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THE SOLUTION OF THE KATO PROBLEM IN TWO
DIMENSIONS

Steve Hofmann∗ and Alan McIntosh

Abstract
We solve, in two dimensions, the “square root problem of Kato”.
That is, for L ≡ − div(A(x)∇), where A(x) is a 2 × 2 accretive
matrix of bounded measurable complex coefficients, we prove that
L1/2 : L2

1(R2) → L2(R2).

1. Introduction, history, and statement of the main
theorem

Let A be an n×n matrix of complex, L∞ coefficients, defined on Rn,
and satisfying the ellipticity (or “accretivity”) condition

λ|ξ2| ≤ Re〈Aξ, ξ〉, ‖A‖∞ ≤ Λ,(1.1)

for ξ ∈ Cn and for some λ, Λ such that 0 < λ ≤ Λ < ∞. Here 〈, 〉
denotes the usual inner product in Cn, so that

〈Aξ, ξ〉 ≡
∑

i,j

Aij(x)ξj · ξi.

We define a divergence form operator

Lu ≡ −div(A(x)∇u),(1.2)

which we interpret in the usual weak sense via a sesquilinear form.
The accretivity condition (1.1) enables one to define an accretive

square root
√

L ≡ L1/2 (see [10], [11]), and a fundamental problem
essentially posed by Kato [11] (but see also [14]) is to establish the
inequality

‖
√

Lf‖L2(Rn) ≤ C‖∇f‖L2(Rn),(1.3)
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with C depending only on n, λ and Λ. The latter estimate is connected
with the question of the analyticity of the mapping A → L

1
2 , which in

turn has applications to the perturbation theory for certain classes of
hyperbolic equations (see [13]).

To establish (1.3) has become known as the “Kato Problem”, or
“square root problem”. It has hitherto been solved completely when
n = 1 [6], and for perturbations of constant matrices [5], [8], [7], [4].
More recently, a restricted version of the problem, also essentially posed
by Kato in [11], (see also [16], [13]), has been solved in [2]. The re-
stricted version treats perturbations of real, symmetric matrices with
L∞ coefficients.

The present paper is an exposition of a result presented by one of us
at the El Escorial meeting in summer 2000, namely, the solution to the
“Kato problem” in 2 dimensions. Subsequently, the circle of ideas in-
volved in this paper have been combined with a sectorial decomposition,
and with L2 decay estimates for resolvent kernels, to obtain the complete
solution to the Kato problem in all dimensions. The latter result will
appear in our forthcoming joint papers with M. T. Lacey [9], and with
Auscher, Lacey and Tchamitchian [1].

Our main result is the following:

Theorem 1.4. Suppose that A is a 2× 2 matrix of L∞, complex coeffi-
cients, defined on R2, such that (1.1) holds, and let L ≡ −div(A(x)∇).
Then the square root estimate (1.3) holds, with C ≡ C(λ, Λ), and n = 2.

Acknowledgements. This project began while the second named au-
thor was at Macquarie University, and the first author visited him there
in 1996, with sponsorship provided by the Australian Research Coun-
cil. We thank Pascal Auscher and Philippe Tchamitchian for numerous
interesting and useful conversations concerning the problem, and in par-
ticular, for describing to us their joint work [4].

2. Preliminary arguments

In the sequel, the generic constant C, which may vary from one place
to the next, is allowed to depend on ellipticity (i.e. upon the constants λ
and Λ appearing in (1.1)). When a constant depends on other parame-
ters, that dependence will be noted explicitly (although in such cases,
dependence on ellipticity will remain implicit).

We shall deduce Theorem 1.4 as a consequence of a “Tb Theorem
for square roots” proved by Auscher and Tchamitchian [4], and in ad-
dition, we shall require certain estimates for heat kernels in 2 (space)
dimensions, proved in [3] (see also [4]). Let us state the latter first.
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Lemma 2.1 ([3]). Let A, L be as in Theorem 1.4. Let Wt2(x, y) denote
the kernel of the operator e−t2L. Then in R2, we have the following
“Gaussian Property”:

(i) |Wt2(x, y)| ≤ Ct−2 exp
{
−|x − y|2

Ct2

}
(G)

(ii) |Wt2(x + h, y) − Wt2(x, y)| + |Wt2(x, y + h) − Wt2(x, y)|

≤ C
|h|α

tα+2
exp

{
−|x − y|2

Ct2

}
,

where the latter inequality holds for some α depending only on λ and Λ,
whenever either |h| ≤ t, or |h| ≤ |x − y|/2.

We now set ϕ(x) = x. In the sequel, ϕ will always denote this function.
We define a family {γt}∞t=0 of mappings γt : R2 → C2 by

γt(x) ≡ e−t2LtLϕ ≡ −e−t2Lt div A,(2.2)

since the Jacobian matrix ∇ϕ ≡ 1, the 2 × 2 identity matrix. It is a
routine matter to deduce from Lemma 2.1 that

(2.3) C0 ≡ sup
t>0

(
‖γt(·)‖L∞(R2)

+tα sup
h$=0

‖|h|−α (γt(· + h) − γt(·)) ‖L∞(R2)

)2

< ∞,

and moreover C0 depends only on ellipticity. We omit the details.
Now let us describe the “Tb Theorem for square roots” of [4], which

we had alluded to above. Given a cube Q, let &(Q) denote the side
length of Q, and let kQ denote the concentric dilate of Q, having side
length k&(Q). Suppose that for every cube Q ⊆ R2, there is a func-
tion F ≡ FQ : 5Q → C2, which satisfies
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(i)
∫

5Q
|∇FQ|2 ≤ C|Q|(2.4)

(here ∇FQ denotes the transpose of the Jacobian matrix)

(ii)
∫

5Q
|LFQ|2 ≤ C

|Q|
(&(Q))2

(iii) sup
Q

1
|Q|

∫

Q

∫ "(Q)

0
|γt(x)|2 dt

t
dx

≤ C

{
C0 + sup

Q

1
|Q|

∫

Q

∫ "(Q)

0
|γt(x)Pt(∇FQ)(x)|2 dt

t
dx

}
,

where Pt denotes a nice approximate identity, given by convolution with
a function t−2P (x/t) ≡ Pt(x) ∈ C∞

0 , with 0 ≤ P (x) ≤ 1, suppPt(x) ⊆
Bt(0) ≡ {x ∈ R2 : |x| < t}, and

∫
P (x) dx = 1. We then have the

following

Theorem 2.5 ([4, Chapter 3.2]). Suppose that A, L are as in Theo-
rem 1.4, and suppose that for all cubes Q ⊆ R2, there is a mapping
FQ : 5Q → C2 satisfying (2.4). Then the square root estimate (1.3)
holds for L

1
2 .

Thus, to prove Theorem 1.4, it suffices to construct FQ satisfying
(2.4), and it is this construction which is the contribution of the present
work.

We note that in [4], condition (2.4)(iii) is stated in a more flexible
manner, but the present formulation will suffice for our purposes. More-
over, higher dimensional versions of Theorem 2.5 are given in [4], as well.
Indeed, in [1], [2], and [9], we also exploit strongly the circle of ideas
surrounding the “Tb Theorem” of [4] and its proof.

Before embarking on our construction of FQ, we show that, in lieu
of (2.4)(iii), it will suffice to establish the following: there exists η ≡
η(λ, Λ) > 0, such that for every cube Q ⊆ R2, there is a subset EQ ⊆ Q,
with |EQ| ≥ η|Q|, and on which we have the estimate

1
|Q|

∫

EQ

∫ "(Q)

0
|γt(x)|2 dt

t
dx ≤ C

{
‖γt‖2

∞

+
1
|Q|

∫

Q

∫ "(Q)

0
|γt(x)Pt(∇FQ)(x)|2 dt

t
dx

}
.

(2.6)
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The fact that it suffices to prove (2.6) is a consequence of the following
“John-Nirenberg Lemma for Carleson measures”, which is proved in [2,
Section 6].

Lemma 2.7. Fix Q. Suppose that 0 ≤ Kt(x) ≤ B0 in Q, and that

|Kt(x) − Kt(x′)| ≤ B0
|x − x′|α

tα
,

for some α > 0, whenever x, x′ ∈ Q. Suppose also that there is a
number η ∈ (0, 1], and a number β, such that for every dyadic sub-
cube Q′ ⊆ Q, there is a subset E′ ⊆ Q′, with

|E′| ≥ η|Q′|,

and ∫

E′

∫ "(Q′)

0
Kt(x)

dt

t
dx ≤ β|Q′|.

Then the following estimate holds in Q:

1
|Q|

∫

Q

∫ "(Q)

0
Kt(x)

dt

t
dx ≤ C(α, η)(B0 + β).

Let us now show that (2.6) and Lemma 2.7 imply (2.4)(iii), so that
it will suffice to construct FQ satisfying (2.4)(i), (ii) and (2.6). To this
end, we observe that, by (2.3),

Kt(x) ≡ |γt(x)|2

satisfies the size and Hölder continuity hypotheses of Lemma 2.7, in
every cube Q, with B0 ≤ C0. Now, let β denote the supremum over all
Q ⊆ R2, of the right hand side of (2.6). It is shown in [4, Chapter 3.2],
that β ≤ C < ∞. Thus, the hypotheses of Lemma 2.7 hold in every Q,
and estimate (2.4)(iii) now follows.

In the next two sections, we construct FQ, and verify that it has the
required properties.

3. Proof of Theorem 1.4: some technical estimates

Throughout this section and the next, we fix Q, with side length
&(Q) ≡ ρ. We now define a mapping FQ : 5Q → C2, which is our can-
didate for the mapping FQ required by Theorem 2.5 (the “Tb” criterion
of [4]). We recall that ϕ(x) ≡ x. Let ε > 0 be a small number to be
chosen. We define F ≡ FQ to be

F ≡ e−ε2ρ2Lϕ.(3.1)
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Using Lemma 2.1 (“Property (G)”), the reader may readily verify that
F satisfies (2.4)(i) and (ii), and we omit the routine details (although
we do point out that, to prove (i), one mimics the proof of Cacciopoli’s
inequality; estimate (ii) is even easier). We observe that the constant
in (2.4)(ii) is on the order of Cε−2, but as we shall eventually choose ε
to depend only upon λ and Λ, this will be harmless. We emphasize,
however, that the constant in (2.4)(i) is independent of ε, and this fact
is important. The hard part, of course, is to verify (2.6), and it is to this
task that the next two sections are dedicated.

To this end, we begin with the following observation:
∫

5Q
|∇F |p ≤ Cp|Q|,(3.2)

for some p > 2 depending only on ellipticity. We emphasize that Cp is
independent of ε. Of course, this estimate is in the spirit of a well known
result of N. Meyers. The proof of (3.2) follows fairly routinely from [4,
Proposition 22, Chapter 1.5.2], but for the reader’s convenience, we shall
give the proof in an appendix (Section 5). As an immediate consequence
of (3.2), we have the following

Lemma 3.3. Suppose that B ⊆ Q, with |B| ≤ εδ0 |Q|, for some δ0 > 0.
Let Mρ(f) denote the Hardy-Littlewood maximal function of f , taken
with respect to balls of radius at most ρ. Then there exists δ ≡ δ(δ0, λ, Λ)
such that ∫

B
(Mρ(|∇F |))2 ≤ Cεδ|Q|.

Proof: By definition of Mρ, we may multiply (∇F ) by χ5Q (we recall
that ρ ≡ &(Q)). Now apply Hölder’s inequality and (3.2).

Next, we prove a lemma which will be of fundamental importance
for us.

Lemma 3.4. Let Pt denote the same nice approximate identity appear-
ing in (2.4)(iii) and (2.6). Let τ(x) denote a Lipschitz function with
0 ≤ τ ≤ &(Q), and ‖∇τ‖∞ ≤ ε

1
4 . Then there exists a number δ1 > 0

such that ∣∣∣∣1 − 1
|Q|

∫

Q
det Pτ(x)(∇F )

∣∣∣∣ ≤ Cεδ1 .

Proof: We begin with the following observation, which is merely the
chain rule. Let D ≡ ∂

∂x1
or ∂

∂x2
. Then

D(Pτ(x)f(x)) ≡ ∂

∂t
Ptf(x)

∣∣∣∣
t=τ(x)

Dτ(x) + Pτ(x)(Df)(x),(3.5)
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for any f ∈ L2
1 (here, L2

1 denotes the homogeneous Sobolev space: L2
1 ≡

{f : ∇f ∈ L2}), in the sense of distributions.
Next, we observe that for t ≤ ρ, and f ∈ L2

1,∣∣∣∣
∂

∂t
Ptf

∣∣∣∣ ≤ CMρ(|∇f |).(3.6)

Indeed, ∂
∂tPt ≡ 1

t Qt, where Qt1 = 0, so that, for any constant m,
∣∣∣∣
∂

∂t
Ptf(x)

∣∣∣∣ ≤
C

t3

∫

|x−y|<t
|f(y) − m| dy.

For an appropriate choice of m, we may readily obtain (3.6), by Poinca-
ré’s inequality, and the fact that we are in two dimensions. We omit the
routine details.

Also, we note that, since ϕ is Lipschitz,

‖F − ϕ‖∞ ≤ Cερ.(3.7)

Indeed, F −ϕ ≡ (e−ε2ρ2L − I)ϕ, and we may then obtain estimate (3.7)
as an easy consequence of Lemma 2.1, and the fact that e−ε2ρ2L1 = 1.
We omit the routine details.

In order to prove Lemma 3.4, we need to dispose of one more prelim-
inary issue. Let (x1, x2) ≡ x, and let Q ≡ I1 × I2, where I1 ≡ [a1, b1],
I2 = [a2, b2], and of course bj − aj = ρ, j = 1, 2. We define

G1(x1) ≡
(∫

I2

(Mρ(|∇F |)(x1, x2))2 dx2

) 1
2

G2(x2) ≡
(∫

I1

(Mρ(|∇F |)(x1, x2))2 dx1

) 1
2

.

Then by (2.4)(i) and Fubini’s Theorem,

‖G1‖2
L2(I1)

+ ‖G2‖2
L2(I2)

≤ C|Q| = Cρ2.

Thus, for j = 1, 2, we have
∣∣∣∣

{
xj ∈ Ij : Gj(xj) >

(ρ

ε

) 1
2
}∣∣∣∣ ≤ Cερ.(3.8)

We claim that for j = 1, 2, there are closed intervals Ĩj ≡ [ãj , b̃j ] ⊆ Ij ,
such that

(i) |Ij\Ĩj | ≤ Cερ

(ii) Gj(ãj) + Gj (̃bj) ≤
√

ρ

ε
.

(3.9)
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Indeed, by (3.8), the set
{
xj ∈ Ij : Gj(xj) >

√ρ
ε

}
cannot contain an

interval of length greater than Cερ. We now set R ≡ Ĩ1 × Ĩ2, and note
that R ⊆ Q, and also

|Q\R| ≤ Cε|Q|.(3.10)

We are now ready to prove Lemma 3.4. We write
∫

Q
det(Pτ(x)(∇F )(x)) dx

=
∫

Q
[Pτ (D1F1)Pτ (D2F2 − D2ϕ2) − Pτ (D2F1)Pτ (D1F2)]

+
∫

Q
Pτ (D1F1 − D1ϕ1) + |Q|

≡ I + II + |Q|,

where Dj ≡ ∂
∂xj

, j = 1, 2, (ϕ1, ϕ2) ≡ (x1, x2) ≡ ϕ, (F1, F2) ≡ F , and of
course Djϕj ≡ 1, so that Pτ (Djϕj) ≡ 1. It is enough to show that, for
some δ1 > 0, one has the bounds |I|, |II| ≤ Cεδ1 |Q|. We treat II first.
By (3.5),

II =
∫

Q
D1[Pτ(x)(F1 − ϕ1)(x)] dx −

∫

Q

∂

∂t
Pt(F1 − ϕ1)|t=τ(x)D1τ(x) dx

≡ II1 + II2.

By (3.6), (2.4)(i), and Schwarz’s inequality,

|II2| ≤ C‖∇τ‖∞|Q| ≤ Cε
1
4 |Q|.

Also, by (3.7),

|II1| =
∣∣∣∣
∫

I2

[Pτ (F1 − ϕ1)(x1, x2)]|x1=b1
x1=a1

dx2

∣∣∣∣ ≤ Cερ2 ≡ Cε|Q|.

Next, we turn to I, which we write as I =
∫

Q\R +
∫

R ≡ I1 + I2. By
(3.10), and Lemma 3.3, we have that |I1| ≤ Cεα|Q|, for some α > 0.
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It remains to consider I2, which, using (3.5), we write as
∫

R
[D1(PτF1)D2{Pτ (F2 − ϕ2)}− Pτ (D2F1)Pτ (D1F2)]

−
∫

R
Pτ (D1F1)

∂

∂t
Pt(F2 − ϕ2)

∣∣∣∣
t=τ(x)

D2τ(x)

−
∫

R

∂

∂t
PtF1

∣∣∣∣
t=τ(x)

D1τ(x)D2{Pτ (F2 − ϕ2)}

≡ I ′2 + I ′′2 + I ′′′2 .

By (3.6), and (2.4)(i), |I ′′2 | ≤ C‖∇τ‖∞|Q| ≤ Cε
1
4 |Q|. Similarly, by (3.5),

(3.6) and (2.4)(i), |I ′′′2 | ≤ Cε
1
4 |Q|.

We turn then to I ′2. We recall that R ≡ [ã1, b̃1] × [ã2, b̃2], where ãj ,
b̃j satisfy (3.9)(ii). Integrating by parts twice, we have that

I ′2 ≡
∫

R
[D2(PτF1)D1{Pτ (F2 − ϕ2)}− Pτ (D2F1)Pτ (D1F2)]

+
∫ b̃1

ã1

[D1(PτF1)Pτ (F2 − ϕ2)]

∣∣∣∣∣

x2=̃b2

x2=ã2

dx1

−
∫ b̃2

ã2

[D2(PτF1)Pτ (F2 − ϕ2)]

∣∣∣∣∣

x1=̃b1

x1=ã1

dx2

≡ J + ∂1 + ∂2.

Since D1ϕ2 ≡ 0, we have that by (3.5), (3.6) and (2.4)(i),

|J | ≤ Cε
1
4 |Q|.

Also by (3.5), (3.6), (3.7), Schwarz’s inequality, and (3.9)(ii), we have
that

|∂1| + |∂2| ≤ Cε
1
2 |Q|.

This concludes the proof of Lemma 3.4.

Next, let 1 denote the 2 × 2 identity matrix. We have the following:

Lemma 3.11. For all t ∈
[√

ερ
2 , ρ

]
, we have

‖Pt(∇F ) − 1‖L∞(2Q) ≤ C
√

ε.
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Proof: Since Pt∇ϕ ≡ Pt1 ≡ 1, we have that

|Pt(∇F ) − 1| = |Pt∇(F − ϕ)| ≤ C

t
ερ ≤ C

√
ε,

by (3.7) and the definition of Pt (or to be more precise, the definition
of ∇Pt).

With all of these preliminary matters out of the way, we are now ready
to begin the main part of the proof of Theorem 1.4, that is, to verify
that our function F satisfies (2.6).

4. Proof of Theorem 1.4: verification of (2.6)

We begin by noting that Lemma 3.11 implies that

/ 1
|Qε|

∫

Qε

det P√
ερ(∇F ) ≥ 1 − C

√
ε,

where Qε ≡
(
1 − ε

1
8

)
Q, and where /z denotes the real part of z. Also,

by (3.2), we have that
1
|Q|

∫

Q
(Mρ(|∇F |))p ≤ Cp.(4.1)

Now, let ρk ≡ 2−kρ, k ≥ 0, where ρ ≡ &(Q). We perform a stopping
time decomposition in the spirit of Carleson’s “Corona” construction,
and reminiscent also of a stopping time argument in recent work of Kenig,
Koch, Pipher and Toro [12], beginning with the two estimates that we
have just noted. The stopping time argument is performed as follows:
subdivide Q dyadically, and stop if either of the following inequalities
hold:

/ 1
|Q′

ε|

∫

Q′
ε

det P√
ερ′(∇F ) ≤ 1

10
(4.2)

or
1

|Q′|

∫

Q′
(Mρ(|∇F |)p ≥ ε−ν ,(4.3)

where ν is a small number to be chosen, ρ′ ≡ &(Q′), and Q′
ε≡

(
1 − ε

1
8

)
Q′.

Otherwise, if neither (4.2) nor (4.3) hold for a dyadic sub-cube, sub-
divide again, and continue in this way, stopping if and only if either
(4.2) or (4.3) are verified. In this way, we select a collection S = {Qj} of
non-overlapping dyadic subcubes of Q, which are maximal with respect
to the property that either (4.2) or (4.3) holds.
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Let B ≡ ∪Qj∈SQj , and set E ≡ Q\B. Eventually, we shall prove that
there is an η > 0, depending only on ellipticity, such that |E| > η|Q|.

We note that if x ∈ E, then for every dyadic subcube Q′ ⊆ Q, with
x ∈ Q′, we have that both of the following hold:

1
|Q′|

∫

Q′
(Mρ(|∇F |))p ≤ ε−ν(4.4)

and

/ 1
|Q′

ε|

∫

Q′
ε

det P√
ερ′(∇F ) ≥ 1

10
.(4.5)

It is an immediate consequence of (4.4) and (4.5), that if ν and ε and are
chosen small enough, depending only on the exponent p in (4.4), then

/ 1
|Q′|

∫

Q′
det P√

ερ′(∇F ) ≥ 1
12

,(4.6)

for any dyadic subcube Q′ containing x. Indeed, |Q′\Q′
ε| = Cε

1
8 |Q′|, and

a simple argument involving Hölder’s inequality yields (4.6). We omit
the routine details.

Next, we split S into two parts: S ≡ S1 ∪ S2, where S1 ≡ {Q′ ∈
S : (4.2) holds}, S2 = {Q′ ∈ S : (4.2) does not hold}, and we split
B ≡ B1 ∪ B2 accordingly:

B1 ≡ ∪Q′∈S1Q
′

B2 ≡ ∪Q′∈S2Q
′.

Now, for cubes in S2, we have that (4.3) must hold, and therefore, we
claim that

|B2| ≤ Cpε
ν |Q|.

Indeed, by (4.3), we have that

ε−ν |B2| ≡
∑

Q′∈S2

ε−ν |Q′| ≤
∑

Q′∈S2

∫

Q′
(Mρ(|∇F |))p

≤
∫

Q
(Mρ(|∇F |))p

≤ Cp|Q|,

where the last inequality is simply (4.1). This proves the claim. Then
for ν fixed, and choosing ε small enough, we have that

|B2| ≤ ε
ν
2 |Q|.(4.7)
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Next, we construct a Lipschitz function τ(x), with ‖∇τ‖∞ ≤ ε
1
4 ,

0 ≤ τ ≤ ρ, and such that τ(x) ≡
√

ερ′, whenever x ∈ (1 − ε
1
8 )Q′, and

Q′ ∈ S. This is easy: on each Q′ ∈ S, we choose a function τQ′(x) ∈ C∞
0 ,

such that supp τQ′ ⊆
(

1 − ε
1
8

2

)
Q′, with 0 ≤ τQ′ ≤

√
ερ′, and τQ′(x) ≡

√
ερ′ on (1 − ε

1
8 )Q′. Clearly, we may choose τQ′ so that ‖∇τQ′‖∞ ≤

Cε−
1
8
√

ε ≤ ε
1
4 , for ε small enough. We now define

τ(x) ≡
∑

Q′∈S
τQ′(x).

It is easy to see that τ(x) has the desired properties, and we omit the
details.

Now, since this function τ(x) satisfies the hypothesis of Lemma 3.4,
we deduce that there is a δ1 > 0 such that

(1 − Cεδ1)|Q| ≤ /
∫

Q
det Pτ(x)(∇F )

≡ /
∫

B1

det Pτ(x)∇F

+ /
∫

B2

det Pτ(x)(∇F ) + /
∫

E
det Pτ(x)(∇F )

≡ T1 + T2 + T3.

(4.8)

By (4.7) and Lemma 3.3, there is a δ > 0 such that

|T2| ≤ Cεδ|Q|,
since we are in two dimensions. Also,

T1 =
∑

Q′∈S1

/
∫

Q′
ε

det Pτ(x)(∇F ) +
∑

Q′∈S1

/
∫

Q′\Q′
ε

det Pτ(x)(∇F )

≡ T ′
1 + T ′′

1 ,

where Q′
ε = (1 − ε

1
8 )Q′. Since

∑
|Q′\Q′

ε| ≤ Cε
1
8

∑
|Q′| ≤ Cε

1
8 |Q|, we

have by Lemma 3.3 that

|T ′′
1 | ≤ Cεδ̃|Q|,

for some δ̃ > 0. Moreover, since τ(x) ≡
√

ερ′ on Q′
ε, we have that, by

(4.2)

T ′
1 ≤ 1

10

∑

Q′∈S1

|Q′
ε| ≤

1
10

|Q|.
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Having fixed δ, δ̃ and δ1, we may therefore choose ε so small that

1
2
|Q| ≤ T3 ≤ C|E| + 1

4
|Q|,(4.9)

where in the last inequality we have used Hölder’s inequality, (4.1), and
the elementary inequality

ab ≤

(
1
γ a

)q′

q′
+

(γb)
p
2

p
2

,(4.10)

for some suitably small choice of γ, with a≡ |E|
1
q′ , b = ‖Mρ(|∇F |)‖2

Lp(Q),
and 1

q′ + 2
p = 1. Clearly, (4.9) implies that

|E| ≥ 1
4C

|Q| ≡ η|Q|.

There remains now one last step in the proof of Theorem 1.4: to
establish that (2.6) holds for the set E which we have constructed. We
recall that ρ ≡ &(Q), and we set ρk ≡ 2−kρ, k = 0, 1, 2, 3, . . . . Thus,

∫ ρ

0

∫

E
|γt(x)|2 dx

dt

t
=

∞∑

k=0

∑

j

∫ ρk

ρk+1

∫

Qk
j ∩E

|γt(x)|2 dx
dt

t
,(4.11)

where for each k ≥ 0, {Qk
j )ck

j=1 denotes the dyadic grid at scale k,
i.e. &(Qk

j ) ≡ ρk. Now suppose that E ∩Qk
j is non-empty. Then (4.4) and

(4.6) hold for Qk
j . We define

Ek
j ≡

{
x ∈ Qk

j : / det P√
ερk

(∇F )(x) ≥ 1
24

, Mρ(∇F )(x) ≤ ε−mν

}
,

where m is a large number to be chosen. We write Qk
j as a disjoint union

Qk
j = Ek

j ∪ Bk
j ∪ Gk

j , where on Bk
j , /det P√

ερk
(∇F ) < 1

24 , and on Gk
j ,

Mρ(∇F ) > ε−mν . Clearly,

/
∫

Bk
j

det P√
ερk

(∇F ) ≤ 1
24

|Qk
j |.(4.12)

Also, since (4.4) holds for Qk
j , we have that

|Gk
j | ≤ |{x ∈ Qk

j : Mρ(∇F )(x) > ε−mν}|

≤ εmνp

∫

Qk
j

(Mρ(∇F )p ≤ ε(mp−1)ν |Qk
j |,
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so that by Hölder’s inequality and (4.4),
∣∣∣∣∣

∫

Gk
j

det P√
ερk

(∇F )

∣∣∣∣∣ ≤ C|Gk
j |

1
q′ (ε−ν |Qk

j |)
2
p ≤ εν̃ |Qk

j |,(4.13)

for some ν̃ > 0, if m is chosen large enough depending on p, where
1
q′ + 2

p = 1. Now, since (4.6) holds for Qk
j , we may combine (4.12) and

(4.13) to deduce that
(

1
24

− εν̃

)
|Qk

j | ≤ /
∫

Ek
j

det P√
ερk

(∇F )

≤ C|Ek
j |

1
q′ (ε−ν |Qk

j |)
2
p

≤ C(ε)|Ek
j | +

1
48

|Qk
j |,

by Hölder’s inequality, (4.4), and (4.10), with γ small. Choosing ε small
enough, we obtain that

|Ek
j | ≥ η̃(ε)|Qk

j |.(4.14)

Now, by definition of Ek
j , the matrix P√

ερk
(∇F )(x̃) is invertible for

all x̃ ∈ Ek
j , with uniform estimates (depending on ε). In particular, if

x̃ ∈ Ek
j , then

|γt(x)| ≤ C(ε)|γt(x)P√
ερk

(∇F )(x̃)|.
Thus, using also (4.14), we have that (4.11) is bounded by

C(ε)
∞∑

k=0

∑

j

1
|Qk

j |

∫

Ek
j

∫ ρk

ρk+1

∫

Qk
j ∩E

|γt(x)P√
ερk

(∇F )(x̃)|2 dx
dt

t
dx̃

≤ C(ε)‖γt‖2
∞

∞∑

k=0

∑

j

∫ ρk

ρk+1

1
|Qk

j |

∫

Qk
j

∫

Qk
j

|P√
ερk

(∇F )(x̃)

− P√
εt(∇F )(x)|2 dx dx̃

dt

t

+ C(ε)
∫ ρ

0

∫

Q
|γt(x)P√

εt(∇F )(x)|2 dx
dt

t

≡ S1 + S2.

Since we have now fixed ε, depending only on ellipticity, the term S2

is precisely the main part of the bound that we seek in (2.6). Conse-
quently, we need only show that S1 ≤ C|Q|. But this fact follows readily
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from (2.4)(i), the fact that, in S1, we may multiply ∇F by χ5Q, and the
L2 boundedness of the square function

f →




∞∑

k=0

∑

j

1
|Qk

j |

∫ ρk

ρk+1

∫

Qk
j

∫

Qk
j

|P√
ερk

f(x̃) − P√
εtf(x)|2 dx dx̃

dt

t





1
2

.

To deduce the L2 boundedness of this square function is a routine exer-
cise in the use of the Littlewood-Paley Theory, and we omit the details.
Modulo the proof of estimate (3.2), which we have deferred to the ap-
pendix (Section 5), the solution of the Kato problem in two dimensions
is now complete.

5. Appendix: Proof of (3.2)

It suffices to prove the following: Let L satisfy (G) (see Lemma 2.1).
Let f be a Lipschitz function. Then there is a p > 2, depending on λ,
Λ, such that for all t, with 0 < t < &(Q), we have

∫

Q
|∇e−t2Lf |p ≤ C|Q|‖∇f‖p

∞.(5.1)

Proof: The proof at this point is the same in all dimensions, given that L
satisfies G, so in the sequel we shall work in Rn. Fix t, and choose k = 0
so that 2−k−1&(Q) < t ≤ 2−k&(Q). Write Q = ∪Qk

j , where {Qk
j } is the

dyadic grid of Q at scale 2−k&(Q). Since ∇e−t2L1 = 0, we have that
(5.1) equals

∑

j

∫

Qk
j

|∇e−t2Lfj |p,

where fj(y) = f(y)− f(xj), xj = center (Qk
j ). Then fj = f0

j +
∑∞

"=1 f "
j ,

where f0
j = fjχ2Qk

j
, f "

j = fjχ2#+1Qk
j \2#Qk

j
≡ fjχAj,k,# . By [4, Proposi-

tion 22, Chapter 1.5.2], there exists p1 > 2 such that.
∑

j

Qk
j |∇e−t2Lf0

j |p ≤ C
1
tp

∑

j

∫
|f0

j |p

≤ C
∑

j

∫

2Qk
j

∣∣∣∣
f(x) − f(xj)

2−k&(Q)

∣∣∣∣
p

≤ C‖∇f‖p
∞2n

∑
|Qk

j |

= C‖∇f‖p
∞|Q|
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as desired, for all p ∈ [2, p1]. To handle the “tail”, we fix Qk
j and &, and

consider the operator

f → ∇x

∫
e−t2L(x, y)[f(y) − f(xj)]χAj,h,#(y) dy ≡ Tj,k,"f ≡ ∇e−t2Lf "

j .

We view this as an operator from Lip1(Rn) → Lp(Qk
j ), (with the prob-

ability measure 1
|Qk

j |
dx) 2 ≤ p ≤ p1, where p1 > 2 is the exponent in [4,

Proposition 22, I.5.2]. By a Caccioppoli-type argument, we have, since
t ≈ 2−k&(Q), and |y − xj | ≈ |y − x| ≈ 2"t

‖Tj,k,"f‖
L2

(
Qk

j , dx

|Qk
j
|

) ≤ 2−"‖∇f‖∞(5.2)

and by [4, Proposition 22], we have, since tn ≈ |Qk
j |,

‖Tj,k,"f‖
Lp

(
Qk

j , dx

|Qh
j
|

) ≤ C
1
t
2"t‖∇f‖∞

(
(2"t)n · 1

|Qk
j |

) 1
p

= C2"(n
p +1)‖∇f‖∞.

(5.3)

Interpolating between (5.2) and (5.3), we have that for some p ∈ (2, p1),
chosen close enough to 2, that ‖Tj,k,"f‖

Lp

(
Qk

j , dx

|Qk
j
|

) ≤ C2−"η‖∇f‖∞, for

some η > 0. Hence, for this p,
∑

j

∑

"≥1

∫

Qk
j

|∇e−t2Lf "
j |p ≤ C‖∇f‖p

∞
∑

j

|Qk
j |

∑

"≥1

2−η" = C‖∇f‖p
∞|Q|.

Thus, (5.1) holds.
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