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THE RIESZ KERNELS DO NOT GIVE RISE
TO HIGHER DIMENSIONAL ANALOGUES

OF THE MENGER-MELNIKOV CURVATURE

Hany M. Farag

Abstract
Ever since the discovery of the connection between the Menger-
Melnikov curvature and the Cauchy kernel in the L2 norm, and its
impressive utility in the analytic capacity problem, higher dimen-
sional analogues have been coveted. The lesson from 1-sets was
that any such (nontrivial, nonnegative) expression, using the Riesz
kernels for m-sets in Rn, even in any Lk norm (k ∈ N), would
probably carry nontrivial information on whether the bounded-
ness of these kernels in the appropriate norm implies rectifiability
properties of the underlying sets or measures. Answering such
questions would also have an impact on another important prob-
lem, namely whether totally unrectifiable m-sets are removable
for Lipschitz harmonic functions in Rm+1. It has generally been
believed that some such expressions should exist at least for some
choices of m, k, or n, but the apparent complexity involved made
the search rather difficult, even with the aid of computers. How-
ever, our rather surprising result is that, in fact, not a single higher
dimensional analogue of this useful curvature can be derived from
the Riesz kernels in the same fashion, and that, even for 1-sets,
the Menger-Melnikov curvature is unique in a certain sense.

1. Introduction

Recall that the so-called Menger-Melnikov curvature c (x, y, z) is de-
fined to be the reciprocal of the radius of the circle passing through the
(distinct) points x, y, z; c (x, y, z) = 0 if and only if x, y, z are collinear.
Melnikov [Me] found the identity (for distinct z1, z2, z3 ∈ C):

(1) c (z1, z2, z3)
2 =

∑
σ

1(
zσ(1) − zσ(3)

) (
zσ(2) − zσ(3)

) ,
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where the sum is over all six permutations σ of {1, 2, 3}. The same
identity can be transformed into (for distinct x1, x2, x3 ∈ Rn):

(2) c (x1, x2, x3)
2 =

∑
σ

(
xσ(1) − xσ(3)

)
·
(
xσ(2) − xσ(3)

)
∣∣xσ(1) − xσ(3)

∣∣2 ∣∣xσ(2) − xσ(3)

∣∣2 .
It is also a simple exercise to show that

(3) c (x1, x2, x3)
2 =4

{
|x1 − x3|2 |x2 − x3|2−((x1 − x3) · (x2 − x3))

2

|x1 − x3|2 |x2 − x3|2 |x1 − x2|2

}
,

which, by the Schwarz inequality, shows explicitly the nonnegativity of
this expression. Now suppose µ is a finite Borel measure, and that∫

(x1 − x3)
|x1 − x3|2

dµ (x1) is in L2 (µ). Then (ignoring any subtleties), we

might formally argue that
(4)

1
6

∫∫∫
c (x1, x2, x3)

2
dµ (x1) dµ (x2) dµ (x3)

=
1
6

∫∫∫ ∑
σ

(xσ(1)−xσ(3))∣∣xσ(1)−xσ(3)

∣∣2 · (xσ(2)−xσ(3))∣∣xσ(2)−xσ(3)

∣∣2 dµ
(
xσ(1)

)
dµ

(
xσ(2)

)
dµ

(
xσ(3)

)

=
1
6

∑
σ

∫∫∫
(xσ(1)−xσ(3))∣∣xσ(1)−xσ(3)

∣∣2 · (xσ(2)−xσ(3))∣∣xσ(2)−xσ(3)

∣∣2 dµ
(
xσ(1)

)
dµ

(
xσ(2)

)
dµ

(
xσ(3)

)

=
∫∫∫

(x1 − x3)
|x1 − x3|2

· (x2 − x3)
|x2 − x3|2

dµ (x1) dµ (x2) dµ (x3) < ∞.

This is not quite true of course, but see e.g. [MMV] where the difficulties
are handled (at least for appropriate types of measures). In particular, if
µ is the restriction of the one dimensional Hausdorff measure to an A-D
regular set it is proved using techniques developed in [Jo], [DS1], and
[DS2] that the set is uniformly rectifiable. Recall that a set E is said to
be an A-D regular 1-set if there exists a constant C < ∞ such that

C−1r ≤ H1 (E ∩B (x, r)) ≤ Cr,

whenever x ∈ E, and 0 < r < diam (E). Combining this with a theorem
of Michael Christ [Ch], the authors prove that, if an A-D 1-set has
positive analytic capacity, then it must be uniformly rectifiable. Also,
Melnikov and Verdera [MV] gave a geometric proof that the Cauchy
integral is bounded in L2 on Lipschitz graphs, using this curvature.
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All these developments finally led to the solution of the analytic ca-
pacity problem [Da] (namely that compact totally unrectifiable 1-sets
in the plane are removable for bounded analytic functions). One is then
interested in doing the same for m dimensional sets (m ≥ 2) in Rn.
For these sets the natural analogues with the right scaling are the Riesz
kernels Km = x |x|−m−1. These kernels, among others, were investi-
gated in [DS1], [DS2] on A-D regular sets, and the question of whether
Km ∗ dH1|E ∈ L2 (E) implies uniform rectifiability of the set is still
open for m ≥ 2. One would have hoped that a similar approach might
work, perhaps using an Lk norm, with a k that may depend on m (or
even n if necessary). Another very interesting open question of a similar
nature to the analytic capacity problem is whether totally unrectifiable
sets are removable for Lipschitz harmonic functions. There, the only
relevant sets are m-sets in Rm+1, with m ≥ 2 (for m = 1 this was
resolved in [DM], also making use of the Menger-Melnikov curvature).
See also [MP] where it is proved that a wide subclass of these sets are
removable. It therefore became of great interest to investigate expres-
sions of the form (2), but with the power 2 in the denominator replaced
by m + 1, and also allowing more points (i.e. allowing Lk norms with
k ≥ 2). The results of the next section show that we are fortunate to
have the Menger-Melnikov curvature for 1-sets, because for m ≥ 2 there
are no analogues of it that can be derived from the Riesz kernels in the
same fashion or, in other words, there is no identity similar to that of
Melnikov’s relating certain norms of these kernels to some (nontrivial,
and nonnegative) expression.

I would like to thank Stephen Semmes for useful conversations regard-
ing this work, and Joan Verdera for valuable comments.

2. The Main Theorem

2.1. Definitions.

For the rest of the paper we will assume that m ≥ 1, k ≥ 1, n ≥ 2 are
integers (note that rectifiability theory is trivial for n = 1). We let P be
the class of all functions of the form

(5) Pm,k,n (x0, x1, . . . , xk)

=
∑
γ∈H

n∑
j1=1

· · ·
n∑

jk=1

a (j1, . . . , jk)
∏k

i=1

(
x

(ji)
γ(i) − x

(ji)
γ(0)

)
∏k

i=1

∣∣xγ(i) − xγ(0)

∣∣m+1 ,
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where H is the group of permutations of {0, 1, . . . , k}, a :{1, . . . , n}k→R,
and x

(q)
l denotes the q-th component of xl ∈ Rn. For instance in the case

of the standard curvature as in (2), we have that a (i, j) = 0, if i �= j,
and a (i, i) = 1, for i ∈ {1, . . . , n}.

Definition 1. We will say that Pm,k,n ∈ P is an (m, k, n)-curvature
function of the Melnikov type if 0 ≤ Pm,n,k �≡ 0.

2.2. Statement and proof of the main theorem.

Theorem 2. Let n ≥ 2. If m ≥ 2, or k �= 2, (m,n, k)-curvature
functions of the Melnikov type do not exist. For m = 1, k = 2, the
(1, 2, n)-curvature functions defined by (2) are uniquely characterized (up
to constant multiples) in the class P by being invariant under the action
of O (n) (where a transformation acts simultaneously on the variables xi,
for all i).

Proof: Suppose Pm,k,n is one such function. The first observation is
that regardless of m, or n, (m, k, n)-curvature functions cannot exist for
odd k. This is easily seen by applying the transformation xi → −xi, for
all i, under which the function changes sign. By translation-invariance
which is implicit in the form (5), we can assume that x0 = 0, and, from
now on, think of Pm,k,n as a function of k, not k + 1, variables. We
also observe that the sum over the permutations can be performed by
summing functions Si, where i = 0, . . . , k, such that for an element σ of
H, the group of permutations of {1, . . . , k},

(6) S0 ≡
∑
σ∈H

n∑
j1=1

· · ·
n∑

jk=1

a (j1, . . . , jk)
∏k

i=1 x
(ji)
σ(i)∏k

i=1 |xi|m+1
,

and Sl is obtained from S0 via the transformation xl → −xl, and
xj → xj − xl, for j �= l. Thus

(7) Pm,k,n =
k∑

i=0

Sl.

This decomposition will allow us to understand all the Si’s once we un-
derstand S0. Now we observe that nonnegativity is an invariance under
the action of O (n) on the variables. We can thus integrate (or average)
over O (n), and since the denominators in the expressions for the Si’s are
invariant, we can replace our original function by one that is of exactly
the same form but invariant under the action of O (n). That is, we can
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assume that the coefficients a (j1, . . . , jk) are so that the polynomial in
the numerator of each Si is invariant. For convenience, we continue to
denote the new functions by Pm,k,n and Si respectively. Notice that with
these new functions we can still obtain Pm,k,n from the Si’s by means
of (7), and each Si from S0 as before. In fact, the only change is to the
coefficients of the polynomials in the numerators of S0 (note that these
are the same coefficients in each Si). We therefore wish to study the
new polynomial in the numerator of S0. Let us denote this polynomial
by Qm,k,n (x1, . . . , xk). Using the properties of this polynomial we will
find a simpler, more useful form for it. We define

(8) Gm,k,n (x1, . . . , xk) ≡
∑
σ∈H

k
2∏

i=1

xσ(2i−1) · xσ(2i),

and observe that both Qm,k,n and Gm,k,n, are invariant (symmetric)
under permutations of the variables. Furthermore, the coordinates of
any variable xi appear linearly in them. Finally, if we set xi = x, for all i,
then, by homogeneity and rotation-invariance, both of these polynomials
must be multiples of |x|k. We now invoke

Lemma 3. Suppose R (x1, . . . , xk) is a polynomial in the coordinates
of x1, . . . , xk ∈ Rn, such that the coordinates of the variables appear at

most linearly (for example
(
x

(1)
2

)2

, and x
(1)
1 x

(2)
1 are not allowed). If R

is also symmetric under permutations of the variables x1, . . . , xk, then
it is uniquely determined by its restriction to the set x1 = · · · = xk.

Proof: Suppose R is one such polynomial, and that r(x)≡R(x,. . ., x)≡
0. We will show that R ≡ 0. For this it suffices to show that there is
a one-to-one correspondence between the distinct coefficients (i.e. those
which are not determined by symmetry) of terms of R, and those of r.
Note that the assumption on R implies that r can have degree at most
k. Now the generic term in a polynomial of degree at most k is of the
form c (θ)

∏n
l=1

(
x(l)

)θ(l)
, where θ : {1, . . . , n} → {0, 1, . . . , k}, and r

is obtained by the sum over all possible θ. Such a term in r must arise
exactly from those terms of R which have l-th coordinates of exactly θ (l)
of the k variables appearing. By symmetry, all such terms have the same
coefficient. We can then group the distinct terms of R in that manner,
and then c (θ) is a positive integer multiple of the appropriate coefficient
in r, as described above. This establishes the required correspondence.
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From the above lemma we conclude that Qm,k,n is a constant multiple
of Gm,k,n. In particular, this establishes the uniqueness (up to constant
multiples) of the (1, 2, n)-curvature functions in (2) among the ones with
the same symmetries as claimed. We will now assume, without loss of
generality, that

(9) Qm,k,n = Gm,k,n,

and we start by showing that, with this substitution, Pm,k,n takes posi-
tive values (otherwise we would have needed to take Qm,k,n = −Gm,k,n).
Let x, y ∈ Rn\ {0} be such that

(10) x · y = 0.

Choose λ ∈ (0,∞), and set x1 = x, and xi = λiy, for 2 ≤ i ≤ k. We
study the behavior of Pm,k,n (x1, . . . , xk) as λ → ∞. First, we observe
that

(11) S0 = 0,

whereas
(12)

S1 = k
∑
α∈G




(−x) ·
(
λα(2)y − x

) k
2∏
2

((
λα(2i−1)y − x

)
·
(
λα(2i)y − x

))
|x|m+1

k∏
i=2

|λiy − x|m+1




,

where G is the group of permutations of {2, . . . , k}. An easy computation
using (10) shows that

(13) λ2
k∏

i=2

(
λi

)m S1 =
k (k − 2)!

|x|m−1 |y|m(k−1)+1

(
1 + O

(
1
λ

))
.

On the other hand,

(14) S2 =
k! |y|k λ2

k∏
i=2

(
λi

)
|x− λ2y|m+1 |λ2y|m+1

k∏
i=3

|λiy − λ2y|m+1

(
1 + O

(
1
λ

))
,

so that

(15)
(
λ2m

)2
k∏

i=3

(
λi

)m S2 =
k!

|y|mk

(
1 + O

(
1
λ

))
.
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Similarly, for i ≥ 3,

(16)
(
λim

)i
k∏

j=i+1

(
λj

)m |Si| ≤
k!

|y|mk

(
1 + O

(
1
λ

))
.

Note that we needed the exact form of the lowest order term in S2 only
for the case m = 1. Hence, for λ large enough, Pm,k,n takes positive
values. To show that Pm,k,n takes negative values, we let x, y, be as
before, and set x1 = x, x2 = −x, xi = λiy, for 3 ≤ i ≤ k. We first
eliminate the case k = 2, m > 1:

In this case

(17)

Pm,k,n =
−2 |x|2(
|x|m+1

)2 +
2 (−x · (−2x))

2m+1
(
|x|m+1

)2 +
2x · 2x

2m+1
(
|x|m+1

)2

=
2

|x|2m

(
−1 + 2−m + 2−m

)
< 0.

We should mention that this case was previously known (see the remarks
in [MMV, Section 4]). Now we tackle the case k > 2, and m > 1:

Using (10), we compute

(18)

S0 =
−k (k − 2)! |x|2

k∏
i=3

(
λi |y|

)
(
|x|m+1

)2
(

k∏
i=3

λi |y|
)m+1

=
−k (k − 2)!

|x|2m |y|m(k−2)

(
k∏

i=3

λi

)m ,

whereas, for j = 1, 2,

(19)

Sj =




2 |x|2 k (k − 2)!
k∏

i=3

(
λi |y|

)

2m+1
(
|x|m+1

)2
(

k∏
i=3

λi |y|
)m+1




(
1 + O

(
1
λ6

))

=




k (k − 2)!

2m |x|2m |y|m(k−2)

(
k∏

i=3

λi

)m




(
1 + O

(
1
λ6

))
.
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We will analyze the higher order term in (19) in the next paragraph. On
the other hand,

(20)

S3 =
−k!

(
λ3

)3
(

k∏
i=4

λi

)
|y|k

(
λ9 |y|3

k∏
i=4

(λi |y|)
)m+1

(
1 + O

(
1
λ

))

=


 −k!

λ6m

(
k∏

i=3

λi

)m

|y|mk




(
1 + O

(
1
λ

))
,

and for j ≥ 4,

(21) |Sj | ≤
k!(

λj2
k∏

i=j+1

λi

)m

|y|mk

(
1 + O

(
1
λ

))
.

Thus, for m > 1, Pm,k,n will take negative values as λ → ∞. Fi-
nally, for k ≥ 3, and m = 1, we will need to compute the next order
terms in S1 and S2, since the lowest order terms cancel when added
to S0. The estimates for S1, and S2, are identical and come from
the term

(
|x|2 +

∣∣λ3y
∣∣2) in the denominator. Note that the next or-

der term in the numerator comes from the terms of the same order as
x ·

(
λ3y − x

)
(2x) ·

(
λ4y − x

) ∏ k
2
i=3

(
λ2i−1y · λ2iy

)
, which have a power of

λ that is less than the first term computed in (19) by 7. Thus we find
that

(22) S1 + S2 =


 k (k − 2)!

|x|2 |y|k−2

(
k∏

i=3

λi

)



(
1 − |x|2

λ6 |y|2
(

1 + O

(
1
λ

)))
.

Hence, for large enough λ, Pm,k,n will take negative values.

Remark 4. We mention in passing that for m > 1, one can replace
the substitution λiy, by iλy instead. It was the more delicate case m = 1
that dictated our choice.

This concludes the proof of our theorem.
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3. Concluding remarks

In addition to our theorem above, we note that homogeneity makes the
change in sign persist at all scales. That is, in every neighborhood U of
(say) x0 ∈ Rn, we can find two sets {x1, . . . , xk, x

′
1, . . . , x

′
k} ⊂ U , so that

Pm,k,n assumes values of opposite signs on (x1, . . . , xk) and (x′
1, . . . , x

′
k).

Furthermore, since Pm,k,n is continuous on the set {(x1, . . . , xk) : xi �=xj ,
for all i �= j}, the sets on which it assumes either positive or negative
values are open in Rn(k+1), and are thus too large to ignore measure-
theoretically, perhaps even if we use our knowledge of the geometric
properties of totally unrectifiable m-sets for instance. Finally, we note
(motivated by a question of Tolsa) that although we implicitly assumed
that the class P contained only functions symmetric in the variables xi

as the motivating measure-theoretic problem suggests, there is no loss
of generality even then, since nonnegativity is an invariance under the
action of the permutation group Sk+1 on the points x0, . . . , xk, and one
can replace any expression by a symmetric one. Again the fact that the
denominators are symmetric plays a role here.
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