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STRATIFICATIONS OF POLYNOMIAL SPACES

L. Birbrair

Abstract
In the paper we construct some stratifications of the space of monic
polynomials in real and complex cases. These stratifications de-
pend on properties of roots of the polynomials on some given semi-
algebraic subset of R or C. We prove differential triviality of these
stratifications. In the real case the proof is based on properties
of the action of the group of interval exchange transformations on
the set of all monic polynomials of some given degree. Finally we
compare stratifications corresponding to different semialgebraic
subsets.

1. Introduction

In Theory of Singularities many authors use the following conception:
local (or global) stability follows from transversality to some stratifi-
cation of some space of polynomial (analytic or smooth) maps (see, for
example, [AVG], [dPW]). Here we present some stratifications of spaces
of monic polynomials on one variable connected to problems of stability
of singularities of projection and singularities near boundary points of
hypersurfaces.

In the proof of Tarski-Seidenberg Theorem (see, for example, [BR])
appears the following partition {Qk} of the space of monic polynomials:
f ∈ Qk if f has exactly k roots. In fact the main step of the proof of
Tarski-Seidenberg Theorem is to prove thatQk are semialgebraic subsets.
The partition {Qk} is not a stratification. In [GWPL] it is mentioned
that if we consider not just a number of roots but multiplicities of these
roots we obtain a Whitney regular stratification of the space of monic
polynomials.

In [G] it is proved that if we fix multiplicities of the eigenvalues of n×n
matrices and the structures of their Jordan blocks (so-called Segre sym-
bol) we obtain a stratification of the space of n×nmatrices. C. G. Gibson
also proved that this stratification is Whitney regular.
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In the present paper we consider some generalizations of the
stratification considered in [GWPL]. Namely, let N be some closed
semialgebraic subset of C. Thus we have the following decomposition
N = Int(N) ∪ S1 ∪ S2 ∪ Sing(∂N), where Int(N) is the set of inter-
nal points of N ; S1 ⊂ ∂N is a subset of the border ∂N contains only
Cρ-smooth points which have the internal points of N in every small
neighbourhood; S2 is a complement to S1 in the set of Cρ-smooth points
of ∂N ; as usual Sing(∂N) is a subset of Cρ-singular points of ∂N . We
define a multiplicity symbol (see sections 2.1 and 3.1) which is deter-
mined by multiplicities of the roots of given polynomial on Int(N), S1,
S2 and Sing(N).

The main result of the paper is the theorem that all stratifications
given by these multiplicity symbols are differentially trivial and thus
Whitney regular (Theorems 2.4 and 3.1). Observe that the stratifications
under considerations are different and depend on N and ρ. In the case
N = C we obtain the stratification considered in [GWPL].

The paper has the following structure. Part 2 is devoted to stratifi-
cations of the space of real monic polynomials. Since any closed semi-
algebraic subset of R is or R itself, or a finite union of closed segments,
points and closed halflines we begin our consideration from the case of
finite segment. The case of the union of segments and halflines can be
treated in the same way. We define a multiplicity symbol for polynomi-
als. This multiplicity symbol is connected to some fixed segment [b, c]
and characterizes the number of roots a polynomial has on this segment
and their multiplicities. For each multiplicity symbol we define a stratum
(the set of all polynomials with the same multiplicity symbol). We prove
that the stratification by multiplicity symbols gives us a semialgebraic
stratification. It is known [BCR] that each semialgebraic stratification
can be finitely subdivided to obtain a semialgebraic stratification satis-
fying “a” and “b” axioms of Whitney. The interesting property of the
stratification by multiplicity symbol is the following: it is not necessary
to subdivide it because it is Whitney regular itself. Paragraphs 2.3 and
2.4 are devoted to proving this fact. Section 2.3 is devoted to Interval
Exchange Transformations [Ke]. Interval Exchange Transformation is a
very popular object in ergodic theory. Here we use it in real algebraic
geometry. We prove that all the strata defined in 2.1 are invariant by an
action of group of interval exchange transformations. The action of any
nontrivial interval exchange transformation on the space of polynomials
is not continuous, but if the roots of some polynomial are well situated
the action of a given interval exchange transformation is a difeomorphism
on a neighbourhood of the polynomial. This important property of this
group action helps us a lot of prove in section 2.4 that the considering
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stratifications satisfy the boundary axiom. In fact the boundary axiom
can be obtained as a corollary of Whitney regularity, but the semiorder
relation itself has a nice combinatorial and geometrical nature, which
gives us a more detailed description of the stratifications.

Part 3 is connected to the complex case, where N is a closed semi-
algebraic subset of C. To prove a differential triviality we consider so-
called disk exchange transformations, which correspond to interval ex-
change transformations in real case. These transformations have not
such nice properties as interval exchange transformations (they do not
form a group), but they are useful to prove a differential triviality of the
stratifications under consideration.

Part 4 is devoted to the comparing of different stratifications. In sec-
tion 4.1 we compare real and complex stratifications for the same N . In
section 4.2 we prove that two stratifications {Pn,µ(N1)} and {Pn,µ(N2)}
(see the notations of part 3) are Cρ-equivalent if the corresponding sub-
sets N1 and N2 are Cρ-equivalent.

Finally I’d like to mention that these stratifications are rather natural.
If we consider a partition {Qk(N)} (the similar as in [BR]) given by the
number of roots of some polynomial in N and apply the algorithm de-
fined in [BCR] to obtain a Whitney regular stratification we will obtain
exactly the stratification by multiplicity symbol.

2. Stratifications of real monic polynomials

2.1. Multiplicity symbol.
Let Pn be a space of all monic polynomials of degree n with real

coefficients. Pn can be identified to the space Rn in the standard way:

f = un + an−1 u
n−1 + · · ·+ a1u+ a0 ∈ Pn ↔ (a0, a1, . . . , an−1) ∈ Rn.

Consider some (closed) segment [b, c] in R. Let’s define the symbol
µ = {µb, µ1, . . . , µr, µc} corresponding to [b, c] such that all numbers µb,
µc, µi (1 ≤ i ≤ r) satisfy the following conditions:

1. 0 ≤ r ≤ n.
(Note that we consider also r = 0; in this case µ = {µb, µc}).

2. µb, µc ∈ N ∪ {0}; µi ∈ N.
(N is the set of natural numbers).

3.
r∑
i=1

µi + µb + µc ≤ n.

4. 1 ≤ µ1 ≤ · · · ≤ µr.
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Let M be the set of all these symbols µ.
Denote by Pn,µ the set of polynomials f ∈ Pn such that

1. f has roots of multiplicities µb and µc at the points b and c
correspondently.
(Note that µb = 0 (or µc = 0) means that f(b) 6= 0 (or f(c) 6= 0)).

2. f has exactly r (different) roots v1 6= v2 6= · · · 6= vr of multiplici-
ties µ1, µ2, . . . , µr (correspondently) in the open interval (b, c).

In other words Pn,µ is defined by the intersection of the zero divisor of
f with the segment [b, c]. Note that Pn,µ depends on the segment [b, c].

Theorem 2.1. The collection {Pn,µ}µ∈M is a semialgebraic stratifi-
cation of Pn.

Proof: It is clear that
⋃
µ∈M

Pn,µ = Pn because each polynomial be-

longs to some Pn,µ (for some µ). To prove that all Pn,µ are smooth
submanifolds and semialgebraic sets we need the following.

Lemma 2.1. Let µ = {0,
r︷ ︸︸ ︷

1, 1, . . . , 1, 0} (r can be equal to 0). Then
Pn,µ is an open semialgebraic set in Pn.

Proof of Lemma 2.1: Let us prove that Pn,µ is semialgebraic. Each
polynomial f ∈ Pn,µ can be presented in the following form:

(1) f = (u− v1) · . . . · (u− vr)(u− `1) · . . . · (u− `s)
· (u2 + p1u+ q1) · . . . · (u2 + ptu+ qt)

for some s, t ∈ N∪{0} uniquely determined by f such that r+s+2t = n.
For given pair (s, t) the set Pn,µ defines a semialgebraic set U(s, t)

in the space Rn of coefficients (v1, . . . , vr, `1, . . . , `s, p1, q1, . . . , pt, qt) by
the following inequalities:

b < vi < c, i = 1, 2, . . . , r (it means: vi ∈ (b, c))
vi 6= vj for i 6= j; i, j = 1, 2, . . . , r
`i < b or `i > c, i = 1, 2, . . . , s (it means: `i /∈ [b, c])
p2
j − 4qj < 0, j = 1, 2, . . . , t.
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Let Qs,t : Rn → Pn be a map obtained by the opening brackets in (1).
(Remined that Pn is identified to Rn). We get

Pn,µ =
⋃
s,t

s+r+2t=n

Qs,t(U(s, t)).

Since Qs,t is an algebraic map we obtain (by Tarski-Seidenberg Theorem)
that Pn,µ is a semialgebraic set.

Let’s prove that Pn,µ is an open set. By the definition of Pn,µ the
graph f considered in the subset (b, c)× R intersects the “zero section”
(b, c) × {0} transversally. Hence there exists a neighbourhood of f in
Pn satisfies the same property. It means that Pn,µ is an open subset.
Lemma 2.1 is proved.

Lemma 2.2. Pn,µ is a smooth submanifold of Pn and codimPn,µ =

µb + µc +
r∑
i=1

(µi − 1).

We prove this lemma in several steps.

Claim. Let µ satisfies the following condition:

r∑
i=1

µi + µb + µc = n.

Then Pn,µ is a smooth submanifold of Pn.

Proof: Consider a space Rr and a subset Vµ ⊂ Rr defined in the
following way: Vµ = {(v1, . . . , vr) ∈ Rr such that

(2)


vi ∈ (b, c), i = 1, . . . , r
vi 6= vj , if i 6= j

vi < vj , if µi = µj and i < j }.

Let Fµ : Vµ → Pn be the following map

(3) Fµ(v1, . . . , vr) = (u− v1)µ1 · (u− v2)µ2 · . . . · (u− vr)µr
· (u− b)µb · (u− c)µc .

Fµ is a one-to-one map because each polynomial is uniquely defined by
it’s roots.
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Fµ(Vµ) = Pn,µ because for each polynomial f ∈ Pn,µ we have the
presentation (3).

Now we have to prove that Fµ is an immersion. We do it using the
induction by n.

If n = 1 we have:

P1,{0,1} and P1,{1,0} are one points each,

P1,{0,1,0} is an open interval (V{0,1,0}={v ∈ (b, c)}, F{0,1,0}(v)=u−v).

Now suppose that Fµ is an immersion for each n < n0. Let’s prove it
for n0.

Suppose that r 6= 0. For each polynomial f ∈ Pn0,µ we have the
following presentation:

(4) f = (u− vr)µr · h,

where vr is a root of f belonging to (b, c) and h ∈ Pn0−µr,ν , ν =
{µb, µ1, . . . , µr−1, µc}.

Let Gµr : (b, c)× Pn0−µr → Pn0 be the following map:

(5) Gµr (vr, g) = (u− vr)µr · g

where g ∈ Pn0−µr .
We will prove that Gµr is a local immersion in a neighbourhood of a

point (vr, g) such that vr is not a root of g. Thus we can consider the
map Fµ as the following:

Fµ(v1, . . . , vr) = Gµr (vr, Fν(v1, . . . , vr−1))
∣∣
Vµ

and obtain that Fµ is an immersion (Fν is an immersion by the induction
hypothesis).

Let Uvr and Ug be neighbourhoods of vr and g such that for each
v ∈ Uvr and for each g̃ ∈ Ug v is not a root of g̃. In local coordinates
(putting ũ = u− vr) we obtain

(6) g̃(ũ) = ũn0−µr + g̃n0−µr−1ũ
n0−µr−1 + · · ·+ g̃1ũ+ g̃0,

where g̃0 6= 0 because vr is not a root of g̃.
Putting this presentation (6) to (5) we obtain

Gµr (v, g̃) = ũn0 + qn0−1ũ
n0−1 + · · ·+ q1ũ+ q0,
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where

(7)



qn0−1 = g̃n0−µr−1 + µr · w
qn0−2 = g̃n0−µr−2 + µr · w · g̃n0−µr−1 + o(w)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

qµr = g̃0 + µr · w · g̃1 + o(w)

qµr−1 = µr · w · g̃0 + o(w)

qi = o(w) for i = 0, . . . , µr − 2.

(We use the formula: (ũ+ w)µr = ũµr + µrũ
µr−1w + o(w);w = vr − v.)

From (7) we can see that the Jacobian matrix of Gµr has an above
triangular structure. Since g̃0 6= 0 it has a maximal rank. Thus the map
Gµr is a local immersion in a neighbourhood of (vr, g).

If r = 0 symbol µ has the following form: {µb, µc} and µb + µc = n0.
Hence Pn0,µ contains only one point f = (u− b)µb · (u− c)µc .

So, we proved that Pn,µ is an immersed submanifold. To prove that
Pn,µ is a submanifold we’ll show that Fµ(∂Vµ) ∩ Pn,µ = ∅. (Note, that
Vµ is bounded.) Fµ can be extended to all Rr by the formula (3). The
system (2) describes Vµ is an open semialgebraic set in Rr. By the Second
Main Structural Theorem (see [BR, p. 68]) each point v ∈ ∂Vµ satisfies
the following condition:[

r∨
i=1

((vi = b) ∨ (vi = c))

]
∨

∨
i6=j

(vi = vj)

 .
But by the definition of Pn,µ we get that Fµ(v) /∈ Pn,µ because the
polynomial Fµ(v) has the different multiplicity symbol.

So, Pn,µ is a smooth submanifoled of Pn. The claim is proved.

Remark 2.1. Since Vµ is a semialgebraic set and Fµ is a semialge-
braic map we obtain (by Tarski-Seidenberg Theorem) that Pn,µ is also
a semialgebraic set.

Remark 2.2. Since Fµ is an immersion then

dimPn,µ = dimVµ = r = n−
(

r∑
i=1

(µi − 1) + µb + µc

)
.

So, we obtained a formula for codimension of Pn,µ for this special case.
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Proof of the lemma: Suppose that
r∑
i=1

µi +µb +µc = m < n. For each

polynomial f ∈ Pm,µ we have:

(8) f = g · p

where g ∈ Pm,µ and p ∈ Pn−m,{0,0}.
Let F̃µ : Pm,µ × Pn−m,{0,0} → Pn be the map defined by the for-

mula (8). The map is one-to-one because a polynomial is uniquely de-
fined by it’s roots and sets of roots of g and p do not intersect.

Let us prove that F̃µ is an immersion. The proof uses the same argu-
ments as the proof of the claim. Consider the same set Vµ described by
inequalities (2) and construct a map Gµ : Vµ × Pn−m,{0,0} → Pn such
that

(9) Gµ(v, p) = Fµ(v) · p,

where Fµ is a map constructed in the proof of the claim (the formula (3)).
Since Fµ : Vµ → Pm,µ is a diffeomorphism it is enough to prove that Gµ
is an immersion.

Let us prove it by induction by m. If m = 0 then Gµ is just the iden-
tity map on Pn−m,{0,0} and Pn−m,{0,0} is an open set (by Lemma 2.1).
Suppose that we proved the statement for m < m0. Let’s prove it for
m0. Consider the polynomial f ∈ Pn,µ. Suppose that r 6= 0. Take the
root vr. We have the following presentation

(10) f = (u− vr)µr · h,

where h ∈ Pn−µr,ν , ν = {µb, µ1, . . . , µr−1, µc}.
The continuation of the proof is the same as in the claim.
Let r = 0. It means that µ = {µb, µc}. In this case Vµ = ∅. Thus

it is enough to prove that the maps Gµb : Pn−µb,{0,0} → Pn and Gµc :
Pn−m,{0,0} → Pn−µb defined as follows

Gµb(h) = (u− b)µb · h, Gµc(g) = (u− c)µc · g

are immersions.
We will show it for Gµb . For Gµc the proof is the same.
Let h ∈ Pn−µb,{0,0}. Putting ũ = u− b we obtain

h(ũ) = ũn−µb + hn−µb−1 ũ
n−µb−1 + · · ·+ h0
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and
Gµb(h)(ũ) = ũn + hn−µb−1 ũ

n−1 + · · ·+ h0 ũ
µb .

So, Pn,µ = Gµb ◦Gµc(Pn−m,{0,0}) is an immersed submanifold.
Let us prove that Pn,µ is a submanifold. The map Gµ, defined by

formula (9), can be extended to the set Rr × Pn−m. Let (v, p) ∈ ∂(Vµ ×
Pn−m,{0,0}). It means that either v ∈ ∂Vµ or p ∈ ∂Pn−m,{0,0}. The case
v ∈ ∂Vµ was considered in the proof of the claim. Let p ∈ ∂Pn−m,{0,0}.
It means that P has a root in [b, c]. Hence, f = Gµ(v, p) does not belong
to Pn,µ.

Since Pn−m,{0,0} is unbounded it is also necessary to prove that if a
sequence (vk, pk) tends to infinity for k →∞ then so for Gµ(vk, pk). But
it is a partial case of Proposition 1.5.5 [BR].

Since Gµ is a homeomorphism to the image

dimPn,µ = r + n−m = n−
(

r∑
i=1

(µi − 1) + µb + µc

)
.

It proves the codimension formula. Lemma 2.2 is proved.

Remark 2.3. We also proved that Pn,µ is a semialgebraic set.
Let’s define a codimension of µ as a codimension of the corresponding

stratum Pn,µ if Pn,µ 6= ∅: c(µ) = codimPn,µ. This definition is correct
(does not depend on n), because by Lemma 2.2 we have:

c(µ) =
r∑
i=1

(µi − 1) + µb + µc.

Now we are going to define some semiorder relation R on the set of
multiplicity symbols M. We do it in the following way.

1. If c(µ1) = c(µ2) then (µ1, µ2) and (µ2, µ1) do not belong to R.
2. Let c(µ2) = c(µ1) + 1. Then (µ1, µ2) ∈ R if these symbols satisfy

one of the following conditions:

a) r2 = r1 + 1, µ1
b = µ2

b , µ
1
c = µ2

c and there exists µ2
j such that

µ2
i = µ1

i for all i 6= j (and hence µ2
j = 2).

b) r2 = r1 − 1, µ1
b = µ2

b , µ
1
c = µ2

c and there exist µ1
s, µ

1
j and µ2

k

such that µ2
i = µ1

i for all i 6= s, j, k (and hence µ1
s+µ1

j = µ2
k).

c) r2 = r1 − 1, µ1
b = µ2

b and there exists µ1
j such that µ2

i = µ1
i

for all i 6= j (and hence µ1
c + µ1

j = µ2
c).
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d) r2 = r1 − 1, µ1
c = µ2

c and there exists µ1
j such that µ2

i = µ1
i

for all i 6= j (and hence µ1
b + µ1

j = µ2
b).

e) r2 = r1, µ1
i = µ2

i for all i and µ1
b + 1 = µ2

b .

f) r2 = r1, µ1
i = µ2

i for all i and µ1
c + 1 = µ2

c .
(We denote by r1 and r2 the numbers of internal elements of

µ1 and µ2).
We write µ ≺ ν if (µ, ν) ∈ R.

3. Let c(µ) < c(ν). Then µ ≺ ν if there exists a finite set of symbols
µ = µ1, µ2, . . . , µk = ν such that µ1 ≺ µ2 ≺ µ3 ≺ · · · ≺ µk = ν.

Proposition 2.1. R is a semiorder relation on M.

The proof just follows from the definition of R.

Proposition 2.2. If µ ≺ ν then Pn,ν ⊂ C`(Pn,µ).

Proof: It is enough to prove this statement just in the case c(ν) =
c(µ) + 1. So, we have to check all possibilities for pair (µ, ν) (2.a)-2.e)).

2.a) Let f ∈ Pn,ν . Then we have the presentation

f(u) = (u− vj)2 · g(u),

where g ∈ Pn−2,µ and vj ∈ (b, c) is not a root of g.
Consider a family of polynomials

fε(u) = [(u− vj)2 + ε] · g(u).

If ε → 0 then fε → f , but fε ∈ Pn,µ for ε > 0. It means that f ∈
C`(Pn,µ).

2.b) Consider also f ∈ Pn,ν . In this case we have:

f(u) = (u− vk)νk · g(u),

where g ∈ Pn−νk,ν and vk is not a root of g.
(ν is equal to ν without a coordinate νk:

ν = (νb, . . . , νk−1, νk+1, . . . , νc)).

Consider a family

fε(u) = (u− (vk − ε))µs · (u− (vk + ε))µj · g(u).
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If ε→ 0 then fε → f and fε ∈ Pn,µ for sufficiently small ε > 0.

2.c) For f ∈ Pn,ν we can consider the following presentation

f(u) = (u− c)µj · g(u),

where g ∈ Pn−µj ,µ (µ is equal to µ without a coordinate µj : µ =
(µb, . . . , µj−1, µj+1, . . . , µc)).

Consider fε(u) = (u− (c− ε))µj · g(u).
If ε→ 0 then fε → f and fε ∈ Pn,µ for sufficiently small ε > 0.
The case 2.d) can be considered by the same arguments.

2.e) Let f ∈ Pn,ν . Consider the presentation

f(u) = (u− b) · g(u),

where g ∈ Pn−1,µ.
Let’s define fε(u) = (u− (b− ε)) · g(u).
Clearly, fε ∈ Pn,µ for ε > 0 and fε → f if ε→ 0.
The case 2.f) can be considered in the same manner.

Proposition 2.3. If (µ, ν) /∈ R then C`(Pn,µ) ∩ Pn,ν = ∅.

Proof: Consider the map Gµ : Vµ × Pn−m,{0,0} → Pn defined in the
proof of Lemma 2 (the formula (9)). This map can be extended to
Rr × Pn−m. We obtain

G : Rr × Pn−m → Pn and G
∣∣
Vµ×Pn−m,{0,0}

= Gµ.

By [BR] we know that this map is proper. From the definition of the
semiorder R we obtain that

G(C`(Vµ × Pn−m,{0,0})) =

(⋃
ηÂµ

Pn,η

)
∪ Pn,µ.

Since G is a proper map it is also a closed map. So

Pn,µ ∪
(⋃
ηÂµ

Pn,η

)

is a closed set. Since Pn,µ∩Pn,ν = ∅ and for each η Â µ, Pn,η ∩Pn,ν = ∅.
Hence, C`(Pn,µ) ∩ Pn,ν = ∅.

So we verified all conditions for semialgebraic stratification. Theorem
is proved.
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2.2. Finite set of segments. Some generalizations of the strat-
ifications.

Here we present some other stratifications of Pn different from the first
one but connected to it.

Let {[bi, ci], i = 1, . . . , s} be a finite set of segments such that [bi, ci]∩
[bj , cj ] = ∅ for i 6= j. We can define corresponding multiplicity symbols
in the following way.

A. Let α = {αb1 , . . . , αbs , α1, . . . , αr, αc1 , . . . , αcs}, where r, αbi , αci
and αj are integer numbers satisfying the following conditions:

1) r ≥ 0,
2) αbi ≥ 0, αci ≥ 0,
3) αj > 0 for j = 1, . . . , r if r 6= 0,
4) α1 ≤ α2 ≤ · · · ≤ αr.

B. Let β = {βB , β1, . . . , βr} be a set of integer numbers satisfying the
following conditions:

1) r ≥ 0,
2) βB ≥ 0,
3) βj > 0 for j = 1, . . . , r if r 6= 0,
4) β1 ≤ β2 ≤ · · · ≤ βr.

Let A be a set of multiplicity symbols defined in A and B be a set of
multiplicity symbols defined in B. Let α ∈ A. Define Pn,α as a set of
polynomials f from Pn satisfying the following conditions:

1. At the boundary points bi and ci, f has roots of multiplicities αbi
and αci correspondently.

2. f has exactly r different roots v1, . . . , vr on the open set
s⋃
i=1

(bi, ci)

and at each point vj f has a root of multiplicity αj .
Let β ∈ B. Define Pn,β as a set of polynomials f from Pn satisfying

the following conditions:

1*. The sum of all multiplicities of all roots of f at all boundary points
bi, ci is equal to βB .

2*. is the same as 2.

Remark 2.4. If s = 1 the stratification {Pn,α}α∈A is the same as the
stratification {Pn,µ}µ∈M defined in section 2.1.
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Theorem 2.2. For each finite set of segments {[bi, ci], i = 1, . . . , s}
{Pn,α}α∈A and {Pn,β}β∈B are semialgebraic stratifications of Pn.

The proof is the same as the proof of Theorem 2.1.

2.3. Interval Exchange Transformations.
Let us recall a definition of Interval Exchange Transformation [Ke].

Consider some semiopen interval [s, t) ⊂ R. Let {si}(i = 0, . . . ,m) such
that s = s0 < s1 < · · · < sm−1 < sm = t be a finite sequence of numbers
defining a finite partition of [s, t) to semiopen intervals ∆i = [si, si+1).
Interval Exchange Transformation is a map T : [s, t) → [s, t) satisfying
the following conditions:

1. T is a bijection.
2. At each subinterval ∆i T is a translation: T (u)

∣∣
∆i

= u + αi
(αi ∈ R).

Set T (u) = u for u /∈ [s, t).
Let [b, c] be some fixed segment. Denote by GT the set of all interval

exchange transformations non trivially defined on all [s, t) ⊂ [b, c] such
that s 6= b.

Proposition 2.4.
1. GT is a group with composition as a group operation.
2. There exists a natural action of the group GT on the spaces Pn

such that all the strata Pn,µ are invariant by this action.

Proof: 1. It follows from the definition of Interval Exchange Trans-
foramtions: associativity we obtain from bijectivity, a unity is the iden-
tity map and the inverse map for each interval exchange transformation
is also an interval exchange transformation.

2. Let f be a polynomial of degree n : f ∈ Pn. Let T be some interval
exchange transformation defined on some semiopen interval [s, t) : T ∈
GT . Let v1, . . . , vr be roots of f belonging to [s, t). We have the following
presentation

f = (u− v1)µ1 · . . . · (u− vr)µr · g(u),

where g is a polynomial which has no roots on [s, t). Set

FT (f) = (u− T (v1))µ1 · . . . · (u− T (vr))µr · g(u).

It is easy to see that a map F : GT × Pn → Pn defined by F(T, f) =
FT (f) is a group action. All strata Pn,µ are invariant by this action (it
follows from the definition of Pn,µ).
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Now we are going to define another action of GT on Pn which can
be useful for our problems. Consider a set Rε,T = (−ε, ε) × [s, t). Let
T̃ε : C→ C be the following map:

T̃ε(z) =
{
T (x) + iy for z = x+ iy ∈ Rε,T
z for z /∈ Rε,T .

Let Fε : GT ×Pn → Pn be a map defined as follows: Fε(T, f) = FT,ε(f),
where FT,ε(f) = (u− T̃ε(v1))µ1 · . . . · (u− T̃ε(vk))µk for f = (u− v1)µ1 ·
. . . · (u− vk)µk . Here v1, . . . , vk are all roots of f .

Proposition 2.5. Fε is a group action. Strata Pn,µ are invariant by
this action.

It is clear that the map FT,ε is not necessary continuous on Pn. But we
can formulate some continuity property of this map, which will be useful
for analysing the geometry of the strata Pn,µ. We will use a notation
z(f) for the set of all roots of f .

Theorem 2.3. Let f ∈ Pn be a polynomial of degree n. Let T be an
interval exchange transformation defined on [s, t) such that s > b, t < c
and for each v ∈ z(f) ∩ [s, t) there exists a subinterval ∆i ⊂ [s, t) such
that v ∈ Int ∆i.

Then there exist ε > 0 and a neighbourhood Uf such that FT,ε
∣∣
Uf

is a
diffeomorphism to the image.

Proof:

Step 1: Let us consider the case that v be a unique root of f and the
multiplicity of v is equal to n. In other words, f = (u − v)n. Let ∆i

be a subinterval such that v ∈ Int ∆i. It means that for some δ > 0
(v − δ, v + δ) ⊂ ∆i. Let Uf be a neighbourhood of f and ε > 0 such
that for each g ∈ Uf we have z(g) ⊂ (−ε, ε)× (v − δ, v + δ). We have a
presentation

g = (u− v)n + gn−1(u− v)n−1 + · · ·+ g0.

By definition of T̃ε we obtain

FT,ε(g) = (u− T (v))n + gn−1(u− T (v))n−1 + · · ·+ g0.

Obvious, this map FT,ε is diffeomorphism.
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Step 2: Let T be a transformation such that there exists a unique
root v of f such that T (v) /∈ z(f) and for other roots v′ ∈ [b, c] we have
T (v′) = v′. Then we obtain

f = (u− v)µv · h̃(u).

Set f̃ = (u− v)µv . Now take δ > 0, ε > 0 a neighbourhood Uf̃ ⊂ Pµv , a
neighbourhood Uh̃ ⊂ Pn−µv such that for each q ∈ Uf̃ and for each h ∈
Uh̃ we have: z(q) ⊂ (−ε, ε)×(v−δ, v+δ), z(h)∩((−ε, ε)×(v−δ, v+δ)) = ∅
and T is continuous on (v−δ, v+δ). Consider a neighbourhood Uf ⊂ Pn
defined as follows: Uf = Uf̃ · Uh̃. (The symbol · means a usual product
of polynomials). Thus for each g ∈ Uf we have

g =
(
(u− v)µv + qµv−1(u− v)µv−1 + · · ·+ q0

)
·
(
un−µv + hn−µv−1u

n−µv−1 + · · ·+ h0

)
.

So,

FT,ε(g) = ((u− T (v))µv + · · ·+ q0)

·
(
un−µv + hn−µv−1u

n−µv−1 + · · ·+ h0

)
.

We see that FT,ε
∣∣
Uf̃

is a diffeomorphism, FT,ε
∣∣
Uh̃

is the identity map. By
the straightforward calculations we obtain that the Jacobian matrix for
the product operation on Uf̃ × Uh̃ at the point (f̃ , h̃) is the resultant of
f̃ and h̃ [J].

Analogically, the Jacobian matrix for the product operation on
UFT,ε(f̃) × Uh̃ at (FT,ε(f̃), h̃) is the resultant of FT,ε(f̃) and h̃. Since

the pair (f̃ , h̃) (and correspondently (FT,ε(f̃), h̃)) has no common zeros
on C these resultants are not equal to zero. So, the Jacobians are non
degenerate and hence FT,ε

∣∣
Uf

is a diffeomorphism.

Step 3: Let the pair (T, f) satisfies the following conditions: there are
two different roots v1 and v2 of f such that T (v1) = v2 and T (v2) = v1

and for every other root v ∈ [b, c] we have T (v) = v. In this case we
obtain the following presentations: f = (u − v)µv1 (u − v1)µv2 · h̃(u)
and FT,ε(f) = (u − v2)µv1 (u − v1)µv2 · h̃(u). Set f1 = (u − v1)µv1 ,
f2 = (u − v2)µv2 . Take δ > 0, ε > 0 and neighbourhoods Uf1 , Uf2 and
Uh̃ such that for each q1 ∈ Uf1 , q2 ∈ Uf2 and h ∈ Uh̃ we have:

1. z(q1) ⊂ (−ε, ε)× (v1− δ, v1 + δ), z(q2) ⊂ (−ε, ε)× (v2− δ, v2 + δ).
2. (v2 − δ, v2 + δ) ∩ (v1 − δ, v1 + δ) = ∅.
3. z(h) ∩ ((−ε, ε)× ((v2 − δ, v2 + δ) ∪ (v1 − δ, v1 + δ))) = ∅.
4. T is continuous on (v1 − δ, v1 + δ) and (v2 − δ, v2 + δ).
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Then applying the same arguments as in the Step 2 we obtain that
FT,ε is a diffeomorphism to the image in a neighbourhood of f .

Step 4:

Lemma 2.3. Let the pair (T, f) satisfies the condition of the theorem.
Then there exist δ > 0, a finite set of points {wk} and a special interval

exchange transformation S : [s, t)→ [s, t) such that

1) There exist ε > 0 and a neighbourhood Uf such that FS,ε
∣∣
Uf

=

FT,ε
∣∣
Uf

.

2) [wk − δ, wk + δ] ∩ [wj − δ, wj + δ] = ∅ for k 6= j.

3) Let Ω =
⋃
k

[wk−δ, wk+δ). Then S
∣∣
Ω

is a permutation of intervals

{[wk − δ, wk + δ)} and S
∣∣
[s,t)−Ω

= id.

Proof: Set

{wk} = (z(f) ∩ [s, t)) ∪ T (z(f) ∩ [s, t)).

Take δ > 0 such that it satisfies the property 2) and for every v ∈
z(f) ∩ [s, t) we have [v − δ, v + δ] ⊂ Int ∆i (∆i is the corresponding to v
subinterval (see the condition of the theorem)).

Set
Ω′ =

⋃
v∈z(f)∩[s,t)

[v − δ, v + δ) and S
∣∣
Ω′

= T
∣∣
Ω′
.

Let us extend the map S to Ω−Ω′ such that S
∣∣
Ω

will be a permutation
of intervals.

And finally, let us extend S to [s, t) − Ω as the identity map. A
neighbourhood Uf of f and ε > 0 we can find in the same way as in the
Steps 2 and 3.

Step 5: Now we can restrict our consideration to permutations of
intervals. For each permutation S of intervals we have: S = S1 ◦ S2 ◦
· · · ◦ Sm, where {Si}mi=1 are permutations of intervals corresponding to
the standard generators of the permutation group Sp (p = #{ωi}). Each
generator is an interchanging of a pair of intervals, which were considered
in the Steps 2 and 3. It completes the proof of the theorem.
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2.4. Differential triviality of the stratifications defined by the
multiplicity symbol.

Let A be a stratified set and {Ki} be a stratification. We say that
this stratification is differentially trivial if for each stratum Ki and for
each two points x1, x2 ∈ Ki there exist neighbourhoods of these points
Ux1 ⊂ A and Ux2 ⊂ A and a diffeomorphism F : Ux1 → Ux2 such that
F (Ux1 ∩Kj) = Ux2 ∩Kj for every j such that Ki ⊂ C`(Kj).

Theorem 2.4. The stratification {Pn,µ}µ∈M is differentially trivial.

Proof: Let f1, f2 ∈ Pn,µ. Let m =
r∑
i=1

µi + µb + µc. Then we have:

f1 = f̃1 · g1, f̃2 · g2, where f̃1, f̃2 ∈ Pm,µ and g1, g2 ∈ Pn−m,{0,0}.

Lemma 2.4. There exist neighbourhoods Uf̃1
of f̃1 and Uf̃2

of f̃2 in
Pm and a diffeomorphism H : Uf̃1

→ Uf̃2
such that for each ν ≺ µ

H(Pm,ν ∩ Uf̃1
) = Pm,ν ∩ Uf̃2

and H(Pm,µ ∩ Uf̃1
) = Pm,µ ∩ Uf̃2

.

Proof of the lemma: Let µ = {µb, µ1, . . . , µr, µc}, vi ∈ (b, c) and ωi ∈
(b, c) (i = 1, . . . , r) be roots of f̃1 and f̃2 (correspondently) corresponding
to µi. Take δ > 0 such that for all i = 1, . . . , r we have:

1) [vi − δ, vi + δ] ∩ [vj − δ, vj + δ] = ∅ if i 6= j.
2) [vi − δ, vi + δ] ∩ [b, b+ δ] = ∅.
3) [vi − δ, vi + δ] ∩ [c− δ, c] = ∅.

Let for this δ the same properties hold for ωi and
4) [vi − δ, vi + δ] ∩ [wj − δ, wj + δ] = ∅ if wj 6= vi.

Denote by Ω1 =
r⋃
i=1

[vi − δ, vi + δ), Ω2 =
r⋃
i=1

[wi − δ, wi + δ) and Ω =

Ω1 ∪ Ω2. Let us define a permutation S of intervals on [b, c] in the
following way.

Step 1: Define S on Ω1 : S(u) = u− vi + wi for u ∈ [vi − δ, vi + δ).

Step 2: Define S on Ω2 − Ω1 such that S
∣∣
Ω

be a permutation of
intervals.

Step 3: Define S(u) = u for u ∈ [b, c]− Ω.
It is clear that FS,ε(f̃1) = f̃2 for every ε > 0. By Proposition 2.5

we have FS,ε(Pm,ν) = Pm,ν for every multiplicity symbol ν. By Theo-
rem 2.3 there exist neighbourhoods Uf̃1

and Uf̃2
such that H = FS,ε is a

diffeomorphism of Uf̃1
onto Uf̃2

. The lemma is proved.
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Remark 2.5. The neighbourhoods Uf̃1
and Uf̃2

can be choosen such
that for each h ∈ Uf̃1

∪Uf̃2
for sufficiently small δ′ > 0, z(h) ⊂ (−ε, ε)×

(b− δ′, c+ δ′).
Now take ε, δ′ and neighbourhoods Ug1 and Ug2 such that:

1. For each g ∈ Ug1 ∪ Ug2 z(g) ∩ ((−ε, ε)× (b− δ′, c+ δ′)) = ∅.
2. The map L(g) = g − g1 + g2 maps Ug1 onto Ug2 .

Let Uf1 = Uf̃1
· Ug1 and Uf2 = Uf̃2

· Ug2 . Define a map ψ : Uf1 → Uf2

in the following way. For each p ∈ Uf1 we have a unique presentation
p = p̃ · g such that p̃ ∈ Uf̃1

, g ∈ Ug1 (because the resultant of f̃1 and g1

is not equal to zero). Set ψ(p) = H(p̃) · L(g). Since H and L are local
diffeomorphisms and the resultant of f̃2 and g2 is nondegenerate ψ is a
diffeomorphism. By lemma it has required properties. Theorem 2.4 is
proved.

Since the stratification is differentially trivial and semialgebraic it is
Whitney regular (see, for example, [GWPL]). Hence we have

Theorem 2.5. The stratification {Pn,µ}µ∈M defined in section 1 is
Whitney regular (satisfies the axioms “a” and “b” of Whitney).

Theorem 2.6. The stratifications defined in section 2.2 are Whitney
regular.

The proof is the same as the proof of Theorem 2.4.

3. Stratifications of complex monic polynomials

3.1. Multiplicity symbol.
Let Pn(C) be a space of all monic polynomials of degree n with com-

plex coefficients. Let N ⊂ C be a semialgebraic closed subset. We have
N = Int(N) ∪ Smooth(∂N) ∪ Sing(∂N), where Smooth(∂N) is a set of
Cρ-smooth points of ∂N (we can suppose the order of differentiability
0 ≤ ρ ≤ ∞), Sing(∂N) def= ∂N − Smooth(∂N). Since N is semialgebraic
we have # Sing(∂N) < ∞ for any ρ. The set Smooth(∂N) can be ob-
tained as a union of two connected components S1 and S2 defined in the
following way: S1 = {x ∈ Smooth(∂N) and there exists ε > 0 such that
B(x, ε)∩Int(N) 6= ∅}, S2 = Smooth(∂N)−S1 (B(x, ε) means a ball with
the center x and radius ε).

Now let us define a multiplicity symbol µ(N)={µ1, . . . , µr1 , η1, . . . , ηr2 ,
ζ1, . . . , ζr3 , θ1, . . . , θr4} as a collection of natural numbers corresponding
to the set N satisfy the following properties:
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1. r1 ≥ 0, r2 ≥ 0, r3 ≥ 0, r4 = # Sing(N).

2. If Int(N) = ∅ then r1 = r2 = 0.

3. If S1 = ∅ then r2 = 0.

4. If S2 = ∅ then r3 = 0.

5.
r1∑
i=1

µi +
r2∑
j=1

ηj +
r3∑
s=1

ζs +
r4∑
k=1

θk ≤ n.

6. 0 < µ1 ≤ µ2 ≤ · · · ≤ µr1 ,
0 < η1 ≤ η2 ≤ · · · ≤ ηr2 ,
0 < ζ1 ≤ ζ2 ≤ · · · ≤ ζr3 .

Denote by Mn(N) the set of all multiplicity symbols for N and n
fixed.

Let Pn,µ(N)(C) be the set of polynomials f ∈ Pn(C) such that

1. f has exactly r1 roots v1 6= v2 6= · · · 6= vr1 on Int(N) with multi-
plicities µ1, . . . , µr1 (correspondently).

2. f has exactly r2 roots ṽ1 6= ṽ2 6= · · · 6= ṽr2 on S1 with multiplicities
η1, . . . , ηr2 .

3. f has exactly r3 roots v′1 6= v′2 6= · · · 6= v′r3 on S2 with multiplicities
ζ1, . . . , ζr3 .

4. f has a root at the point yk ∈ Sing(N) with a multiplicity θk. (In
the case f(yk) 6= 0 set θk = 0).

The main goal of this part is the following result.

Theorem 3.1. The collection {Pn,µ(N)(C)}µ(N)∈Mn(N) is a Cρ-dif-
ferentially trivial (and thus Whitney regular) stratification of Pn(C).

The proof contains several steps.

Definition 3.1. A zero-symbol 0(N) is a multiplicity symbol such
that the first three parts µ, η and ζ are empty (r1 = r2 = r3 = 0) and
all θ-s are equal to zero.

Lemma 3.1. Pn,0(N) is an open semialgebraic subset of Pn(C).

Proof: Each polynomial f ∈ Pn(C) can be presented in the following
form:

(11) f = (u− v1)(u− v2) · . . . · (u− vn),

v1, v2, . . . , vn ∈ C are the roots of f .
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Let v = (v1, . . . , vn) ∈ Cn be a “root vector”. Consider a subset
V0(N) ⊂ Cn defined as follows

V0(N) = {v ∈ Cn; v = (v1, . . . , vn), vi /∈ N for i = 1, . . . , n}.

Let Q : Cn → Pn(C) be a map obtained by opening brackets in (11).
We have Pn,0(N)(C) = Q(V0(N)). Thus Pn,0(N)(C) is semialgebraic (by
Tarski-Seidenberg Theorem). Since N is a closed subset of C Pn,0(N) is
open (by continuaty of roots [BR]).

Lemma 3.2. For each µ(N) ∈Mn(N) the set Pn,µ(N)(C) is a semi-
algebraic subset and an immersed submanifold of Pn(C).

To prove the lemma we need one proposition which is in fact the
statement of the lemma in some particular case.

Proposition 3.1. Let µ(N) = {(µi), (ηj), (ζs), (θk)} ∈ Mn(N) and
r1∑
i=1

µi +
r2∑
j=1

ηj +
r3∑
s=1

ζs +
r4∑
k=1

θk = n.

Then Pn,µ(N)(C) is a semialgebraic subset and an immersed subman-
ifold of Pn(C).

Proof: Let Vµ(N) = {v = (v1, . . . , vr1 , ṽ1, . . . , ṽr2 , . . . , v
′
1, . . . , v

′
r3} be

a subset of Cr (r = r1 + r2 + r3) obtained as a set of solutions of the
following system of equations and inequalities

vi ∈ Int(N),
ṽj ∈ S1,

v′s ∈ S2,

vi1 6= vi2 , ṽj1 6= ṽj2 , v
′
s1 = v′s2 for i1 6= i2, j2 6= j2, s1 6= s2.

By the definition Vµ(N) is a Cρ semialgebraic submanifold of Cr.
Let Fµ(N) : Cr → Pn(C) be a map defined in the following way

Fµ(N)(v1, . . . , vr1 , ṽ1, . . . , ṽr2 , v
′
1, . . . , v

′
r3)

= (u− v1)µ1 · . . . · (u− vr1)µr1 (u− ṽ1)η1 · . . . · (u− ṽ2)ηr2 (u− v′1)ζ1

· . . . · (u− v′r3)ζr3 (u− y1)θ1 · . . . · (u− yr4)θr4

where Sing(∂N) = {y1, . . . , yr4}. Observe that if θk = 0 we have (u −
yk)θk = 1.

Clearly the map Fµ(N) is an algebraic map. The proof of the fact that
Fµ(N) is a local immersion is the same as in Lemma 2.2.
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Proof of Lemma 3.2: Now consider a general case:

r1∑
i=1

µi +
r2∑
j=1

ηj +
r3∑
s=1

ζs +
r4∑
k=1

θk ≤ n.

Each polynomial f ∈ Pn,µ(N)(C) can be presented in the following form:

f = g · h,

where g ∈ Pm,µ(N)(C) such that m =
r1∑
i=1

µi+
r2∑
j=1

ηj +
r2∑
s=1

ζs+
r4∑
k=1

θk and

h ∈ Pn−m,0(N)(C).
We define a map Gµ(N) : Vµ(N) × Pn−m,0(N)(C) → Pn,µ(N)(C) in the

following way:
Gµ(N)(v, h) = Fµ(N)(v) · h.

By the same argument as in Lemma 2.2 we obtain that Gµ(N) is a local
immersion. By Tarski-Seidenberg Theorem Pn,µ(N)(C) is a semialgebraic
set.

Remark 3.1. In contrast to the real case the maps Fµ(N) and Gµ(N)

are not necessary one-to-one. One can show that they are covering maps.

Remark 3.2. By the immediate calculations we obtain

CodimPn,µ(N) = 2
r1∑
i=1

(µi − 1) +
r2∑
j=1

(2ηj − 1) +
r3∑
s=1

(2ζs − 1) + 2
r4∑
k=1

θk.

In the next sections we are going to prove the differential triviality of
the partition {Pn,µ(N)(C)}.

3.2. Disk-exchange transformations.
Let N ⊂ C be a closed semialgebraic subset. Let {x1, . . . , xp} be a

finite subset of Int(N). Consider ε > 0 such that

1. B(xi, ε) ⊂ Int(N) for all i = 1, . . . , p.
2. B(xi1 , ε) ∩B(xi2 , ε) = ∅ for i1 6= i2.

Let {x̃1, . . . , x̃t1}, {x′1, . . . , x′i2} be finite subsets of S1 and S2 corre-
spondently and δ1, δ2 be numbers such that

3. Each pair (B(x̃j , δ1, B(x̃j , δ1) ∩ ∂N) is Cρ-diffeomorphic to the
pair (B(0, 1), B(0, 1) ∩ R).
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Each pair (B(x′s, δ2), B(x′s, δ2) ∩ ∂N) is Cρ-diffeomorphic to the
pair (B(0, 1), B(0, 1) ∩ R).

4. B(x̃j , δ1) ∩B(x′s, δ2) = ∅ for all j = 1, . . . , t1, s = 1, . . . , t2.

5. B(x̃j1 , δ1) ∩B(x̃j2 , δ1) = ∅ for j1 6= j2.
B(x′s1 , δ2) ∩B(x′s2 , δ2) = ∅ for s1 6= s2.

6. B(xi, ε) ∩B(x̃j , δ1) = ∅
B(xi, ε) ∩ B(x′s, δ2) = ∅ for all i = 1, . . . , p, j = 1, . . . , t1, s =
1, . . . , t2.

Let

B =

(
p⋃
i=1

B(xi, ε)

)
∪

 t1⋃
j=1

B(x̃j , δ1)

 ∪( t2⋃
s=1

B(x′s, δ2)

)
.

Definition 3.2. A map T : C→ C is called a disk-exchange transfor-
mation associated to N if it satisfies the following conditions:

1. T is a bijection.

2. T
∣∣
C−B = id.

3. For each i1 there exists i2 such that T
∣∣
B(xi2 ,ε)

is a Cρ-diffeomor-
phism of B(xi1 , ε) onto B(xi2 , ε) such that T (xi1) = xi2 .

4. For each j1 (or s1) there exists j2 (or s2, correspondently), such
that T

∣∣
B(x̃j1 ,δ1)

(or T
∣∣
B(x′s1 ,δ2)

) is a Cρ-diffeomorphism onto

B(x̃j2δ1) (or B(x′s2 , δ2)) such that

T (x̃j1) = x̃j2 (or T (x′s1) = x′s2) and

T (B(x̃j1 , δ1) ∩N) = B(x̃j2 , δ1) ∩N
(or T (B(x′s1 , δ2) ∩N) = B(x′s2 , δ2) ∩N correspondently).

The points xi, x̃j , x′s we call centers of the disk-exchange transforma-
tion.

Let us define a map T∗ : Pn(C) → Pn(C) associated to a given disk-
exchange transformation T . Let f ∈ Pn(C) be presented in the following
standard form:

f = (u− v1)α1 · . . . · (u− vk)αk .

Set T∗(f) = (u− T (v1))α1 · . . . · (u− T (vk))αk .
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Proposition 3.2. Let f ∈ Pn,µ(N)(C). Then for each disk-exchange
transformation T associated to N we have T∗(f) ∈ Pn,µ(N)(C).

This proposition follows from the fact that N , ∂N and C − N are
invariant under the map T .

Remark 3.3. The disk-exchange transformations associated to N do
not form a group for arbitrary chosen N .

Now we prove the theorem analogous to the Theorem 2.3.

Theorem 3.2. Let µ(N) ∈Mm(N) and
r1∑
i=1

µi +
r2∑
j=1

ηj +
r3∑
s=1

ζs +
r4∑
k=1

θk = m.

Let f1, f2 ∈ Pm,µ(N)(C).
Then

1) There exists a disk-exchange transformation T : C→ C such that
T∗(f1) = f2.

2) There exist neighbourhoods Uf1 and Uf2 in Pm(C) such that T∗ :
Uf1 → Uf2 is a Cρ-diffeomorphism.

Proof: 1) Let Z1 be a zero set of f1 and Z2 be a zero set of f2. We
have Zq = Z1

1 ∪ Z2
q ∪ Z3

q ∪ Z4
q (q = 1 or 2), where

Z1
q = Zq∩Int(N), Z2

q = Zq∩S1, Z3
q = Zq∩S2, Z4

q = Zq∩Sing(∂N).

Let

Z1 = Z1
1 ∪ Z1

2 , Z2 = Z2
1 ∪ Z2

2 , Z3 = Z3
1 ∪ Z3

2 , Z4 = Z4
1 ∪ Z4

2 .

(Observe that by the definition of the multiplicity symbol we have Z4 =
Z4

1 = Z4
2 ).

Let Z = Z1 ∪ Z2. Let P : Z → Z be a permutation of points satisfies
the following conditions:

1. P
∣∣
Z4 = id.

2. P (Z`1) = Z`2 (` = 1, 2, 3, 4).
3. If vi ∈ Int(N) is a root of f1 with multiplicity µi then P (vi) is a

root of f2 with the same multiplicity µi.
4. If ṽj ∈ S1 is a root of f1 with multiplicity ηj then P (ṽj) is a root

of f2 with multiplicity ηj .
5. If v′s ∈ S2 is a root of f1 with multiplicity ζs then P (v′s) is a root

of f2 with multiplicity ζs.
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Let Z1 = {x1, . . . , xp}, Z2 = {x̃1, . . . , x̃t1}, Z3 = {x′1, . . . , x′r2}. Let ε,
δ1 and δ2 be numbers such that conditions 1-6 from the definition of the
disk-exchange transformation are satisfied. We define a disk-exchange
transformation T : C→ C with centers xi, x̃j and x′s by T (xi) = P (xi),
T (x̃j) = P (x̃j) and T (x′s) = P (x′s).

Clearly T∗(f1) = f2.

2) Step 1: Let us consider some particular case. Let v1
i0
, v2
i0
∈ Int(N)

be roots of f1 and f2 (correspondently) with multiplicity µi0 . Suppose
that other roots of f1 and f2 are the same; v1

i = v2
i (i 6= i0), ṽ1

j = ṽ2
j ,

v′1s = v′2s (for all j, s). The disk-exchange transformation T constructed
in the part 1) is just an interchanging of the two small disks with centers
at v1

i0
and v2

i0
and radius ε. We have

f1 = (u− v1
i0)µi0 · h(12)

f2 = (u− v2
i0)µi0 · h,(13)

where h ∈ Pm−µi0 (C).
Let U1

0 be a small neighbourhood of (u−v1
i0

)µi0 in Pµi0 (C) and Uh be a
small neighbourhood of h in Pm−µi0 (C) such that the map φ1 : U1

0×Uh →
Pm(C) obtained by “opening brackets” in (12) is a diffeomorphism to the
image. (φ1 is a local diffeomorphism because the Jacobian Jφ1 at the
point ((u − v1

i0
)µi0 , h) is a resultant of these polynomials [J] and they

have not common roots). Analogically let U2
0 be a small neighbourhood

of (u − v2
i0

)µi0 in Pµ0(C) such that φ2 : U2
0 × Uh → Pm(C) obtained

by “opening brackets” in (13) is a diffeomorphism to the image. Let
Uf1 = φ1(U1

0 × Uh) and Uf2 = φ2(U2
0 × Uh). Let T̃ : U1

0 → U2
0 be the

map defined in the same way as T∗ but in the space Pµ0(C). Observe
that T̃ is a diffeomorphism. Thus in the coordinate system defined by
φ1 and φ2 the map T∗ can be written in the following way: T∗ = (T̃ , id).
Since T̃ is a diffeomorphism T∗ is also diffeomorphism.

Step 2: Let ṽ1
j0

, ṽ2
j0

be roots of f1 and f2 (correspondently) with
multiplicity ηj0 . Suppose also (as in Step 1) that other roots of f1 and
f2 are the same. The proof is absolutely the same as in Step 1.

Step 3: The same arguments for f1 and f2 with roots v′1s0 , v′2s0 with
multiplicity ζs0 and the same other roots.

Step 4: For every pair f1, f2 ∈ Pm,µ(N)(C) a disk-exchange transfor-
mation T such that T∗(1) = f2 can be obtained as a composition of maps
considered in Steps 1, 2, 3.

The theorem is proved.
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3.3. Differential triviality.

Theorem 3.3. The family {Pn,µ(N)(C)}µ(N)∈Mn(N) is Cρ-differen-
tially trivial.

Proof: Let f1, f2 ∈ Pn,µ(N)(C) we have:

f1 = f̃1 · g1,(14)

f2 = f̃2 · g2,(15)

where f̃1, f̃2 ∈ Pm,µ(N)(C) with m = Σµi + Σηj + Σζs + Σθk, g1, g2 ∈
Pn−m,0(N)(C).

Let T be a disk-exchange transformation connecting f̃1 and f̃2 con-
structed in Theorem 3.2. Let Uf̃1

and Uf̃2
be small neighbourhoods

such that T∗ : Uf̃1
→ Uf̃2

is a Cρ-diffeomorphism. Let Ug1 and Ug2 be
two small open balls in Pn−m(C) belonging to Pn−m,0(N)(C). (These
two balls exist because Pn−m,0(N)(C) is an open subset of Pn−m(C) by
Lemma 3.1). Let H : Ug1 → Ug2 be a diffeomorphism (can be a trans-
lation map). Let ψ1 : Ug1 × Uf̃1

→ Pn(C) and ψ2 : Ug2 × Uf̃2
→ Pn(C)

be maps defined by “opening brackets” in (14) and (15). ψ1 and ψ2

are local diffeomorphisms by the same argument as in Theorem 3.2. Set
Uf1 = ψ1(Ug1 × Uf̃1

) and Uf2 = ψ2(Ug2 × Uf̃2
). Thus the map

G = ψ2 ◦ (H,T∗) ◦ ψ−1
1 : Uf1 → Uf2

defines a required diffeomorphism.

End of the proof of Theorem 3.1: So, we obtained that the family
{Pn,µ(N)(C)}µ(N)∈Mn(N) satisfies the following conditions:

1.
⋃

µ(N)∈Mn(n)

Pn,µ(N)(C) = Pn(C).

2. Pn,µ(N)(C) are immersed submanifolds and semialgebraic subsets
of Pn(C).

3. Pn,µ1(N)(C) ∩ Pn,µ2(N)(C) = ∅ for µ1(N) 6= µ2(N).

4. The family is Cρ-differentially trivial.

Thus (by [GPWL]) we can conclude that {Pn,µ(N)(C)}µ(N)∈Mn(N) is a
Whitney regular stratification of Pn(C). The theorem is proved.
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4. Comparing of the stratifications

4.1. Comparing of real and complex cases.
Now consider N = [a, b] ⊂ C. Thus we have: Int(N) = ∅, S1 = ∅,

S2 = (a, b) and Sing(∂N) = {a, b}. It means that the multiplicity symbol
µC([a, b]) defined in the part 3 (complex case) has the following form:

µC([a, b]) = {ζ1, . . . , ζr3 , θ1, θ2} (here r1 = r2 = 0).

From the other side the multiplicity symbol µR([a, b]) corresponding
to [a, b] defined in the part 2 (real case) has the form: µR([a, b]) =
{µa, µ1, . . . , µr, µb}.

Denote by Pn,µR([a,b])(R) the stratum corresponding to the multiplicity
symbol µR([a, b]) in real case, Pn,µC(N)(C) the stratum corresponding to
µC([a, b]) in complex case. Let MR

n ([a, b]) be a set of all multiplicity
symbols µR([a, b]) and MC

n ([a, b]) be a set of all multiplicity symbols
µC([a, b]).

Define a map L :MR
n ([a, b])→MC

n ([a, b]) by L({µa, µ1, . . . , µr, µb})=
{µ1, . . . , µr, µa, µb}. Clearly L is a bijection. We have that Pn(R) is a
subset of Pn(C).

Theorem 4.1. Pn,µR([a,b])(R) = Pn,L(µR([a,b]))(C)∩Pn(R). This sta-
tement follows directly from the definitions of stratifications.

The same result is true for a finite number of intervals.

4.2. Comparing of two complex stratifications.
Let {Xi} and {Yj} be two stratifications of Rn. We say that these

stratifications are Cρ-equivalent if there exists a Cρ-diffeomorphism
H : Rn → Rn such that for each i there exists j such that H(Xi) = Yj .

Remark 4.1. It is clear that if {Xi} is Cρ-equivalent to {Yj} that
these stratifications has the same number of stratum and for each i the
sets Xi and Yj = H(Xi) are Cρ-diffeomorphic.

Let N1 and N2 are two semialgebraic subsets of C. We say that N1

and N2 are Cρ-equivalent if there exists a Cρ-diffeomorphism L : C→ C
such that L(N1) = N2.

Let f = (u− v1)m1(u− v2)m2 · . . . · (u− vk)mk ∈ Pn(C). Define L∗(f)
as the following:

L∗(f) = (u− L(v1))m1(u− L(v2))m2 · . . . · (u− L(vk))mk .

We obtain a map L∗ : Pn(C)→ Pn(C).
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Theorem 4.2.

1) L∗ is a Cρ-diffeomorphism.
2) The stratifications

{Pn,µ(N1)(C)}µ(N1)∈Mn(N1) and {Pn,µ(N2)(C)}µ(N2)∈Mn(N2)

are Cρ-equivalent.
3) The equivalence of these stratifications is given by L∗.

Proof: 1) This part follows from the properties of L∗: 1. L∗ is a local
diffeomorphism (the proof is the same as in Lemma 2.2). 2. L∗ is a
one-to-one map. 3. L∗ is a proper map (see [BR]).

The proof of 2) and 3) is the same as the proof of Theorem 3.1 of the
part 3.

Remark 4.2. If N1 and N2 have a different number of Cρ-singular
points then the stratifications {Pn,µ(N1)(C)} and {Pn,µ(N2)(C)} have dif-
ferent number of strata and (by Remark 4.1) can not be Cρ-equivalent. It
means that different semialgebraic subsets define strictly different strat-
ifications of Pn(C).
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