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ON THE RANGE SPACE OF YANO’S
EXTRAPOLATION THEOREM AND NEW

EXTRAPOLATION ESTIMATES AT INFINITY

Maŕıa J. Carro

Abstract
Given a sublinear operator T satisfying that ‖Tf‖Lp(ν) ≤

C
p−1‖f‖Lp(µ), for every 1 < p ≤ p0, with C independent of f

and p, it was proved in [C] that

sup
r>0

∫ ∞
1/r

λν
Tf (y) dy

1 + log+ r
!

∫

M
|f(x)|(1 + log+ |f(x)|) dµ(x).

This estimate implies that T : L log L → B, where B is a re-
arrangement invariant space. The purpose of this note is to give
several characterizations of the space B and study its associate
space. This last information allows us to formulate an extrap-
olation result of Zygmund type for linear operators satisfying
‖Tf‖Lp(ν) ≤ Cp‖f‖Lp(µ), for every p ≥ p0.

1. Introduction

In 1951, Yano (see [Y], [Z]) using the ideas of Titchmarsh in [T],
proved that for every sublinear operator satisfying

(∫

N
|Tf(x)|p dν(x)

)1/p

≤ C

p − 1

(∫

M
|f(x)|p dµ(x)

)1/p

,

where N and M are two finite measure spaces, T : L log L(µ) −→ L1(ν)
is bounded. If the measures involved are not finite, then an easy modi-
fication of the above proofs, shows that T : L log L(µ) −→ L1

loc(ν) and,
in fact, T : L log L(µ) −→ L1(ν) + L∞(ν).
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Quite recently, it was proved, in [C], that under a weaker condition
on the operator T , namely that

(∫

N
|TχA(x)|p dν(x)

)1/p

≤ C

p − 1
µ(A)1/p,(1)

for every measurable set A ⊂ M and every 1 < p ≤ p0, with C indepen-
dent of A and p, we have that, there exists a positive constant K, such
that

sup
r>0

∫ ∞
1/r λν

Tf (y) dy

1 + log+ r
≤ K

∫

M
|f(x)|(1 + log+ |f(x)|) dµ(x),(2)

where λν
Tf is the distribution function of Tf with respect to ν, and µ

and ν are two σ-finite measures. This estimate allows us, as we shall see
in this note, to improve Yano’s theorem in the following sense: There
exists a rearrangement invariant space B(ν) ⊂ L1+L∞, B(ν) %= L1+L∞

and such that for every sublinear operator T satisfying (1), we have that

T : L log L(µ) −→ B(ν).

Throughout this paper, a sublinear operator satisfying (1) shall be
called Yano’s operator. From (2), it is very easy to see that if we define

B(ν) = {f measurable; ‖f‖B(ν) < ∞},(3)

where

‖f‖B(ν) = inf

{
α > 0; sup

r>0

∫ ∞
r λν

f (αy) dy

1 + log+ 1
r

≤ 1

}
,

then, every Yano’s operator satisfies that

T : L log L −→ B(ν)

is bounded.
The purpose of this note is to study in detail the space B(ν), including

the identification of its associate space.
This last information will allow us to formulate an extrapolation result

of Zygmund type (see [Z, p. 119]) for linear operators satisfying

‖Tf‖Lp(ν) ≤ Cp‖f‖Lp(µ),

for every p near ∞.
Some years ago, in the work of Jawerth and Milman (see [JM1],

[JM2]), the extrapolation theory was extended to the setting of com-
patible couples of Banach spaces. More recently, in [CM], the authors
have developed a new abstract extrapolation method, where the range
space (of the previous method) has been improved.
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Constants such as C will denote universal constants (independent of f
and p and, whenever it makes sense, independent also of r) and may
change from one occurrence to the next. As usual, the symbol f ≈ g will
indicate the existence of an universal positive constant C so that f/C ≤
g ≤ Cf , while the symbol f ! g means that f ≤ Cg. Throughout this
paper (N , ν) and (M, µ) are two σ-finite measure spaces, we shall write
‖g‖p to denote either ‖g‖Lp(µ) or ‖g‖Lp(ν), λν

g(y) = ν({x ∈ N ; |g(x)| >
y}) is the distribution function of g with respect to the measure ν, g∗ν(t) =
inf{s; λν

g(s) ≤ t} is the decreasing rearrangement (see [BS]), f∗∗(t) =
1
t

∫ t

0
f∗ and we say that a function W satisfies the ∆2 condition, if there

exists a positive constant C so that W (2t) ≤ CW (t), for every t.
Finally, as usual, L0(Rn) will denote the set of Lebesgue measurable

functions on Rn and x+ := max[x, 0].

2. On the range space B

Let B = B(ν) be the space defined in (3). Observe that

∫ ∞

r
λf (y) dy =

∫

M
Pr(|f(x)|) dν(x),

where Pr(t) = (t − r)+. Therefore, the functional ‖ · ‖B is similar to a
uniform (in r) Luxembourg norm. Since Pr is a convex function, the fact
that it is a norm is an easy exercise. However, that B is a rearrangement
invariant Banach function space is a consequence of the fact that B is a
maximal Lorentz space (see Theorem 2.4 below).

Our first result proves that B ⊂ L1 + L∞ and that B %= L1 + L∞.

Proposition 2.1. For every p > 1, B ⊂ L1+Lp with constant less than
or equal to Cp/(p − 1).

Proof: Let f ∈ B such that ‖f‖B = 1. Then
∫ ∞
1 λf (y) dy ≤ C < ∞ and

hence, if we define f = fχ{|f |>1}, we have that

‖f‖1 = λf (1) +
∫ ∞

1
λf (y) dy ≤ C.
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Now, if we set f = f − f and take p > 1, then an integration by parts
shows that

‖f‖p
p = p

∫ ∞

0
yp−1λf (y) dy = p

∫ 1

0
yp−1λf (y) dy

= p(p − 1)
∫ 1

0
yp−2

(∫ 1

y
λf (s) ds

)
dy

! p(p − 1)
∫ 1

0
yp−2

(
1 + log

1
y

)
dy

= p(p − 1)
(

1
p − 1

+
1

(p − 1)2

)
=

p2

p − 1
,

from which the result follows.

Our next step is to give a different and useful characterization of the
space B.

Lemma 2.2. For every s > 0,
∫ ∞

f∗∗(s)
λf (y) dy ≤

∫ s

0
f∗(t) dt,(a)

∫ s

0
f∗(t) dt ≤ 2

∫ ∞

1
2 f∗∗(s)

λf (y) dy.(b)

Proof: (a) Using that λf = λf∗ and Fubini’s theorem, we obtain that

∫ ∞

f∗∗(s)
λf (y) dy =

∫ ∞

0

(
f∗(t) − f∗∗(s)

)

+
dt =

∫ s

0

(
f∗(t) − f∗∗(s)

)

+
dt

≤
∫ s

0
f∗(t) dt.

(b) By the distribution formula proved in [CS1], we have that

∫ s

0
f∗(t) dt =

∫ ∞

0
min

(
λf (y), s

)
dy ≤

∫ 1
2 f∗∗(s)

0
s dy +

∫ ∞

1
2 f∗∗(s)

λf (y) dy

=
1
2

∫ s

0
f∗(t) dt +

∫ ∞

1
2 f∗∗(s)

λf (y) dy,

from which the result follows.
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Lemma 2.3.

sup
s>0

∫ s
0 f∗(t) dt

1 + log+ s∫ s

0
f∗

≈ sup
r>0

∫ ∞
r λf (y) dy

1 + log+ 1
r

.

Proof: Given s > 0, we have, by Lemma 2.2(b), that

∫ s
0 f∗(t) dt

1 + log+ 1
f∗∗(s)

≤ 2

∫ ∞
1
2 f∗∗(s) λf (y) dy

1 + log+ 1
f∗∗(s)

≤ 2 sup
r>0

1 + log+ 1
r

1 + log+ 1
2r

∫ ∞
r λf (y) dy

1 + log+ 1
r

! sup
r>0

∫ ∞
r λf (y) dy

1 + log+ 1
r

,

and therefore the inequality ! follows.

Conversely, if sups>0

∫ s

0
f∗(t) dt

1+log+ s∫ s

0
f∗

< ∞, then necessarily f∗∗(+∞) =

0, and hence, if r < ‖f‖∞ = sups f∗∗(s), we have that 0 = f∗∗(+∞) =
infs f∗∗(s) < r < sups f∗∗(s) and by continuity, there exists s so that
r = f∗∗(s). Then using Lemma 2.2(a),

∫ ∞
r λf (y) dy

1 + log+ 1
r

=

∫ ∞
f∗∗(s) λf (y) dy

1 + log+ 1
f∗∗(s)

≤
∫ s
0 f∗(t) dt

1 + log+ 1
f∗∗(s)

.

If r ≥ ‖f‖∞, then
∫ ∞

r λf (y) dy = 0 and the result follows immedia-
tely.

Given a concave function ϕ(t), we recall that the maximal Lorentz
space is defined (see [BS, p. 69]) by

‖f‖M(ϕ) = sup
t>0

(
ϕ(t)f∗∗(t)

)
,

and, for a positive locally integrable weight v, the Lorentz space Λ1(v)
is defined by

‖f‖Λ1(v) =
∫ ∞

0
f∗(t)v(t) dt.

Theorem 2.4. The space B coincides with the maximal Lorentz spa-
ce M(ϕ) with equivalent norms, where ϕ(t) = t/(1 + log+ t).

Proof: Let α > 0 satisfying

sup
r>0

∫ ∞
r λf/α(y) dy

1 + log+ 1
r

≤ 1.
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Then, by Lemma 2.3, there exists a positive constant C so that

sup
s>0

∫ s
0

f∗(t)
α dt

1 + log+ s∫ s

0
(f∗/α)

≤ C,

and thus, if Φ(t) = t/
(
1 + log+(1/t)

)
, we obtain that

sup
s>0

sΦ
(

f∗∗(s)
α

)
≤ C.

Consequently, for every s > 0, f∗∗(s) ≤ αΦ−1(C/s) and, hence

α ≥ sup
s>0

f∗∗(s)
Φ−1(C/s)

.

From this, the fact that Φ−1(t) ≈ t(1+log+(1/t)) and that this function
satisfies the ∆2 condition, we conclude that

‖f‖B ≥ sup
s>0

s

(1 + log+ s)
f∗∗(s).

The converse follows similarly.

Remark 2.5. If M is the Hardy-Littlewood maximal operator,

Mf(x) = sup
x∈Q

1
|Q|

∫

Q
|f(y)| dy,

where the supremum is taken over all cubes containing x, it is known
(see for example [CS2]) that, for every 0 < α < 1, every function f and
y > 0,

1
y

∫

{x:|f(x)|>y}
|f(x)| dx ≤ 2λMf (y)

≤ 2
(1 − α)y

∫

{x:|f(x)|>αy}
|f(x)| dx.

(4)
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Therefore, taking α = 1/2,
∫ ∞

r
λMf (y) dy !

∫ ∞

r

1
y

(∫

{x: |f(x)|>y/2}
|f(x)| dx

)
dy

=
∫

{|f(x)|> r
2 }

|f(x)|
(∫ 2|f(x)|

r

1
y

dy

)
dx

=
∫

{|f(x)|> r
2 }

|f(x)| log
(

2|f(x)|
r

)
dx

=
∫

Rn

|f(x)| log+

(
2
|f(x)|

r

)
dx.

Similarly, if we now use the first inequality in (4), we obtain

A := sup
r>0

∫
|f(x)| log+

(
|f(x)|

r

)
dx

1 + log+ 1
r

≈ sup
r>0

∫ ∞
r λMf (y) dy

1 + log+ 1
r

.

Taking r = 1, we obtain that A ≥
∫
|f(x)| log+(2|f(x)|) dx, and if,

|f(x)| ≤ 1, we have, by dominated convergence theorem that

A ≥ lim
r→∞

∫
|f(x)| log+ (

2r|f(x)|
)
dx

1 + log+(1/r)
≥

∫

|f(x)|≤1
|f(x)| dx,

and thus, ∫

Rn

|f(x)|
(
1 + log+ 2|f(x)|

)
dx ! A.

Since, obviously A satisfies the converse inequality we conclude that

sup
r>0

∫ ∞
r λMf (y) dy

1 + log+ 1
r

≈
∫

Rn

|f(x)|
(
1 + log+ |f(x)|

)
dx,

and, therefore, the range space B is optimal for the Hardy-Littlewood
maximal operator in the following sense:

Proposition 2.6. If there exists a Banach space E ⊂ L0(Rn), such that
for every Yano’s operator T on L0(Rn), we have that T : L log L(Rn) →
E is bounded, then

‖Mf‖E ! ‖Mf‖B .

In particular, if E is a rearrangement invariant space, ‖f∗∗‖E ! ‖f∗∗‖B.

Observe that if we were able to prove that ‖f∗‖E ! ‖f∗‖B , we would
have obtained the optimality of the range space B, in Yano’s theorem,
in the setting of rearrangement invariant spaces.
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3. Associate space of B and extrapolation results at
infinity

Given a Banach space X, the associate space X∗ is defined as the set
of measurable functions g so that

‖g‖X∗ = sup
f

∫
N f(x)g(x) dν(x)

‖f‖X
< ∞.

If X is a Banach function space, then by Lorentz-Luxembourg theorem
(see [BS, p. 10]), X = X∗∗; that is, the associate of X∗ is X.

Also, if X is a rearrangement invariant space and the measure ν is
resonant, we have that

‖g‖X∗ =
∫ ∞
0 f∗(t)g∗(t) dt

‖f‖X
.

In this section, we shall assume that the measure is resonant. In [Z,
p. 119], it was proved that if T is a linear operator so that

‖Tf‖Lp(ν) ≤ Cp‖f‖Lp(µ)(5)

for p big enough, µ(M) < ∞ and ν(N ) < ∞, then

T : L∞(µ) → L(exp, ν),

where

L(exp, ν) =
{

f ; ∃λ > 0,

∫

N
eλ|f(x)| dν(x) < ∞

}
.

Now, it T satisfies (5) (and we shall say then that T is a Zygmund’s
operator), then the adjoint operator T ∗ satisfies that

‖T ∗f‖Lp′ (µ) ≤
C

p′ − 1
‖f‖Lp′ (ν)

for 1 < p′ ≤ p0 and hence, T ∗ is a Yano’s operator. Therefore,

T ∗ : L log L −→ M(ϕ),

and we can deduce the following result.

Theorem 3.1. If T is a Zygmund operator then

T : (M(ϕ))∗ −→ (L log L)∗.

Now, the purpose of this section is to identify the two spaces appearing
in Theorem 3.1 and conclude some endpoint estimate at p = ∞ for such
operators. We emphasize that our measures are σ-finite and resonant
but not necessarily finite.
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Proposition 3.2. If ϕ(t) = t/(1 + log+ t), then

(M(ϕ))∗ = Λ1
(
min(t−1, 1)

)
∩ L∞.

Proof: We have to compute

‖g‖(M(ϕ))∗ = sup
f

∫ ∞
0 f∗(t)g∗(t) dt

supt>0
t

(1+log+ t)
f∗∗(t)

= sup∫ t

0
f∗≤1+log+ t

∫ ∞

0
f∗(t)g∗(t) dt.

Now, the last supremum was identified in [CPSS], where it was
proved that

sup∫ t

0
f∗≤1+log+ t

∫ ∞

0
f∗(t)g∗(t) dt ≈ sup

t>0
g∗∗(t)(1 + log+ t) +

∫ ∞

1

1
t
g∗(t) dt,

and since, for every t > 0,

g∗∗(t)(1+log+ t) ! ‖g‖∞ + g∗∗(t)
(∫ t

1

ds

s

)

+

≤‖g‖∞+
(∫ t

1
g∗∗(s)

ds

s

)

+

≤ ‖g‖∞ +
∫ ∞

1
g∗∗(s)

ds

s
≈ ‖g‖∞ +

∫ ∞

1
g∗(s)

ds

s
,

we obtain the result.

Proposition 3.3. We have that

(L log L)∗ = M(Ψ),

with Ψ(t) = 1/
(
1 + log+(1/t)

)
.

Proof: In [BS, p. 243] it is proved that if µ(M) = 1, then L log L(µ) =
Λ1(log+(1/t)) with equivalent norms. A slight modification of this result
(see also [OP]), shows that, for a general measure space, L log L(µ) =
Λ1(1 + log+(1/t)). Then, using Theorem 2.12 in [CS1],

‖g‖(L log L)∗ = sup
f

∫ ∞
0 f∗(s)g∗(s) ds

∫ ∞
0 f∗(s)(1 + log+(1/s)) ds

= sup
r>0

∫ r
0 g∗(s) ds

∫ r
0 (1 + log+(1/s)) ds

≈ sup
r>0

∫ r
0 g∗(s) ds

r(1 + log+(1/r))

= sup
r>0

g∗∗(r)
(1 + log+(1/r))

.
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Therefore, we deduce, from Theorem 3.1, the following result:

Corollary 3.4. If T is a Zygmund operator, then

sup
t>0

(Tf)∗∗(t)
(1 + log+(1/t))

!
∫ ∞

0
f∗(t) min

(
1
t
, 1

)
dt + ‖f‖∞,

equivalently

sup
t>0

(Tf)∗(t)
(1 + log+(1/t))

!
∫ ∞

0
f∗(t) min

(
1
t
, 1

)
dt + ‖f‖∞,

or

sup
t>0

(Tf)∗∗(t)
(1 + log+(1/t))

!
∫ ∞

1
f∗∗(t)

dt

t
+ ‖f‖∞.

Proof: The proof of the first part is an immediate consequence of Theo-
rem 3.1 and Propositions 3.2 and 3.3. The second inequality follows also
easily, since

sup
t>0

(Tf)∗∗(t)
(1 + log+(1/t))

≈ sup
t>0

(Tf)∗(t)
(1 + log+(1/t))

,

and the last one can be deduced using that
∫ ∞

1
f∗∗(t)

dt

t
=

∫ ∞

0
f∗(t) min

(
1
t
, 1

)
dt.

Remark 3.5. i) Observe that if µ(M) = ν(N ) = 1, then, the above
inequalities say (see [BS, p. 246]) that T : L∞ → L(exp) as proved in [Z,
p. 119].

ii) Finally, let us just comment that obvious changes show that similar
results can be obtained for sublinear operators satisfying

‖Tf‖p ≤ C(p − 1)−α‖f‖p,

for α > 0 and p near 1, and, for linear operators such that

‖Tf‖p ≤ Cpα‖f‖p,

where again α > 0 and p near ∞.
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Facultat de Matemàtiques
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