2

The polydiscs P(z,d) were considered in the work of Ahern-Bruna |1,
p. 132]. Since OM is a subset of the unit sphere of C"*1, it follows from
Lemma 3.5 of [1] that for each «, 8, 1 < a < (3, there is an ¢y > 0 such
that if n, € OM and z = r{ € D,(n) then

(4.13) P(z,60(1 —7%))NM

- {z € Dyn) : %(1 ) <1— |2’ <201 —7"2)}.
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Fix a point zyp € OM. In a sufficiently small compact neighborhood U
of zp in M, we can choose the vectors Ca,...,C(pn, Cug1 S0 that they all
depend smoothly on z € Y. By shrinking U/ we see that there exists an
0o > 0 such that

(4.14) P(2,6) C 7. (P(2,20)NM), VzelU,0<3<d.
By Lemma 2.5 of [1], we have

<sar [ et QP Q)

P(z,5)

(4.15)  fu(z)["

for z €U and 0 < § < .

Here dV, is the Lebesgue measure on the hyperplane 7, and the con-
stant C' is independant of z € U.

Choosing € := min{eg, dg }, it follows from (4.14) and (4.15) that
4.16) [u(z))P < — lu(w)|P dV (w), for = € U

' (1 —=p)ntl ’ '

P(z,e(1—r2))NM

Here dV is the surface measure on the complex manifold M and the
constant C' is independant of z € U.

Since the group O(n + 1,R) acts transitively on M and dV is O(n +
1, R)-invariant, we conclude that (4.16) also holds for all 2 € M suffi-
ciently close to OM. On the other hand this estimate is semi-trivial if
z € M satisfies |z| < 7, for some ry < 1 fixed. Hence (4.16) is valid for
all z € M.

On account of (4.13), (4.16) and by Proposition 3.3, the lemma is
proved exactly as in Lemma 4.4 of [1]. O

We now come to the the proof of Theorem B.

Proof of Theorem B: We begin the proof of part (i) by choosing m € N
such that %2 —2 < s < (% + 1) p — 2. Then by Lemma 4.2, the weight

function p(w) = |wy4+1|**7™PT2 belongs to the class A,. Fix some
f € HP(B,, | o (|* df) and set

(4.17) 9(z) =2z 1 f(F(2)), VzeM.
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Then we obtain g € HP (M, |wy,11|>725~™P do) by virtue of formula (4.2).
From the choice of m, it follows that thereisand € Rsuchthat 1 <d < p
and (2 4 2s — mp)d < 2(p — d). Therefore, by Holder’s inequality, we
obtain, for every 0 < r < 1,

Rl

/ lg(rw)|" do(w) < / )P [wnr [P~ dor(w)
oM I

p—d

(4.18) =

—(242s—mp)d
/|wn+l| e do(w)
M

< C||g||CIl{p(M7‘wn+l|2+257'77Lp do) < 00,

where the second estimate holds by using Lemma 4.1.
Thus g € H4(M, o). Applying part (i) of Theorem 3.14, we obtain

(4.19) g = Pulg’]-

Next, we first apply the Kordnyi type inequality (Theorem 3.7), then
Theorem 3 of Calderdén’s work [2] and formula (4.2), and obtain

/ | Mo Prtlg*](w)|? |wpgr |72 do(w)
OM
(4.20) <o [ MG @ Pl dotw)
OM
<0 [ g @ o P o) < oc.

OM

On the other hand, in view of (4.17) and (4.19), we see that for every
w € OM and a > 2,

(4.21) Mo Pulg"l(w)] = [Mag(w)| = Clwn 1| sup |f(F(rw))|.

1
s<r<1
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Combining the estimates (4.20), (4.21) and formulas (4.12) et (4.17), we
obtain

(4.22) / (Muna(f © F) (@) [***2 dor(u0)
OM
<c. /\ £ 0 B ()Pl 1+ dor(w).

Choose ¢ € R such that ¢ > max{1, s + 2}. By Lemma 4.3, we get
(Ma(f 0 F) (@))% < CM (|Myaa(f 0 F)|7) (w), Ve € OM.

Since by Lemma 4.2 the weight function u(w) := |wy,41|**72 belongs to
the class A,, using the latter estimate and applying again Theorem 3
of [2], it follows that

/ (Mo (f © F)(w))” [wny1 ]2 do(w)

b
q

ww)  =C / (a0 F)IF) ()] 42 do(w)

<C [ a0 Y@ a4 dor(w)
oM
We deduce from estimates (4.22) and (4.23) that

[ 1Mo 0 Y1242 o)
OM
<C /‘ OF |p|w +1‘2€+2d0'( )

Part (i) of the theorem now follows immediately from (4.2), (4.4) and
the latter estimate.

We now turn to prove part (ii). We have already observed in the proof
of part (i) of Theorem A that for every 0 < r < 1l and o > 2, ¢ € D% (()
and the dilated functions f, converge to f* #-almost every where on 0B,
as r — 17. Hence in view of part (i) of Theorem B and applying the
dominated convergence theorem, we see that

(4.24) Jim 17 = Frlloe @ icocl a0y = 0.
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To prove the second equality of part (ii), we remark that

S (1ol 0. cac an)

=C lim [ |(fy o F)(w)[Plwpsa]**"* do(w)
(4.25) T o

=C lim /|w 1P do(w /| fr o F)(e"Mw)|P dn.

r—1-

Since the function |f, o F'|P is subharmonic, we deduce from (4.24) and
(4.25) that

£ ee @8, coct=aey = 1[I frllLe(om. coci ag) = 1 fllrrm (5. icocI- ao)-
This completes the proof of part (ii). |
We now arrive at the proof of Theorem C.

Proof of Theorem C: We remark that if —2 < s < 37” —2and f €
LP(0B,,|¢ o ¢|* df), then by virtue of formula (4.2) and Lemma 4.1 we
have that,

/ Codl b = ¢ / w2 do(w) < oo,

and

/ T do < / |22 do(w)
OM M

1
P

/ (( © F)(w) Pl [***2 dor(uw)
Wi

< CfllzraB.,icoc|s db)s

where the second estimate follows from applying Holder’s inequality.
Therefore, equation (4.3) holds for every f € LP(JB.,|C o (|° df) with
—2<s< %p —
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For every 0 < r < 1, consider the integral operator f — S,[f] given
by

S-f1(¢) :== /SM(TC,w)f(w) do(w), Y¢€OM,VYfe L' (M,o).
oM

Observe that by virtue of estimate (3.12) and Theorem 3.15, the in-
tegral operator S, is a singular integral in the space of homogeneous
type (OM, d, o). Consequently, we may apply the weighted theory of sin-
gular integral in [3] to S,.. From the hypothesis on s and by Lemma 4.2,
the weight function p(w) := |wy41]** 7?72 belongs to the class A,. Then
it follows from [3] that

(426)  sup / (SulTF) ()P [t |**~7+2 dor(u0)
o<r<1
1o)
<c / T F ()P w2 dor(w),
OM
for every f € LP(0B., | o (|° df).

Using (4.1)—(4.3) and the remark made at the beginning of our proof,
we obtain

(@20) [ ISulT A0 [P dotw)
oM

e / 1Se. (1O ¢ o CIF dB(C),
OB..

and

(4.28) / 71 ()| [ PP+ dor(w) = C / FOP ¢ o ¢]* dB(0).
OM OB,

Combining (4.26)—(4.28), we get

(4.29) sup /ISB*[f](rC)Ip\C-CISdO(C)SO/If(C)I’”\C-C\SdG(C).

1
s<r<l1
2 OB, OB,

Consider the function g € H(B,) given by g := Sg,[f]. By virtue of
(4.29), g is in HP(B., |¢ e (|* df). Therefore, Theorem B, applied to g,
gives that

(4.30) / Mag(O” [C o ¢l dB(C) < C sup / 9(rO)P (¢ o ¢J° dB(C).
OB.. OB,

l<r<1
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Combining (4.29) and (4.30), we obtain the desired conclusion of Theo-
rem C. (|
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