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GEODESIC FLOW ON SO(4),
KAC-MOODY LIE ALGEBRA AND

SINGULARITIES IN THE COMPLEX t-PLANE

A. Lesfari

Abstract
The article studies geometrically the Euler-Arnold equations as-
sociated to geodesic flow on SO(4) for a left invariant diagonal
metric. Such metric were first introduced by Manakov [17] and
extensively studied by Mishchenko-Fomenko [18] and Dikii [6].
An essential contribution into the integrability of this problem
was also made by Adler-van Moerbeke [4] and Haine [8]. In
this problem there are four invariants of the motion defining in
C4 = Lie(SO(4) ⊗ C) an affine Abelian surface as complete in-
tersection of four quadrics. The first section is devoted to a Lie
algebra theoretical approach, based on the Kostant-Kirillov coad-
joint action. This method allows us to linearizes the problem
on a two-dimensional Prym variety Prymσ(C) of a genus 3 Rie-
mann surface C. In section 2, the method consists of requiring
that the general solutions have the Painlevé property, i.e., have
no movable singularities other than poles. It was first adopted
by Kowalewski [10] and has developed and used more system-
atically [3], [4], [8], [13]. From the asymptotic analysis of the
differential equations, we show that the linearization of the Euler-
Arnold equations occurs on a Prym variety Prymσ(Γ) of an an-
other genus 3 Riemann surface Γ. In the last section the Riemann
surfaces are compared explicitly.

1. Lie algebra theoretical method

Consider the group SO(4) and its Lie algebra so(4) paired with itself,
via the customary inner product

〈X,Y 〉 = −1
2
tr (X.Y )
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where

X = (Xij)1≤i, j≤4 =
6∑

i=1

xiei =


0 −x3 x2 −x4

x3 0 −x1 −x5

−x2 x1 0 −x6

x4 x5 x6 0

 ∈ so(4).

A left invariant metric on SO(4) is defined by a non-singular symmetric
linear map

Λ : so(4) → so(4), X �→ Λ ·X
and by the following inner product: given two vectors gX and gY in the
tangent space SO(4) at the point g ∈ SO(4)

〈gX, gY 〉 =
〈
X,Λ−1 · Y

〉
regardless of g. Then the geodesic flow for this metric takes the following
commutator form (Euler-Arnold equations):

(1.1)
•
X = [X,Λ ·X] , • ≡ d

dt

where

Λ ·X = (λijXij)1≤i, j≤4

=
6∑

i=1

λixiei =


0 −λ3x3 λ2x2 −λ4x4

λ3x3 0 −λ1x1 −λ5x5

−λ2x2 λ1x1 0 −λ6x6

λ4x4 λ5x5 λ6x6 0

 ∈ so(4).

This flow is Hamiltonian with regard to the usual Kostant-Kirillov
symplectic structure induced on the orbit

O =
{
Ad∗g(X) = g−1Xg : g ∈ SO(4)

}
formed by the coadjoint action Ad∗g(X) of the group SO(4) on the dual
Lie algebra so(4)∗ ≈ so(4). Let z1, z2 ∈ so(4) and consider ξ1 = [X, z1],
ξ2 = [X, z2] two tangent vectors to the orbit at the point X ∈ so(4).
Then the symplectic structure is defined by

ω (X) (ξ1, ξ2) = 〈X, [z1, z2]〉 .

This orbit is 4-dimensional and is defined by setting two trivial quadratic
invariants H1 and H2 equal to generic constants c1 and c2:

(1.2)
H1 =

√
detX = x1x4 + x2x5 + x3x6 = c1

H2 = −1
2
tr

(
X2

)
= x2

1 + x2
2 + · · · + x2

6 = c2.
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Fonctions H defined on the orbit lead to Hamiltonian vector fields
•
X = [X,∇H] .

In particular

(1.3) H =
1
2
〈X,λ ·X〉 =

1
2

(
λ1x

2
1 + λ2x

2
2 + · · · + λ6x

2
6

)
,

induces geodesic motion (1.1). The constants of the motion are given by
the two quadratic invariants H1, H2 (1.2) and the Hamiltonian H (1.3).
Since the system is Hamiltonian on a 4-dimensional symplectic manifold

{H1 = c1} ∩ {H2 = c2}

to make it completely integrable, one needs one independent invariant.
Under Manakov’s conditions [17]:

(1.4)



λ1 =
β2 − β3

α2 − α3

λ2 =
β1 − β3

α1 − α3

λ3 =
β1 − β2

α1 − α2

λ4 =
β1 − β4

α1 − α4

λ5 =
β2 − β43

α2 − α4

λ6 =
β3 − β4

α3 − α4

, αi, βi arbitrary,
∏
i<j

(αi − βj) �= 0

the Lax flow (1.1) can be transformed into the following Lax-type equa-
tion (with an indeterminate h):

(1.5)

•
(X + αh) = [X + αh,ΛX + βh]

α = diag (α1, . . . , α4)
β = diag (β1, . . . , β4)︸ ︷︷ ︸

�︷ ︸︸ ︷
•
X = [X,Λ ·X] ⇔ (1.1)

[X,β] + [α,Λ ·X] = 0 ⇔ (1.4)
[α, β] = 0 trivially satisfied for diagonal matrices.
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Consider the Kac-Moody extension (n = 4)

L = g̃l(n) =

{
N∑

−∞
Aih

i : Ai ∈ gl(n), N arbitrary

}

of gl(n) with the bracket

[A(h), B(h)] =
[∑

Aih
i,

∑
Bjh

j
]

=
∑

k

 ∑
i+j=k

[Ai, Bj ]

hk

and the nondegenerate, invariant inner product

〈A(h), B(h)〉 =
〈∑

Aih
i,

∑
Bjh

j
〉

=
∑

i+j=−1

tr(AiBj).

This Lie algebra has a natural decomposition

L = L−∞,−1 + L0,∞, Lij =

∑
i≥0

Akh
k

 .

Observe that L⊥
−∞,−1 = L−∞,−1 and L⊥

0,∞ = L0,∞ where ⊥ is taken with
respect the form above. The infinite-dimensional Lie group underlying
L−∞,−1 acts coadjointly on the dual Kac-Moody Lie algebra L∗

−∞,−1 ≈
L⊥

0,∞ = L0,∞, according to the rule of customary conjugation followed
by registering the non-negative powers of h only. The orbits described in
this way come equipped with a symplectic structure with Poisson bracket

{H1, H2} (α) =
〈
α,

[
∇L∗

−∞,−1
H1,∇L∗

−∞,−1
H2

]〉
where α ∈ L∗

−∞,−1 and ∇L∗
−∞,−1

H ∈ L−∞,−1. The functions defined on
this orbit are all in involution and the flow (1.5) evolves on the coadjoint
orbit through the point X + ah ∈ L0,∞, X ∈ so(4). By the Adler-
Kostant-Symes theorem [1], [9], [24], the coefficients of zihi appearing
in the Riemann surface:

(1.6) C :
{
(z, h) ∈ C2 : det (X + ah− zI) = 0

}
associated to the equation (1.5), are invariant of the system in involu-
tion for the symplectic structure of this orbit. Also the flows generated
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by these invariants can be realized as straight lines on the Abelian vari-
ety defined by the periods of the Riemann surface C. Explicitly, equa-
tion (1.6) looks as follows

(1.7) C : H2
1 (X)+H4 (X)h2−H3 (X) zh+H2 (X) z2+

4∏
i=1

(αih− z) = 0

with H1(X) = c1, H2(X) = c2 defined by (1.2), H3(X) = 2H = c3 by
(1.3) and a 4th quadratic invariant of the form
(1.8) H4(X) = µ1x

2
1 + µ2x

2
2 + · · · + µ6x

2
6 = c4

where

µ1 =
γ2 − γ3

α2 − α3
, µ4 =

γ1 − γ4

α1 − α4

µ2 =
γ1 − γ3

α1 − α3
, µ5 =

γ2 − γ4

α2 − α4

µ3 =
γ1 − γ2

α1 − α2
, µ6 =

γ3 − γ4

α3 − α4
.

For generic choice of the ci, C is a Riemann surface of genus 3 and it has
a natural involution

σ : C → C, (z, h) �→ (−z,−h)
due to the skew-symmetry of the matrix X. Therefore the Jacobian
variety Jac(C) of C (cf. [7] for definitions) splits up into an even and old
part: the even part is an elliptic curve C0 = C/σ and the odd part is a
2-dimensional Abelian surface Prymσ(C) called the Prym variety:

Jac(C) = C0 + Prymσ(C).
The van Moerbeke-Mumford linearization method [19] provides then an
algebraic map from the complex affine variety

4⋂
i=1

{Hi(X) = ci} ⊂ C6

to the Jacobi variety Jac(C). By the antisymmetry of C, this map sends
this variety to the Prym variety Prymσ(C):

4⋂
i=1

{Hi(X) = ci} → Prymσ(C), p �→
3∑

k=1

sk

and the complex flows generated by the constants of the motion are
straight lines on Prymσ(C). Finally, we have the

Theorem 1. Let Prymσ(C) be the Prym variety of the Riemann sur-
face C (1.7). Under conditions (1.4), the Euler-Arnold equations (1.1)
can be linearized on Prymα(C).
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2. Structure of the singularities in the complex t-plane
and the integrability of the Euler-Arnold equations

First we recall several basics concepts. Consider a completely inte-
grable Hamiltonian system

(2.1) XH :
•
x = JH ′ (x) , x ∈ R2n+k, • ≡ d

dt
, ′ ≡ ∂

∂x

where H is the Hamiltonian and J = J(x) is a skew-symmetric matrix
with polynomial entries in x, for which the corresponding Poisson bracket

{Hi, Hj} =
〈
∂Hi

∂x
, J

∂Hj

∂x

〉
satisfies the Jacobi identity. Let gt be the corresponding phase flow. The
system possesses n+k independent polynomial invariants H1, . . . , Hn+k

(Casimir functions) of which k lead to zero vector fields JH ′
n+i (x) = 0,

1 ≤ i ≤ k, the n remaining ones are in involution (i.e., {Hi, Hj} = 0). For

most values of ci ∈ R, the invariant manifolds
n+k⋂
i=1

{
Hi = ci, x ∈ R2n+k

}
are compact, connected and by a theorem of Arnold-Liouville [5], are
diffeomorphic to real tori Rn/Lattice on which the flows gt

i (x) defined
by the vector fields XHi

, 1 ≤ i ≤ n, are straight lines motions.
Let now x ∈ C2n+k, t ∈ C and Z ⊂ C2n+k a non-empty Zariski open

set. Note that the map

Ψ : (H1, . . . , Hn+k) : C2n+k → Cn+k

is submersive on Z, i.e., dH1 (x) , . . . , dHn+k (x) are linearly independent
on Z. Let

I = Ψ
(
C2n+k\Z

)
=

{
c=(ci)∈ Cn+k : ∃x ∈ Ψ−1 (c) with dH1 (x) ∧ · · · ∧ dHn+k (x)=0

}
be the set of critical values of Ψ and let I be the Zariski closure of I in
Cn+k. Recall [4], [22] that the system (2.1) is algebraically completely
integrable if, for every c ∈ Cn+k\I, the fibre A = Ψ−1 (c) is the affine
part of an Abelian variety Ã ∼= Cn/Lattice, the flows gt

i (x), x ∈ A,
t ∈ C, defined by the vector fields XHi , 1 ≤ i ≤ n are straight lines mo-
tions on Cn/Lattice and the coordinates xi = xi (t1, . . . , tn) are mero-
morphic in (t1, . . . , tn).
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Adler and van Moerbeke [3], [4] have developed and used the following
necessary algebraic complete integrability criterion, inspired by the work
of S. Kowalewski [10]: if the Hamiltonian system (2.1) is algebraically
completely integrable, then each xi blows up for some value of t ∈ C and
whenever it blows up, the solution x(t) behaves as a Laurent series

xi = t−ki

(
x

(0)
i + x

(1)
i t + x

(2)
i t2 + · · ·

)
, ki ∈ Z, some ki > 0

which admits dim(phase space) − 1 = m − 1 free parameters. To ex-
plain the criterion, if the Hamiltonian flow (2.1) is algebraically com-
pletely integrable, it means that the variables xi are meromorphic on
the torus Cn/Lattice and by compactness they must blow up along a
codimension one subvariety (a divisor) S ⊂ Cn/Lattice. By the alge-
braic complete integrability definition, the flow (2.1) is a straight line
motion on Cn/Lattice and thus it must hit the divisor S in at least
one place. Moreover through every point of S, there is a straight line
motion and therefore a laurent expansion around that point of inter-
section. Hence the differential equation must admit Laurent expan-
sions which depend on the n − 1 parameters defining S and the n + k
constants ci defining the torus Cn/Lattice, the total count is therefore
m− 1 = dim(phase space) − 1 parameters.

The system (1.1) can be written in the form (2.1), with m = 6, H is
given by (1.3),

J =


0 −x3 x2 0 −x6 x5

x3 0 −x1 x6 0 −x4

−x2 x1 0 −x5 x4 0
0 −x6 x5 0 −x3 x2

x6 0 −x4 x3 0 −x1

−x5 x4 0 −x2 x1 0

 ∈ so(6)

and is explicitely given by

•
x1 = (λ3 − λ2)x2x3 + (λ6 − λ5)x5x6

•
x2 = (λ1 − λ3)x1x3 + (λ4 − λ4)x4x6

•
x3 = (λ2 − λ1)x1x2 + (λ5 − λ4)x4x5

•
x4 = (λ3 − λ5)x3x5 + (λ6 − λ2)x2x6

•
x5 = (λ4 − λ3)x3x4 + (λ1 − λ6)x1x6

•
x6 = (λ2 − λ4)x2x4 + (λ5 − λ1)x1x5.
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Here we have n = 2, k = 2, Z =
{
x ∈ C6 : Ψ (x) ∈ C4\I

}
is a non-

empty Zariski open set in C6 and

(2.2) A = Ψ−1(c) =
4⋂

i=1

{
Hi(x) = ci, x ∈ C6

}
where Hi(x) are given in (1.2), (1.3), (1.8).

The invariant variety A (2.2) is the fibre of a morphism from C6 to
C4, thus A is a smooth affine surface for generic c = (c1, . . . , c4) ∈ C4

and the main problem will be to complete A into an Abelian surface.
So, the question I address is how does one find the compactification of
A into an Abelian surface? This compactification is not trivial and the
simplest one obtained as a closure:

A =
4⋂

i=1

{
Hi(x) = cix

2
0

}
⊂ P6

i.e.,

x1x4 + x2x5 + x3x6 = c1x
2
0

x2
1 + x2

2 + · · · + x2
6 = c2x

2
0

λ1x
2
1 + λ2x

2
2 + · · · + λ6x

2
6 = c3x

2
0

µ1x
2
1 + µ2x

2
2 + · · · + µ6x

2
6 = c4x

2
0

where [x0, x1, . . . , x6] are homogeneous coordinates on P6, does not lead
to this result. (In the following we will not distinguish between x1 as
a homogeneous coordinates [x0, x1] and as an affine coordinate x1/x0.)
Indeed, an Abelian surface is not simply-connected and therefore cannot
be projective complete intersection. In other words, if A is to be the
affine part of an Abelian surface, A must have a singularity somewhere
along the locus at infinity

I = A
⋂

{x0 = 0} .

A direct calculation shows that I is an ordinary double curve of A except
at 16 ordinary pinch points of A; the variety A has a local analytic
equation x2 = yz2. The reduced curve Ir is a smooth elliptic curve.
Now, it’s only after blowing up A along the curve Ir that one gets the
desired Abelian surface.
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Theorem 2. The divisor of poles of the functions x1, x2, . . . , x6 is
a Riemann surface S of genus 9. For generic constants, the surface A
(2.2) is the affine part of an Abelian surface Ã obtained by gluing to A
the divisor S.

Proof: Consider points at infinity which are limit points of trajecto-
ries of the flow. There is a Laurent decomposition of such asymptotic
solutions,

(2.3) X (t) = t−1
(
X(0) + X(1)t + X(2)t2 + · · ·

)
which depend on dim(phase space) − 1 = 5 free parameters. Putting
(2.1) into (1.1), solving inductively for the X(k), one finds at the 0th

step a non-linear equation,

(2.4) X(0) +
[
X(0),Λ ·X(0)

]
= 0

and at the kth step, a linear system of equations

(L−k I)X(k) =
{

0 for k = 1
quadratic polynomial in X(1), . . . , X(k−1) for k > 1

where L denotes the linear map

L (Y ) =
[
Y,Λ ·X(0)

]
+

[
X(0),Λ · Y

]
+ Y = Jacobian map of (2.4).

One parameter appear at the 0th step, i.e., in the resolution of (2.4)
and the 4 remaining ones at the kth step, k = 1, . . . , 4. Taking into
account only solutions trajectories lying on the surface A, we obtain
one-parameter families which are parameterized by a Riemann surface.
To be precise we search for the set S of Laurent solutions (2.3) restricted
to the affine invariant surface A, i.e.,
(2.5)
S = closure of the continuous components of

{Laurent solutions X (t) such that Hi (X (t)) = ci, 1 ≤ i ≤ 4}

=
4⋂

i=1

{
t0 − coefficient of Hi (X (t)) = ci

}
= a Riemann surface whose affine equation is

w2+c1

(
x

(0)
5 x

(0)
6

)2

+c2

(
x

(0)
4 x

(0)
6

)2

+c3

(
x

(0)
4 x

(0)
5

)2

+c4x
(0)
4 x

(0)
5 x

(0)
6

≡ w2 + F
(
x

(0)
4 , x

(0)
5 , x

(0)
6

)
= 0
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where w is an arbitrary parameter and where x(0)
4 , x(0)

5 , x(0)
6 parametrizes

the elliptic curve

(2.6) E :


(
x

(0)
4

)2

+
(
x

(0)
5

)2

+
(
x

(0)
6

)2

= 0(
βx

(0)
5 + αx

(0)
6

) (
βx

(0)
5 − αx

(0)
6

)
= 1

with (α, β) such that: α2 + β2 + 1 = 0.
The Riemann surface S is a two-sheeted ramified covering of the elliptic

curve E and it is easy to check that the elliptic curve E is exactly the
reduced curve Ir. The branch points are defined by the 16 zeroes of
F

(
x

(0)
4 , x

(0)
5 , x

(0)
6

)
on E. The Riemann surface S is unramified at infinity

and by Riemann-Hurwitz’s formula,

2g (S) − 2 = N (2g (E) − 2) + R

where N is the number of sheets and R the ramification index, the genus
g (S) of S is 9. To show that A is the affine part of an Abelian surface Ã
with Ã\A = S, we shall compute the invariants of Ã and use Enriques
classification of algebraic surfaces [7, p. 590]. We denote as usual by
K

Ã
the canonical bundle, χ(O

Ã
) the Euler characteristic and q(Ã) the

irregularity of Ã. Now if φ : Ã → A ⊂ P6 is the normalization of A,
then the pullback map on sections

φ∗ : H0
(
A,OA

)
→ H0

(
Ã,O

Ã

)
is an isomorphism and

K
Ã

= K̃A − S

where K̃A = φ∗ (
KA

)
and so for H a hyperplane in P6,

K
Ã

= φ∗
(

A ·KP6 +

(
4∑

i=1

degHi

)
· H

)
− S = 0.

Also,

χ
(
O

Ã

)
= χ

(
φ∗OÃ

/OA

)
+ χ

(
OA

)
= χ

(
φ∗OS/OE

)
+ χ

(
OA

)
.
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Recall that the Riemann surface S (2.5) of genus 9, is a double cover
ramified over 16 points of the elliptic curve E (2.6). We shall use the
Koszul complex to compute χ

(
OA

)
. In the local ring at each point of

P6 the localizations of the 4 homogeneous polynomials Hi give a regular
sequence, and the Koszul complex gives a canonical resolution

0→OP6 (−8) → OP6 (−6)4→ OP6 (−4)6→ OP6 (−2)4→ OP6 → OV c
→0.

Thus χ
(
OA

)
= 8, hence χ

(
O

Ã

)
= 0 and q

(
Ã

)
= 2. By Enriques-

Kodaira’s classifcation theorem [7, p. 590], it follows that Ã is an Abelian
surface and this concludes the proof of Theorem 2.

Theorem 3. The flow (1.1) evolves on an Abelian surface Ã ∼=
C2/Lattice of polarization(

2 0 a c
0 4 c b

)
, Im

(
a c
c b

)
> 0.

Proof: Let

L ≡
{
f : f meromorphic on Ã, (f) + S ≥ 0

}
be the vector space of meromorphic functions on Ã with at worst a
simple pole along S and let

χ (S) = dimH0
(
Ã,O(S)

)
− dimH1

(
Ã,O(S)

)
be the Euler characteristic of S. The adjunction formula and the
Riemann-Roch theorem for divisors on Abelian surfaces imply that

g (S) =
K

Ã
· S + S · S

2
+ 1

χ (S) = pa

(
Ã

)
+ 1 +

1
2

(
S · (S −K

Ã
)
)

where g (S) is the geometric genus of S and pa

(
Ã

)
is the arithmetic

genus of Ã. Since Ã is an Abelian surface
(
K

Ã
= 0, pa

(
Ã

)
= −1

)
,

g (S) − 1 =
S · S

2
= χ (S) .
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Using Kodaira-Serre duality [7, p. 153], Kodaira-Nakano vanishing the-
orem [7, p. 154] and a theorem on theta-functions [7, p. 317], it is easy
to see that

(2.7)
g (S) − 1 = dimL(S)

(
≡ h0 (L)

)
= d1d2

where d1, d2 ∈ N, are the elementary divisors of the polarization c1 (L)
of Ã. Note that the natural reflection about the origin of C2, is given by

σ ≡ − id : (x0, x1, . . . , x6) �→ (−x0, x1, . . . , x6)

and has 16 fixed points on Ã, given by the 16 branch points on S covering
the 16 roots of the polynomial F (x0

4, x
0
5, x

0
6) (2.5). Since L is symmetric

(σ∗L � L), σ can be lifted to L as an involution σ̃ in two ways differing in
sign and for each section (theta-function) s ∈ H0 (L), we therefore have
σ̃s = ±s. Recall that a section s ∈ H0 (L) is called even (resp. odd) if
σ̃s = +s (resp. σ̃s = −s). Under σ̃ the vector space H0 (L) splits into
an even and odd subspace

H0 (L) = H0 (L)even ⊕H0 (L)odd

with H0 (L)even containing all the even sections and H0 (L)odd all odd
ones. Using the inverse formula [21, p. 331], we see after a small com-
putation that
(2.8)

h0 (L)even≡ dimH0 (L)even =


d1d2

2
+2

(
1+

[
d2

2

]
− d2

2

)
for even d1

d1d2

2
+

(
1+

[
d2

2

]
− d2

2

)
for odd d1

h0 (L)odd≡ dimH0 (L)odd =


d1d2

2
−2

(
1+

[
d2

2

]
− d2

2

)
for even d1

d1d2

2
−

(
1+

[
d2

2

]
− d2

2

)
for odd d1.

Notice that c1 (L) = φ∗ (H) and (c1 (L)2) = 16 (since the degree of A
is 16). By the classification theory of ample line bundles on Abelian
varieties, Ã � C2/LΩ with period lattice given by the columns of the
matrix

Ω =
(
d1 0 a c
0 d2 c b

)
, Im

(
a c
c b

)
> 0

according to (2.7), with

d1d2 = h0 (L) = g (S) − 1 = 8, d1 | d2, di ∈ N∗.
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Hence we have two possibilities:

(i) d1 = 1, d2 = 8

(ii) d1 = 2, d2 = 4.

Fom formula (2.8), the corresponding line bundle L has in case (i), 5
even sections, 3 odd ones and in case (ii), 6 even sections, 2 odd ones.
Now x1, . . . , x6 are 6 even sections, showing that case (ii) is the only
alternative and the period matrix has the form(

2 0 a c
0 4 c b

)
, Im

(
a c
c b

)
> 0.

This completes the proof of Theorem 3.

Theorem 4. The Abelian surface Ã which completes the affine sur-
face A (2.2) is the Prym variety Prymσ(Γ) of the genus 3 Riemann
surface Γ:

Γ :

{
w2 = −c1

(
x0

5x
0
6

)2 − c2
(
x0

6

)2
z − c3

(
x0

5

)2
z + c4y

y2 = z
(
α2z − 1

)
(β2z + 1)

for the involution σ : Γ → Γ, (w, y, z) �→ (−w, y, z) interchanging the two
sheets of the double covering Γ → Γ0, (w, y, z) �→ (y, z) where Γ0 is the
elliptic curve defined by

Γ0 : y2 = z
(
α2z − 1

)
(β2z + 1).

Proof: After substitution z ≡
(
x0

4

)2, the Riemann surface S can also be
seen as a four-sheeted unramified covering of another Riemann surface Γ,
determined by the equation

Γ : G (w, z)≡
[
w2+c1

(
x0

5x
0
6

)2
+c2

(
x0

6

)2
z+c3

(
x0

5

)2
z
]2

− c24
(
x0

5x
0
6

)2
z=0.

It is straighforward to verify that the equations (2.6) are equivalent to(
x0

5

)2 = β2z + 1 and
(
x0

6

)2 = α2z − 1. To compute the genus of Γ, we
observe that the Riemann surface Γ is invariant under an involution

(2.9) σ : Γ → Γ, (w, z) � (−w, z).

Let us consider a map

ρ : Γ → Γ0 ≡ Γ/σ, (w, y, z) � (y, z)
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of the Riemann surface Γ onto an elliptic curve Γ0 ≡ Γ/σ, that is given
by the equation

(2.10) Γ0 : y2 = z
(
α2z − 1

)
(β2z + 1).

The genus of the Riemann surface

(2.11) Γ :

{
w2 = −c1

(
x0

5x
0
6

)2 − c2
(
x0

6

)2
z − c3

(
x0

5

)2
z + η

y2 = z
(
α2z − 1

)
(β2z + 1)

is calculated easily by means of the map ρ. The latter is two-sheeted
ramified covering of the elliptic curve Γ0 and it has 4 branch points. Using
the Riemann-Hurwitz formula, we obtain g (Γ) = 3. I now will proceed
to show that the Abelian surface Ã can be identified as Prym variety
Prymσ(Γ). Let (a1, a2, a3, b1, b2, b3) be a basis of cycles in the Riemann
surface Γ, with the intersection indices aioaj = biobj = 0, aiobj = δij ,
such that σ (a1) = a3, σ (b1) = b3, σ (a2) = −a2, σ (b2) = −b2 for
the involution σ (2.9). By the Poincaré residu map [7, p. 221], the 3
holomorphic 1-forms ω0, ω1, ω2 in Γ are the differentials

P (w, z)
dz

(∂G/∂w) (w, z)
|G(w,z)=0= P (w, z)

dz

4wy

for P a polynomial of degree ≤ degG− 3 = 1. Therefore

(3.5) ω0 =
dz

y
, ω1 =

zdz

wy
, ω2 =

dz

wy

form a basis of holomorphic differentials on Γ and obviously σ∗ (ω0) = ω0,
σ∗ (ωk) = −ωk (k = 1, 2) for the involution σ (2.9). It is well known that
the period matrix Ω of Prymσ(Γ) can be written as follows

Ω =


2

∫
a1

ω1

∫
a2

ω1 2
∫

b1

ω1

∫
b2

ω1

2
∫

a1

ω2

∫
a2

ω2 2
∫

b1

ω2

∫
b2

ω2

 .

Let (dt1, dt2) be a basis of holomorphic 1-forms on Ã such that
dtj |S= ωj , (j = 1, 2),

LΩ′ =

{
2∑

k=1

mk

∫
a′

k

(
dt1
dt2

)
+ nk

∫
b′

k

(
dt1
dt2

)
: mk, nk ∈ Z

}
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the lattice associated to the period matrix

Ω′ =


∫

a′
1

dt1

∫
a′
2

dt1

∫
b′1

dt1

∫
b′2

dt1∫
a′
1

dt2

∫
a′
2

dt2

∫
b′1

dt2

∫
b′2

dt2


where (a′1, a

′
2, b

′
1, b

′
2) is a basis of H1(Ã,Z) and let

Ã → C2/LΩ′ : P �

∫ P

P0

(
dt1
dt2

)
be the uniformizing map. By the Lefschetz theorem on hyperplane sec-
tion [7, p. 156], the map H1(S,Z) → H1(Ã,Z) induced by the inclu-
sion S ↪→ Ã is surjective and consequently we can find 4 cycles a′1, a

′
2,

b′1, b
′
2 on the Riemann surface S such that

Ω′ =


∫

a′
1

ω1

∫
a′
2

ω1

∫
b′1

ω1

∫
b′2

ω1∫
a′
1

ω2

∫
a′
2

ω2

∫
b′1

ω2

∫
b′2

ω2


and

LΩ′ =

{
2∑

k=1

mk

∫
a′

k

(
ω1

ω2

)
+ nk

∫
b′

k

(
ω1

ω2

)
: mk, nk ∈ Z

}
.

Recalling that F (x0
4, x

0
5, x

0
6) (2.5) has 4 zeroes on Γ0 (2.10) and 16 zeroes

on E (2.6), it follows that the 4 cycles a′1, a
′
2, b

′
1, b

′
2 on S which we look

for are 2a1, a2, 2b1, b2 and they form a basis of H1(Ã,Z) such that

Ω′ =


2

∫
a1

ω1

∫
a2

ω1 2
∫

b1

ω1

∫
b2

ω1

2
∫

a1

ω2

∫
a2

ω2 2
∫

b1

ω2

∫
b2

ω2

 = Ω

is a Riemann matrix. Thus, Ã and Prymσ(Γ) are two Abelian varieties
analytically isomorphic to the same complex torus C2/LΩ. By Chow’s
theorem, Ã and Prymσ(Γ) are then algebraically isomorphic. This fin-
ishes the proof of Theorem 4.
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3. Main observation

We know from section 1, that the linearization of the Euler-Arnold
equations (1.1) takes place on the Prym variety Prymσ(C) of the genus 3
Riemann surface C (1.7); the latter is a double ramified cover of an
elliptic curve C0. Also, from the asymptotic analysis (section 2) of the
equations (1.1), the intersection A (2.2) of the four invariants (1.2),
(1.3), (1.8) completes into an Abelian surface Ã upon adding a Riemann
surface S (2.5) of genus 9, which is a 4-fold unramified cover of a Riemann
surface Γ (2.11) of genus 3; the latter is a double ramified cover of an
elliptic curve Γ0. The Abelian surface Ã can also be identified as the
Prym variety Prymσ(Γ) and the problem linearizes on Prymσ(Γ). From
the fondamental exponential sequence

0 → Z → O
Ã

exp→ O∗
Ã

→ 0

we get the map

· · · → H1
(
Ã,O∗

Ã

)
→ H2

(
Ã,Z

)
→ · · ·

i.e., the first Chern class of a line bundle on Ã. Therefore the
group Pico

(
Ã

)
of holomorphic line bundles on Ã with Chern class zero

(any line bundle with Chern class zero can be realized by constant mul-
tipliers) is given by

Pico
(
Ã

)
= H1

(
Ã,O

Ã

)
/H1

(
Ã,Z

)
and is naturally isomorphic to the dual Abelian surface Ã� of Ã
(� means the dual Abelian surface). The relationship between Ã and
Ã� is symmetric like the relationship between two vectors spaces set up
a bilinear pairing. It is interesting to observe that the Abelian surfaces
Ã = Prymσ(Γ) obtained from the asymptotic analysis of the differential
equations and Prymσ(C) obtained from the orbits in the Kac-Moody Lie
algebra are not identical but only isogeneous, i.e., one can be obtained
from the other by doubling some periods and leaving other unchanged.
The precise relation between these two Abelian surfaces is

Ã = (Prymσ(C))�

i.e., they are dual of each other. In fact, the functions x1, . . . , x6 are
themselves meromorphic on Ã, while only their squares are on Prymσ(C).
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The final point we want to make is that the relationship between the
Riemann surfaces Γ and C is quite intricate. As usual we let Θ the theta
divisor on Jac(Γ), we have

Prymσ(C)\Π = Θ ∩ Prymσ(C) = Γ

with Π a Zariski open set of Prymσ(C). Also

Θ ∩ Ã = C

where Θ is a translate of the theta divisor of Jac(C) invariant under the
involution σ.
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