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TORSION MATRICES OVER
COMMUTATIVE INTEGRAL GROUP RINGS

Gregory T. Lee and Sudarshan K. Sehgal

Abstract
Let ZA be the integral group ring of a finite abelian group A,
and n a positive integer greater than 5. We provide conditions
on n and A under which every torsion matrix U , with identity
augmentation, in GLn(ZA) is conjugate in GLn(QA) to a diagonal
matrix with group elements on the diagonal. When A is infinite,
we show that under similar conditions, U has a group trace and
is stably conjugate to such a diagonal matrix.

Let ZG be the integral group ring of a finite group, G. Let ε : ZG →
Z be the augmentation map, defined by ε(

∑
g∈G αgg) =

∑
g∈G αg. A

conjecture due to Zassenhaus is

(ZC1). If u ∈ ZG, un = 1, and ε(u) = 1, then there exists a unit α ∈
QG such that α−1uα ∈ G.

This is known to be true for finite nilpotent groups (see [9, Theo-
rem 40.4]), but remains open for finite groups in general.

In some cases, it is possible to translate the problem into a question
about matrices, which is interesting in its own right. (See, for instance,
[5].) For a group G and a positive integer n, we define ε∗ : GLn(ZG) →
GLn(Z) by applying ε to each matrix entry. Let SGLn(ZG) = ker(ε∗).
That is, SGLn(ZG) is the group of invertible n × n matrices over ZG
with identity augmentation. We have this

Problem. For a finite abelian group A and a positive integer n, is it
true that for every torsion matrix U ∈ SGLn(ZA), U is conjugate in
GLn(QA) to a diagonal matrix with group elements on the diagonal?
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For n = 1, a positive answer for all A is classical (see [9, Corol-
lary 1.6]). Luthar and Passi obtained a positive answer for all A when
n = 2, if QA is replaced with CA, in [4]. More recently, in [8], Marciniak
and Sehgal obtained an affirmative answer for all A and all n ≤ 5. On
the other hand, in [3], Cliff and Weiss constructed a counterexample for
the case n = 6, A = C6×C6. Furthermore, they showed that for a given
finite abelian (or, indeed, nilpotent) group A, the answer will be yes for
all n if and only if A has at most one non-cyclic Sylow subgroup.

Our question, then, is this: if A has two or more non-cyclic Sylow
subgroups, by restricting them suitably, can we obtain a positive answer
for certain n ≥ 6? We have this result.

Theorem 1. Let A be a finite abelian group and n ≥ 6. Suppose that
either

(1) A has at most one non-cyclic Sylow subgroup; or,
(2) if q1 and q2 are the two smallest (distinct) primes such that the

Sylow q1- and q2-subgroups of A are non-cyclic, then q1 + q2 >
n2+n−8

4 .
Then for any torsion matrix U ∈ SGLn(ZA), U is conjugate in
GLn(QA) to a diagonal matrix with group elements on the diagonal.

We will follow the same plan of attack as in [8]. For any matrix M ,
let Tr(M) denote its trace. Also, if α ∈ ZA, we say that α ≥ 0 if every
coefficient of α is greater than or equal to zero.

By the proposition in [8], the theorem is equivalent to showing that
Tr(U) ≥ 0. Suppose that our theorem fails. Fix n ≥ 6, and choose
an abelian group A of minimal order which provides us with a coun-
terexample U . Note that if A satisfies (1), then [3] tells us that our
result holds, hence we may assume that (2) is satisfied. Let us write
Tr(U) = α ∈ ZA, where α �≥ 0. We also write α = α+ − α−, where
α+, α− ≥ 0, S+ = suppα+, S− = suppα−, and S+ and S− are disjoint.
If h ∈ S−, we may replace U with h−1U , and therefore assume that
1 ∈ S−. More explicitly, we write α+ =

∑
g∈S+

αgg, α− =
∑

g∈S−
αgg.

We have

Lemma 1. (a)
∑

g∈S+
αg − ∑

g∈S−
αg = n, and (b)

∑
g∈A α2

g < n2.

Proof: (a) The expression
∑

g∈S+
αg − ∑

g∈S−
αg is the trace of the

augmentation of U , namely the trace of the identity matrix. (b) [4,
Corollary 2.3].

Lemma 2. |S+| ≤ n2+n
2 − 1.
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Proof: Suppose this is not the case. Then ε(α+) ≥ |S+| ≥ n2+n
2 (since

the coefficients of α+ and α− are positive). By Lemma 1, ε(α−) =
ε(α+) − n ≥ n2−n

2 . Thus, by Lemma 1,

n2 >
∑
g∈A

α2
g ≥

∑
g∈S+

αg +
∑

g∈S−

αg ≥ n2 + n

2
+

n2 − n

2
= n2

which is a contradiction.

For each prime p, let Ep be the set of all subgroups of order p in A.
Let E =

⋃
p Ep. We define σ to be |E|. By assumption, we know that A

contains a copy of Cq1×Cq1×Cq2×Cq2 . Therefore, σ ≥ q1+q2+2 > n2+n
4 .

For any x ∈ S− and any H ∈ E , we let Tx,H = Hx ∩ S+. We will prove

Lemma 3. No Tx,H is empty.

Proof: We have the usual projection π : ZA → Z(A/H). Applying this
to each element in the matrix, we see that π(U) is a torsion element in
SGLn(Z(A/H)). Now, looking at the restrictions placed upon A in the
theorem, we observe that any homomorphic image of an abelian group
satisfying (1) will also satisfy (1), and the homomorphic image of an
abelian group satisfying (2) must satisfy (1) or (2). Thus, A/H is also
a group of the type discussed in the theorem. Since A is a group of
minimal order which provides a counterexample, π(α) = Tr(π(U)) ≥ 0.
Now, π(x) appears in the support of π(α−) (since all coefficients are
positive). Thus, π(x) must also appear in the support of π(α+). That
is, Tx,H = S+ ∩ π−1(π(x)) is nonempty.

Lemma 4.

(i) For any H ∈ E and x, y ∈ S−, the sets Tx,H and Ty,H are either
disjoint or identical. In fact, they coincide if and only if xy−1 ∈
H.

(ii) Assume H,K ∈ E, with H �= K. For any x, y ∈ S−, if Tx,H∩Ty,K

is nonempty then xy−1 ∈ HK\(H ∪K) and |Tx,H ∩ Ty,K | = 1.

Proof: See [8, Lemma 4].

For each x ∈ S−, we define Tx =
⋃

H∈E Tx,H . It is important to
notice that Tx is a subset of S+ which is a disjoint union of σ sets (by
the last lemma, since xx−1 = 1 ∈ H ∪ K for any H �= K). Hence
|Tx| ≥ σ > n2+n

4 . Let us examine the intersections of the sets Tx.
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Lemma 5. Let x and y be distinct elements of S−. If Tx ∩ Ty is non-
empty, then either

(i) xy−1 has order pq for distinct primes p and q, and then |Tx∩Ty| ≤
2; or,

(ii) xy−1 is a p-element for some prime p, and

Tx ∩ Ty ⊆
⋃

H,K∈Ep

Tx,H ∩ Ty,K .

Proof: If Tx ∩ Ty is not empty, then we may choose H ∈ Ep, K ∈ Eq,
for (not necessarily distinct) primes p and q, such that Tx,H ∩ Ty,K is
not empty. First, suppose p �= q. By Lemma 4, xy−1 ∈ HK\(H ∪K).
But this set is precisely the set of elements of order pq in HK, hence
xy−1 has order pq. Also, H and K are uniquely determined as the
Sylow subgroups of HK = 〈xy−1〉. That is, if {H ′,K ′} �= {H,K}, then
Tx,H′ ∩ Ty,K′ is empty. Therefore,

|Tx ∩ Ty| = |(Tx,H ∩ Ty,K) ∪ (Tx,K ∩ Ty,H)| ≤ 2,

by Lemma 4.
If p = q, then by Lemma 4, xy−1 ∈ HK, hence it is a p-element. It

follows easily that Tx,H′ ∩ Ty,K′ must be empty unless H ′ and K ′ are
p-groups.

For the proof of the next lemma, we refer to the proof of [8, Lemma 6],
noting only that a homomorphic image of a group satisfying (1) or (2)
must also satisfy (1) or (2).

Lemma 6. ε(α+) ≥ σ · max{αg : g ∈ S−}.
Lemma 7. α− =

∑
g∈S−

g. In particular, ε(α−) = |S−|.

Proof: Suppose that not all coefficients of α− are 1. Then by Lemma 6,
ε(α+) ≥ 2σ > n2+n

2 . By Lemma 1, ε(α−) = ε(α+) − n > n2−n
2 . Just as

in the proof of Lemma 2, this is a contradiction.

Lemma 8. |S−| > n2−3n
4 .

Proof: By Lemma 6, ε(α+) ≥ σ > n2+n
4 . Then |S−| = ε(α−) = ε(α+) −

n > n2−3n
4 .

Clearly, since n ≥ 6, this means |S−| > 4. For any distinct x, y ∈ S−,
we say that Tx and Ty have a large intersection if xy−1 is a p-element.
Otherwise, the intersection is said to be small. (By Lemma 5, the inter-
section can contain at most two elements in this case.) Our last lemma
is
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Lemma 9. There exist distinct elements x and y in S− such that Tx

and Ty have small intersection.

Proof: The proof of [8, Lemma 9] carries through verbatim up to the
point where they conclude that |S+| ≥ σ + |S−| − 1. From this, we
deduce that

n=ε(α+) − |S−| ≥ |S+| − |S−| ≥ σ + |S−| − 1 − |S−| >
n2 + n

4
− 1 > n

for n ≥ 6. This is a contradiction.

Proof of Theorem 1: We claim that |S+| ≥ 2σ−1. This would complete
the proof, since σ > n2+n

4 , hence |S+| > n2+n
2 − 1, and this contradicts

Lemma 2. Let us prove the claim.
We know that each |Tu| ≥ σ. If any two such sets are disjoint, then

|S+| ≥ 2σ, and we are done. Thus, we will assume that no two Tu’s are
disjoint. Suppose that for some pairwise distinct x, y, z ∈ S−, Tx and Ty

have small intersection, and Ty and Tz have small intersection. We have
two cases. First, if Tx and Tz have small intersection, then

|Tx ∪ Ty ∪ Tz| = |Tx| + |Ty\(Tx ∩ Ty)| + |Tz\((Tx ∪ Ty) ∩ Tz)|
≥ σ + (σ − 2) + (σ − 4)

since each set has order at least σ, and any pair has at most two elements
in common. But then |S+| ≥ 3σ − 6 > 2σ − 1, since σ > n2+n

4 > 10.
Second, if Tx and Tz have large intersection, then by Lemma 5, there
exists a prime p such that Tx∩Tz ⊆ ⋃

H,K∈Ep
Tx,H ∩Tz,K ⊆ ⋃

H∈Ep
Tx,H .

Choose one of {q1, q2} which is not p (without loss of generality, say q1).
Then Tx\(Tx∩Tz) ⊇

⋃
H∈Eq1

Tx,H , since the Tx,H are disjoint, for a fixed
x, by Lemma 4. Again, we have

|Tx ∪ Ty ∪ Tz| = |Ty| + |Tz\(Tz ∩ Ty)| + |Tx\(Tx ∩ (Ty ∪ Tz))|.
Now, |Ty| ≥ σ, and since Tz and Ty have small intersection, |Tz\(Tz ∩
Ty)| ≥ σ − 2. Also, |Tx\(Tx ∩ Tz)| ≥ |⋃H∈Eq1

Tx,H | ≥ q1 + 1, since the
Tx,H are nonempty, disjoint, and there are at least q1 + 1 of them, by
choice of q1. Now, |Tx∩Ty| ≤ 2, hence |Tx\(Tx∩(Ty∪Tz))| ≥ q1+1−2 =
q1 − 1. Thus,

|Tx ∪ Ty ∪ Tz| ≥ σ + σ − 2 + q1 − 1 ≥ 2σ − 1,

since q1, being a prime, is at least 2. This is what we wanted to know,
and therefore

(∗) We may assume that, for any distinct a, b, c ∈ S−, either Ta and
Tb have large intersection, or Tb and Tc have large intersection.
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We know from Lemma 9 that there exist distinct x and z in S− such
that Tx and Tz have small intersection. Since they cannot be disjoint,
Lemma 5 tells us that xz−1 has order pq for distinct primes p and q.
We know from Lemma 8 that |S−| ≥ 5, so let us say that v, w, x,
y and z are distinct elements of S−. By (∗), Tx and Ty cannot have
small intersection hence, by Lemma 5, xy−1 is an r-element for some
prime r. If p �= r �= q, then yz−1 = (xy−1)−1xz−1 has order divisible
by three primes, contradicting Lemma 5. Thus, xy−1 is a p-element
or a q-element. Without loss of generality, it is a p-element. Then
yz−1, being the product of an element of order pq and a p-element,
must have order q or pq (given the choices afforded by Lemma 5). In
the latter case, Ty and Tz have small intersection, which is disallowed
by (∗), hence yz−1 is a q-element. Again by (∗), Tx and Tw have large
intersection, hence xw−1 is an r-element for some prime r. If p �= r �= q,
then zw−1 = (xz−1)−1xw−1 has order divisible by p, q, and r, which is
impossible. Thus, xw−1 is a p-element or a q-element. Suppose xw−1 is a
p-element. Then since xy−1 is a p-element, so is wy−1 = (xw−1)−1xy−1.
Now, zw−1 = (xz−1)−1xw−1. Since xz−1 has order pq and xw−1 is
a p-element, zw−1 must have order q or pq. Once again, (∗) disallows
the latter, hence zw−1 is a q-element. But wy−1 = (zw−1)−1(yz−1)−1,
and both zw−1 and yz−1 are q-elements. Therefore, wy−1 is both a
p-element and a q-element, which is impossible. It follows that xw−1

must be a q-element. Thus, wy−1 = (xw−1)−1xy−1, being the product
of a q-element and a p-element, has order pq.

Once again, Tx and Tv must have large intersection. Thus, xv−1 is
an r-element for some prime r, and once again, r = p or q. Suppose
xv−1 is a p-element. Then yv−1 = (xy−1)−1xv−1, being a product of
two p-elements, is a p-element. However, zv−1 = (xz−1)−1xv−1. Since
xz−1 has order pq, and xv−1 is a p-element, we again see that zv−1 is
a q-element. But yz−1 is also a q-element, hence yv−1 = yz−1zv−1 is
both a p-element and a q-element, giving us a contradiction. Therefore,
xv−1 is a q-element. But then yv−1 = (xy−1)−1xv−1 is the product of
a p-element and a q-element, hence it has order pq. That is, Ty and Tv

have small intersection, but Tw and Ty also have small intersection, and
this contradicts (∗). The proof is complete.

Of course, the restriction placed upon the group becomes much
harsher as n increases, but for small values of n, it is fairly mild. For
instance, if n = 6, we are assuming that q1 + q2 ≥ 9. In this case, the
theorem reduces to this
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Corollary. Let A be a finite abelian group. Suppose that at most one
of the Sylow p-subgroups, p ≤ 5, is non-cyclic. Then for any torsion
matrix U ∈ SGL6(ZA), U is conjugate in GL6(QA) to a diagonal matrix
with group elements on the diagonal.

This improves [5, Theorem 4.6] which requires us to assume that
n < p for all primes p dividing the order of A.

Removing the assumption that A is finite, we would also like to
know when a torsion matrix U ∈ SGLn(ZA) will have a group trace.
A matrix U ∈ GLn(ZA) is said to have a group trace if there exist
g1, . . . , gn ∈ A such that, for all positive integers m, Tr(Um) =

∑n
i=1 g

m
i .

(Note that this definition applies only to abelian groups.) See [1] and
[2] for a more extensive discussion of this property. In [2, Theorem 3.3],
it is shown that if n < p for every prime p such that A has p-torsion,
then every torsion matrix U ∈ SGLn(ZA) will have a group trace. In a
similar vein, we can prove

Theorem 2. Let A be an abelian group and n a positive integer. Sup-
pose either that n ≤ 5 or we have

(1) every finite subgroup of A has at most one non-cyclic Sylow sub-
group; or,

(2) if q1 and q2 are the two smallest (distinct) primes such that the
Sylow q1- and q2-subgroups of some finite subgroup of A are non-
cyclic, then q1 + q2 > n2+n−8

4 .

Then every torsion matrix U ∈ SGLn(ZA) has a group trace.

Proof: Since the condition on A is certainly inherited by subgroups,
there is no harm in assuming that A is generated by the group elements
appearing in the support of one or more entries of U . In particular, A is
finitely generated. In [2, pp. 629–630] it is shown that in this case, the
elements of infinite order in A do not appear in the support of Tr(Ur)
for any r ≥ 1. Let us write A = T × F , where T is finite and F is a
free abelian group. Then the support of Tr(Ur) is contained in T for
all r ≥ 1. It follows from [1, Proposition 15] that if the image of U in
SGLn(Z(A/F )) = SGLn(ZT ) has a group trace, then U has a group
trace. In effect, we have reduced the problem to the case in which A is
finite. But by the main result of [8] (if n ≤ 5) or Theorem 1 (if n ≥ 6), U
is conjugate to a diagonal matrix diag(g1, . . . , gn) in this case. It follows
immediately that U has a group trace.
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Since we are dealing with abelian groups, the restriction on the Sylow
subgroups of finite subgroups of A could be replaced with a restriction
on the Sylow subgroups of A. However, requiring such subgroups to be
cyclic is too strong a condition. For example, there is no reason to rule
out groups which are the direct product of quasicyclic p-groups, Zp∞ for
different primes p.

When dealing with infinite groups, it would be rather optimistic to
expect our matrix U to be conjugate to a diagonal matrix, particularly
since even (ZC1) fails for infinite nilpotent groups (see [7]). Instead, let
us introduce the following notion. Let K be a subfield of the complex
numbers and G a group. For any positive integer n, we say that two
matrices A,B ∈ GLn(KG) are stably conjugate if there exist roots of
unity ξ1, . . . , ξk ∈ K such that



A 0 · · · 0
0 ξ1 0
...

. . .
0 0 ξk


 and




B 0 · · · 0
0 ξ1 0
...

. . .
0 0 ξk




are conjugate in GLn+k(KG). For the definition of the Bass rank map,
to which we will refer in the proof below, we refer the reader to [6,
p. 572]. Let Q denote the algebraic closure of Q in C. We have

Theorem 3. Let A be an abelian group and n a positive integer. Sup-
pose either that n ≤ 5 or else (1) or (2) of Theorem 2 holds. Then every
torsion matrix U ∈SGLn(ZA), regarded as a matrix in GLn(QA), is sta-
bly conjugate to a diagonal matrix with group elements on the diagonal.

Proof: Once again, we are free to assume that A is finitely generated.
Let us write A = T ×F , where T is finite and F is a free abelian group.
By [6, Theorem 4.1], if K is a splitting field for T in C, then the Bass rank
map is injective on K0(KA). By Brauer’s Theorem, this only requires
K to contain a primitive e-th root of unity, where e is the exponent of
T . Let m = de, where d is the multiplicative order of U . Then, let
us take K = Q(ξ), where ξ is a primitive m-th root of unity. By [1,
Proposition 14], U is stably conjugate over KA to a diagonal matrix
with group elements on the diagonal if and only if U has a group trace.
By Theorem 2, U does indeed have a group trace. Enlarging the field to
Q does not harm our conclusion. Therefore, we are done.

Remark. The definition of stable conjugacy in [1] is slightly different
from the one we have used. In that paper, the scalars ξi were not assumed
to be roots of unity. However, examining the relevant proofs (to wit, the
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proofs of Propositions 13 and 14), we can see that only roots of unity
were used. In addition, in view of [2, Theorem 3.3], it will also suffice
to assume in Theorem 3 that n < p for every prime p such that A has
p-torsion.
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Primera versió rebuda el 7 de gener de 1999,
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