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Abstract
Using an appropriate definition of the multiplicity of a spectral
value, we introduce a new definition of the trace and determinant
of elements with finite spectrum in Jordan-Banach algebras. We
first extend a result obtained by J. Zemánek in the associative
case, on the connectedness of projections which are close to each
other spectrally (Theorem 2.3). Secondly we show that the rank
of the Riesz projection associated to a finite-rank element a and a
finite subset of its spectrum is equal to the sum of the multiplicities
of these spectral values (Theorem 2.6). Then we turn to the study
of properties such as linearity and continuity of the trace and
multiplicativity of the determinant.

1. Introduction

Determinants of infinite matrices were investigated for the first time
by the astronomer G. W. Hill in his studies on lunar theory and his
ideas were put into a rigorous form by Henri Poincaré in 1886. Ten
years later H. von Koch refined and generalized Poincaré’s results. In
1903, I. Fredholm developed a determinant theory for integral opera-
tors. Unlike von Koch, Fredholm studied eigenvalues and looked at the
analyticity of Det(I + λM). Fredholm’s determinant theory is certainly
one of the milestones in the history of functional analysis. In the early
fifties A. F. Ruston, T. Lezański and A. Grothendieck almost simul-
taneously defined determinants for nuclear or integral operators on a
Banach space. In the seventies, A. Pietsch developed an axiomatic ap-
proach to the determinant of elements of certain operator ideals. In
1978, J. Puhl [17] studied the trace on the socle and nuclear elements
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of a semisimple Banach algebra, basing his difficult arguments on the
standard trace defined for finite-rank operators. In [5] it was shown that
the trace and determinant on the socle of a Banach algebra can be de-
veloped in a purely spectral and analytic way, that is to say internally,
without using operators on the algebra.

The essential ingredient in all the arguments is the fact that the spec-
trum is an analytic multifunction. So this point of view gives us the
possibility to extend almost all the results of [5] to more general sit-
uations where the spectrum is also analytic, for instance the case of
Jordan-Banach algebras. For a finite-dimensional Jordan algebra A the
trace is defined on A using the trace of the left multiplication opera-
tor Lx defined on A by Lxa = xa. In this paper we shall define the trace
and determinant for elements of the socle of an arbitrary Jordan-Banach
algebra in a purely spectral and internal way. At this point it is worth
mentioning that purely algebraic proofs of some of our results have been
given by O. Loos in [12].

We recall that a complex Jordan algebra A is non-associative and the
product satisfies the identities ab = ba and (ab)a2 = a(ba2) for all a,
b in A (see [21] for the theory of Jordan algebras). A unital Jordan-
Banach algebra is a Jordan algebra with a complete norm satisfying
‖xy‖ ≤ ‖x‖‖y‖, for x, y ∈ A and ‖1‖ = 1. Equivalently, we could
define a unital Jordan-Banach algebra as a Banach space A over C with
a continuous quadratic map U from A to the bounded linear operators
on A, written as x → Ux and a distinguished element 1 ∈ A satisfying
in particular the following identities:

U1 = Id,

U(Uxy) = UxUyUx,

UxVy,x = Vx,yUx,

where Vx,yz = Ux+zy−Uxy−Uzy is trilinear in x, y, z and Ux,x = 2Ux.
The U operators can be recovered by Uxy = 2x(xy) − x2y. The linear
Jordan product xy is defined by 2xy = Ux,y1, and powers inductively
by x0 = 1, xn+1 = xxn. An element x ∈ A is said to be invertible if
there exists y ∈ A such that xy = 1 and x2y = x. This is equivalent
to the operator Ux having inverse Uy. For an element x of a Jordan-
Banach algebra A, the spectrum of x is by definition the non-empty set
of complex numbers λ such that λ− x is not invertible.
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The main tool in all the arguments is the following theorem which is
an immediate consequence of the fact that λ −→ Sp(f(λ)) is an analytic
multifunction, where f is an analytic function from a domain D ⊂ C into
a Jordan-Banach algebra, and of Theorem 7.1.7 of [1]. In the following
we use the symbol #S to denote the cardinality of the set S.

Theorem 1.1. Let A be a Jordan-Banach algebra with nonzero socle.
Suppose that f is an analytic function from a domain D of C into the
socle of A. Then there exist an integer N and a closed discrete subset F
of D such that

#(Sp f(λ)\{0}) = N for λ ∈ D\F

#(Sp f(λ)\{0}) < N for λ ∈ F.

2. The multiplicity of a spectral value

Throughout this paper we shall assume that the Jordan-Banach alge-
bra A is semisimple with an identity. Here semisimple means that the
Jacobson radical vanishes. We recall that an idempotent p is minimal
if UpA = Cp, in which case UpA is a minimal inner ideal. By definition
the socle of A, denoted by SocA, is the sum of all minimal inner ideals
of A. By Osborn-Racine theorem [16] the socle of A is an ideal and
it is the sum of simple ideals generated by minimal projections. By a
theorem of Aupetit-Baribeau [4] the socle of a scattered Jordan-Banach
algebra is not reduced to zero. It is easy to see that the elements of
the socle are algebraic, so they have finite spectrum. Consequently by
Newburgh’s theorem the spectrum function is continuous on the socle
(see [1, Corollary 3.4.5], and [15]).

For a semisimple Jordan-Banach algebra, it is known that the so-
cle coincides with the largest von Neumann regular ideal, as shown by
A. Fernández López and A. Rodŕıguez Palacios in [8]. Given a semisim-
ple Jordan-Banach algebra, A. Fernández López proved that its socle is
an algebraic ideal and conversely if I is any algebraic ideal then every
element of I can be written as the sum of an element of the socle and a
nilpotent element. This result was improved by M. Benslimane, O. Jaa
and A. Käıdi [6] who proved that every element of a spectrally finite
ideal can be written as the sum of an element of the socle and an el-
ement whose square is zero. Using recent results of O. Loos [11] and
A. Rodŕıguez Palacios [18], it can be proved that a spectrum-finite ideal
of A is included in the socle.
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The rank of a ∈ A is defined in [2] as the maximum of the number
of points of SpUxa\{0}, when x ∈ A, if it exists, otherwise the rank is
infinite. It is also proved that the set of finite-rank elements coincides
with the socle. This rank is equal to the algebraic rank defined by
O. Loos [10], as this was shown in [9]. We recall that a ∈ SocA is
said to be a maximal-finite-rank element if #(Sp a\{0}) = rank(a). Let
a ∈ A be a finite-rank element. By the definition of the rank, the
set E(a) = {x : #(SpUxa\{0}) = rank(a)} is non-empty. If x ∈ A
we have #(SpUxa\{0}) ≤ rank(Uxa) ≤ rank(a) ([2, Theorem 3.5]),
consequently Uxa is a maximal-finite-rank element when x belongs to
E(a). In the associative case, maximal finite-rank elements have a simple
structure, they are linear combinations of orthogonal projections ([5,
Theorem 2.8]). What can be said in the Jordan-Banach case?

Theorem 2.1 (Density of maximal finite-rank elements). Let a be a fi-
nite-rank element of A. Then E(a) is a dense open subset of A. Conse-
quently the set of maximal finite-rank elements is dense in the socle.

Proof: The proof is almost identical to the proof of Theorem 2.2 in [5],
replacing everywhere xa by Uxa.

Theorem 2.2. Let a be a finite-rank element of A. Let Γ be an ori-
ented regular contour, not intersecting Sp a, and denote by 
0, 
1 re-
spectively its interior and its exterior. By upper semicontinuity of the
spectrum there exists an open ball B in A, centred at the identity, such
that SpUxa ∩ Γ = ∅ for x ∈ B. Then for x, y ∈ B ∩ E(a) we have

#(SpUxa ∩
i) = #(SpUya ∩
i)

for i = 0, 1.

Proof: By Theorem 2.1, B ∩ E(a) is non-empty. So let x, y ∈ B ∩ E(a)
and let D be the convex domain of C containing 0 and 1 such that
λ ∈ D is equivalent to λx+ (1− λ)y ∈ B. Taking f(λ) = Uλx+(1−λ)y(a)
which has finite-rank, and applying the Localisation Principle ([1, The-
orem 7.1.5]) to the analytic multifunctions λ −→ Sp f(λ) ∩ 
i, by the
Scarcity Theorem we conclude that there exist two integers N0, N1 and
two closed discrete subsets F0, F1 of D such that{

#(Sp f(λ) ∩
i) = Ni for λ ∈ D\Fi

#(Sp f(λ) ∩
i) < Ni for λ ∈ Fi.
(1)

To prove the theorem we have to show that 0, 1 /∈ F0 ∪ F1. Suppose
for instance that 0 ∈ F0 ∪ F1. For λ /∈ F0 ∪ F1 we have

# SpUya = #(SpUya∩
0) + #(SpUya∩
1) < N0 +N1 = # Sp f(λ).
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If 0 ∈ SpUya the relation (1) implies m + 1 = # SpUya < N0 + N1 =
# Sp f(λ), from the definition of the rank, where m = rank(a), so this is
absurd. If 0 /∈ SpUya by upper semicontinuity of the spectrum we can
choose λ /∈ F0 ∪ F1 such that 0 /∈ Sp f(λ). Relation (1) implies

m = # SpUya < N0 + N1 = # Sp f(λ) = m

and this is also absurd. By a similar argument the case 1 ∈ F0 ∪F1 also
gives a contradiction, so the theorem is proved.

The number #(Sp(Uxa) ∩ 
0) which is independent of x by Theo-
rem 2.2, is denoted by m(Γ, a) and is called the multiplicity of a asso-
ciated to Γ. It is independent of Γ if the corresponding spectral points
of a in 
0, 
1 do not change. For α in Sp a we define m(α, a), the
multiplicity of a at α, as m(Γ, a) where Γ is a small circle centred at α
and isolating α from the rest of the spectrum. We have m(α, a) ≥ 1. It
is not difficult to see that

m(Γ, a) =
∑

α∈Sp a∩�0

m(α, a).

If a is a maximal finite-rank element then necessarily we must have
m(α, a) = 1 for every α ∈ Sp a, because 1 ∈ B ∩ E(a).

In particular if we take for Γ a contour surrounding all the spectrum
of a we obtain

∑
α∈Sp a

m(α, a) =

{
1 + rank(a) if 0 ∈ Sp a,

rank(a) if 0 /∈ Sp a.
(2)

In fact we shall see that the multiplicity of a at α �= 0 is equal to the
rank of the Riesz projection associated to a and α.

Let α ∈ C and Γ be a small curve isolating α from the rest of the
spectrum of a. By definition the Riesz projection is

p(α, a) =
1

2πi

∫
Γ

(λ− a)−1 dλ.(3)

The Holomorphic Functional Calculus implies that the p(α, a) are
orthogonal projections for different α and their sum is one.

For α �= 0, the identity (λ− a)−1 = 1
λ + 1

λa(λ− a)−1 implies that

p(α, a) =
a

2πi

∫
Γ

1
λ

(λ− a)−1 dλ,(4)

where Γ is a small circle isolating α from the rest of Sp a ∪ {0}.
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In the case of Banach algebras, J. Zemánek proved in [20] that two
projections p, q such that ||p − q|| < 1 are analytically connected. In
particular they have the same rank by Lemma 2.5 of [5]. We now extend
this result to Jordan-Banach algebras.

Theorem 2.3. Let p, q be two projections of A such that ρ(p− q) < 1,
where ρ denotes the spectral radius. Then there exists s ∈ A such that
s2 = 1, q = Usp and p = Usq. In particular rank(p) = rank(q).

Proof: a) Let L be the non-closed subalgebra generated by 1, p, q. By the
Shirshov-Cohn Theorem [21] this algebra has a faithful representation as
a subalgebra of a special Jordan algebra B+, where B is an associative
algebra with identity. We denote by x • y the associative product. Then
taking a = p+q−1 we have p•a = p•q = a•q. Moreover a2 = 1−(p−q)2

and (p− q)2 •p = (p+ q−p• q− q •p)•p = p−p• q •p = p• (p− q)2 and
(p−q)2 •q = q−q •p•q = q •(p−q)2. Consequently we have p•y = y•p
and q•y = y•q for all y in the Jordan algebra C((p−q)2) generated by 1
and (p−q)2. Let t = Uya = y•a•y = y2•a for y ∈ C((p−q)2). Then we
have t2 = y2•a2•y2 = Uy2(1−(p−q)2). Now we have p•t = p•y•a•y =
y • p • a • y = y • p • y • a = y2 • p • a = y2 • a • q = y • a • y • q = t • q,
similarly t • p = q • t. Finally we have Utp = t • p • t = 1

2 (t2 • q + q • t2).
All of this proves that the following Jordan identities are true in A:{

t2 = Uy2(1 − (p− q)2)

Utp = qt2
(5)

for t = Uya, y ∈ C((p − q)2). By continuity these identities certainly
extend for y in the closure of C((p− q)2).

b) Now suppose that ρ(p − q) < 1. By the Holomorphic Functional
Calculus we can define (1−(p−q)2)−

1
4 by a convergent series containing

only terms with even powers of p − q. Consequently this element is in
the closure of C((p − q)2). Taking y = (1 − (p − q)2)−

1
4 and s = Uya

we conclude from (5) that s2 = 1, Usp = q and p = Us−1q = Usq.
Consequently p and q have same rank by [2, Theorem 3.5].

Corollary 2.4. Let p, q be two projections of A. If p, q are in the
same connected component of the set of projections there exists a se-
quence s1, . . . , sn of elements of A such that s2

i = 1 (i = 1, . . . , n),
p = Us1 . . . Usnq and q = Usn . . . Us1p. In particular p and q have the
same rank.
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Proof: Since p and q lie in the same connected component, we know by
a standard topological result (see for example [7, Proposition 19.2]) that
there exist a chain of points r1, . . . , rn+1 such that p = r1, q = rn+1

and ‖ri − ri+1‖ < 1 (i = 1, . . . , n). By n successive applications of
Theorem 2.3, we obtain the result.

Modifying slightly the argument of the proof of Corollary 3.12 of [2]
we obtain the following

Lemma 2.5. Let a be a finite-rank element. Then

rank(a2) = max
x∈A

#(SpUax\{0}) ≤ rank(a).

Consequently the quadratic ideal UaA contains at most rank(a) orthogo-
nal non-zero projections. If p is a projection then

rank(p) = max
x∈A

#(SpUpx\{0}).

Proof: By the Shifting Principle [21, p. 315] we have

SpUax
2\{0} = SpUxa

2\{0}, for a, x ∈ A.

Consequently, it follows from the definition of the rank that,

rank(a2) = max
x∈A

#(SpUax
2\{0}).

Let x ∈ A be fixed and |λ| > ρ(x) (the spectral radius of x) then x−λ =
y2, by the Holomorphic Functional Calculus. Consequently it follows
that #(SpUa(x−λ)\{0}) ≤ rank(a2), for |λ| > ρ(x). So by the Scarcity
Theorem this is true for every λ, in particular for λ = 0. All of this
implies that rank(a2) = maxx∈A #(SpUax\{0}). The second inequality
is a consequence of Corollary 3.6 of [2]. Suppose now that UaA contains
r + 1 orthogonal projections p1, . . . , pr+1 (where r = rank(a)). Then
b = p1 + 2p2 + · · · + (r + 1)pr+1 ∈ UaA and {1, 2, . . . , r + 1} ⊂ Sp b but
this contradicts the second inequality. The last part is obvious because
p = p2.

We now prove the fundamental result of this paper.

Theorem 2.6. Let a be a finite-rank element and α1, . . . , αn some non-
zero elements of its spectrum. If p denotes the Riesz projection associated
to a and {α1, . . . , αn} (which is the sum of the Riesz projections associ-
ated to a and the different αi) then we have

rank(p) = m(α1, a) + · · · + m(αn, a).
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Proof: a) From Theorem 2.2 and the definition of multiplicity there ex-
ists ε0 > 0 such that

m(α1, a) + · · · + m(αn, a) = max
||x−1||<ε

#(SpUxa ∩
0)

for 0 < ε < ε0, where 
0 is a domain limited by a regular contour Γ sepa-
rating α1, . . . , αn from the rest of the spectrum of a and 0. Consequently
by the Holomorphic Functional Calculus we have

m(α1, a) + · · · + m(αn, a) = max
||x−1||<ε

#(Sp qUxa\{0})

where q denotes the Riesz projection associated to Uxa and Γ, that is
the sum of the Riesz projections associated to Uxa and the different
α1, . . . , αn. The proof of this is almost identical to the proof of Theo-
rem 3.3.4 in [1]. Consequently

m(α1, a) + · · · + m(αn, a) ≤ max
||x−1||<ε

(rank qUxa) ≤ rank(q),

by [2, Corollary 3.6]. If we take ε > 0 small enough, then we can suppose
that ‖p− q‖ < 1, so by Theorem 2.3, we have

m(α1, a) + · · · + m(αn, a) ≤ rank(p).(6)

b) We now prove a small preliminary result. If b has finite-rank, α �= 0
is in the spectrum of b and if q is the Riesz projection associated to b
and α, then UqA ⊂ UbA. This comes immediately from the fact that we
have q = b

2πi

∫
Γ

1
λ (λ − b)−1 dλ, that is q = bu where u is in a maximal

associative Jordan algebra containing 1 and b, so q = q2 = (bu)(bu) =
b2u2 = Ubu

2 ∈ UbA consequently, because UbA is a quadratic ideal, we
have UqA ⊂ UbA.

c) We now prove the converse inequality of (6). By Theorem 2.2 we
may choose x arbitrarily near to 1 such that{

m(α1, a) + · · · + m(αn, a) = #(SpUxa ∩
0)

#(SpUxa\{0}) = rank(Uxa) = rank(a).

We set r = rank(a), m = m(α1, a) + · · · + m(αn, a), b = Uxa. We know
that Sp b contains m points in 
0 and r−m nonzero points outside. De-
note by q1, . . . , qr−m the r−m Riesz projections associated to b and to the
r −m non-zero points outside of 
0. These projections are orthogonal
and we have UqiA ⊂ UbA by part b). Moreover these qi are orthogonal
to q, the Riesz projection associated to b and Γ. Suppose rank(q) > m,
then by Lemma 2.5 there exists y ∈ A such that #(SpUqy\{0}) > m.
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By the Holomorphic Functional Calculus applied to Uqy we can con-
struct m + 1 orthogonal non-zero projections p1, . . . , pm+1 which are in
UqA, consequently in UbA, by part b). Every pi is orthogonal to every qj

because pi ∈ UqA, qj ∈ UqjA, q is orthogonal to qj , so we apply Propo-
sition 6 of [4]. Hence UbA contains r+1 nonzero orthogonal projections
q1, . . . , qr−m, p1, . . . , pm+1, but this violates Lemma 2.5 applied to b. So
rank(q) ≤ m. But for x near to 1, p and q satisfy the conditions of
Theorem 2.3, that is rank(p) = rank(q)

Corollary 2.7. If p is a non-zero projection of the socle and p �= 1 then
m(0, p) = 1 and m(1, p) = rank(p).

Proof: We have 1+rank(p) = m(0, p)+m(1, p) and we apply Theorem 2.6
to a = p, α1 = 1, noticing that the Riesz projection associated to p and 1
is p itself because

p

2πi

∫
Γ

(λ− p)−1 dλ

λ
=

p

2πi

∫
Γ

(
p

λ− 1
+

1 − p

λ

)
dλ

λ

=
p

2πi

∫
Γ

dλ

λ(λ− 1)

= p.

3. The trace and the determinant

If a ∈ SocA we define the trace of a by

Tr(a) =
∑

λ∈Sp a

λm(λ, a),(7)

and the determinant of 1 + a by

Det(1 + a) =
∏

λ∈Sp a

(1 + λ)m(λ,a).(8)

It is obvious that Det(1 + a) �= 0 is equivalent to 1 + a invertible.
From (7) and (8) it is clear that we have

|Tr(a)| ≤ ρ(a) rank(a),(9)

and for ρ(a) < 1 we have

(1 − ρ(a))rank(a) ≤ |Det(1 + a)| ≤ (1 + ρ(a))rank(a),(10)

where ρ denotes the spectral radius.
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Theorem 3.1. Let f be an analytic function from a domain D of C

into the socle of A. Then Tr(f(λ)) and Det(1 + f(λ)) are holomorphic
on D.

Proof: The proof is identical to the proof of Theorem 3.1 of [5] except
that Lemma 2.5 and Theorem 2.6 of [5] must be replaced by Theorem 2.3
and Theorem 2.6.

Using the previous arguments with some results from [5] we obtain:

Theorem 3.2. We have the following properties of the trace:
1) If a, b ∈ SocA, then Tr(a + b) = Tr(a) + Tr(b).
2) The trace is continuous on Fn, the set of elements with rank less

or equal to n.
3) If a ∈ SocA, then ρ(a) = lim supk→∞ |Tr(ak)| 1

k .
4) If a ∈ SocA, φ(x) = Tr(ax) is a bounded linear functional on A.

Proof: 1) By Theorem 3.1 we know that h(λ) = Tr(a + λb) is entire.
Consequently,

lim
λ→∞

h(λ)
λ

= lim
λ→∞

Tr
(a

λ
+ b

)
= lim

µ→0
Tr(µa + b) = Tr b.

By Liouville’s theorem, h(λ) = λTr(b) + c, with c = h(0) = Tr a.

2) If a, b ∈ Fn then

|Tr b− Tr a| ≤ rank(b− a)ρ(b− a) ≤ 2n‖b− a‖.

3) Exactly the same as in [5, Theorem 3.5].

4) Follows from 1) and 2) because ax ∈ F2n if n = rank(a).

Corollary 3.3. Let p1, . . . , pn be orthogonal finite-rank projections and
let α1, . . . , αn be non-zero complex numbers. Then

rank(α1p1 + · · · + αnpn) = rank(p1) + · · · + rank(pn).

Proof: We may suppose that all the projections are non-zero. By [2,
Theorem 3.9], we have

rank(α1p1 + · · · + αnpn) ≤ rank(p1) + · · · + rank(pn).

Moreover

rank(p1 + · · · + pn) = rank
(

(α1p1 + · · · + αnpn)
(
p1

α1
+ · · · + pn

αn

))

≤ rank(α1p1 + · · · + αnpn),
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by [2, Corollary 3.6] and the fact that the algebra generated by the
pi is associative. So without loss of generality we may suppose that
α1 = · · · = αn = 1. In this case we set p = p1 + · · · + pn which is a
non-zero projection. By Corollary 2.7 and Theorem 3.2 1) we have

rank(p) = m(1, p) = Tr(p) = Tr(p1) + · · · + Tr(pn)

= rank(p1) + · · · + rank(pn).

The following lemma is essential in the proof of the next theorem. We
include a detailed proof here for the sake of completeness.

Lemma 3.4. Let f(λ, µ) be a complex-valued function of two complex
variables which is separately entire in λ, µ and such that f(λ, µ) �= 0 for
all λ, µ ∈ C. Suppose moreover that there exists two positive constants A,
B such that

|f(λ, µ)| ≤ eA|λ|+B|µ|.

Then there exist two complex constants α, β such that

f(λ, µ) = f(0, 0)eαλ+βµ.

Proof: Since the complex plane is simply connected, by [19, Theo-
rem 13.11], there exists a function Φ(λ, µ) separately entire in λ, µ such
that exp(Φ(λ, µ)) = f(λ, µ). Then we have �Φ(λ, µ) ≤ A|λ| + β|µ|. So
if we fix µ and apply Liouville’s theorem for the real part we conclude
that Φ(λ, µ) = λf1(µ) + f2(µ) for every λ. Taking two different values
of λ and solving the system of two equations in f1, f2 we conclude that
f1, f2 are entire in µ. Fixing µ again and taking λ real and going to
+∞ we conclude that �f1(µ) ≤ A for arbitrary µ, so again we conclude
that f1(µ) is a constant α. A similar argument with λ fixed proves that
Φ(λ, µ) = µg1(λ) + g2(λ), where g1(λ) is a constant β. Finally, we have
−λα+ g2(λ) = −βµ+ f2(µ) for every λ, µ, hence this quantity must be
a constant and we get the result.

Theorem 3.5. Let a, b ∈ SocA, then ea − 1, eb − 1, ea+b − 1 ∈ SocA
and we have the following properties:

1) Det ea+b = Det(ea) Det(eb).
2) Det(ea) = eTr(a).
3) DetU1+a(1 + b) = (Det(1 + a))2 Det(1 + b).
4) Det((1 + a)(1 + b)) = Det(1 + a) Det(1 + b) if 1, a, b generate an

associative subalgebra.
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Proof: The first relations follow from the expansion of the exponential
function in power series and the fact that SocA is an ideal. Precisely,
we have ea − 1 = a(1 + a

2! + a2

3! + . . . ) ∈ SocA when a ∈ SocA.

1) Let f(λ, µ) = Det(eλa+µb) then

|f(λ, µ)| ≤ ‖eλa+µb‖N

where N is a constant bounding the rank of eλa+µb − 1 by [2, Theo-
rem 3.4]. Then

|f(λ, µ)| ≤ eN ||a|||λ|+N ||b|||µ|.

Moreover f(λ, µ) �= 0 since eλa+µb is invertible. From Lemma 3.4 we
know that f(λ, µ) = ec1λ+c2µ so ec1 = Det ea and ec2 = Det eb.

2) We have

Det(eλa) =
∏

α∈Sp a

eλαm(eλα−1,eλa−1) =
∏

α∈Sp a

eλαm( eλα−1
λ , eλa−1

λ )

for λ �= 0. The argument of 1) shows that φ(λ) = Det(eλa) = eλc, so

c =
∑

α∈Sp a

αm

(
eλα − 1

λ
,
eλa − 1

λ

)
.

Then Tr( eλa−1
λ ) → c when λ → 0. But by Theorem 3.2, Tr( eλa−1

λ ) has
an analytic continuation at 0 as Tr a. Thus c = Tr a.

3) Put f(λ, µ) = DetUeλaeµb with λ, µ ∈ C. This function is entire
and never vanishes, so f(λ, µ) = eαλ+βµ. Simple calculations show that
f(λ, 0) = eαλ = (Det eλa)2, and f(0, µ) = eβµ = Det eµb, so we have
f(λ, µ) = (Det eλa)2 Det eµb. We can suppose 1 + a and 1 + b invertible
because otherwise the formula is trivially true. Since 1 + a and 1 + b
are invertible and of finite spectrum, by the Holomorphic Functional
Calculus there exist x, y ∈ A such that 1 + a = ex, 1 + b = ey, and the
result follows by taking λ = µ = 1.

4) Follows from the associative case [5].

Remark 3.6. Property 4) is not true in general, even for a finite-
dimensional Jordan-Banach algebra. To see this, one has just to con-
sider the Jordan algebra of matrices M2(C) with the usual Jordan prod-
uct x ◦ y = 1

2 (xy + yx). Now take the following two matrices

a =
(
−1, 1
1, −1

)
, b =

(
0, 0
0, −2

)
,
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for which we have

(1 + a) ◦ (1 + b) = 0

and

Det(1 + a) = Det(1 + b) = −1.
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spectrum finite ideal, Quart. J. Math. Oxford Ser. (2) 42(165)
(1991), 1–7.

[7] G. Choquet, “Topology”, Pure and Applied Mathematics 19, Aca-
demic Press, New York-London, 1966.
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