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CLASSIFICATION OF DEGREE 2
POLYNOMIAL AUTOMORPHISMS OF C3

John Erik Fornæss and He Wu

Abstract
For the family of degree at most 2 polynomial self-maps ofC3 with
nowhere vanishing Jacobian determinant, we give the following
classification: for any such map f , it is affinely conjugate to one
of the following maps:

(i) An affine automorphism;

(ii) An elementary polynomial autormorphism

E(x, y, z) = (P (y, z) + ax,Q(z) + by, cz + d),

where P and Q are polynomials with max{deg(P ),deg(Q)} = 2
and abc 6= 0.

(iii) 
H1(x, y, z) = (P (x, z) + ay,Q(z) + x, cz + d)

H2(x, y, z) = (P (y, z) + ax,Q(y) + bz, y)

H3(x, y, z) = (P (x, z) + ay,Q(x) + z, x)

H4(x, y, z) = (P (x, y) + az,Q(y) + x, y)

H5(x, y, z) = (P (x, y) + az,Q(x) + by, x)

where P and Q are polynomials with max{deg(P ),deg(Q)} = 2
and abc 6= 0.

1. Introduction

In this note, we will give a classification theorem for the family of
degree at most 2 polynomial self-maps of C3 with nowhere vanishing
Jacobian determinant. Note that any polynomial automorphism has a
nowhere vanishing Jacobian determinant. Our Theorem 2.1 implies that
any degree at most 2 polynomial self-map of C3 with nowhere vanishing
Jacobian determinant is a polynomial automorphism.
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Let G be the group of polynomial automorphisms of C2. Let A be the
group of affine automorphisms of C2 and let E be the group of elementary
polynomial automorphisms of C2 such that each e ∈ E is of the form:

e(x, y) = (ax+ P (y), by + c)

where P is a polynomial and a, b 6= 0. Note that E is the group of all
polynomial automorphisms that carry each line of the form y = con-
stant to a line of the form y = constant ′. Then Jung’s Theorem [J]
asserts that G is generated by A and E . Applying Jung’s Theorem,
Friedland and Milnor [FM] classified the polynomial automorphisms of
C2: Any polynomial automorphism of C2 is affinely conjugate to one of
the following types of maps: (i) an affine automorphism; (ii) an elemen-
tary polynomial automorphism; (iii) A finite composition of generalized
Hénon mappings. Each generalized Hénon mapping is of the form

h(x, y) = (P (x)− ay, x)

where p is a polynomial of x of degree at least 2 and a 6= 0.
It seems to be difficult to extend Jung’s Theorem to Cn for n ≥ 3.

So we cannot follow Friedland and Milnor’s proof to classify polynomial
automorphisms in higher dimensions. But if we restrict to polynomials
of degree at most 2 in C2, it is not necessary to apply Jung’s Theorem for
the classification, see [HO] for a proof. In this paper, we give the clas-
sification of degree at most 2 polynomial self-maps of C3 with nowhere
vanishing Jacobian determinant up to affine conjugation. The organi-
zation of this paper is as follows: in Section 2, we give the statement
of our classification Theorem 2.1 and we also include some remarks on
the dynamical differences between the various classes in our theorem. In
Section 3, the proof of Theorem 2.1 is given and in Section 4, we briefly
give some discussions of some basic dynamical properties of these maps.

2. The statement of main theorem and some remarks

Theorem 2.1. If f : C3 → C3 is a degree at most 2 polynomial self-
map with nowhere vanishing Jacobian determinant, then f is affinely
conjugate to one of the following maps:

(1) An affine automorphism;

(2) An elementary polynomial automorphism

E(x, y, z) = (P (y, z) + ax,Q(z) + by, cz + d),
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where P is a polynomial of y, z of degree at most 2, Q is a polynomial of
z of degree at most 2 and abc 6= 0. Note that it maps every hyperplane
z = k to a hyperplane z = k′ and maps every line y = k1, z = k2 to a
line y = k′1, z = k′2;

(3) 

H1(x, y, z) = (P (x, z) + ay,Q(z) + x, cz + d)
H2(x, y, z) = (P (y, z) + ax,Q(y) + bz, y)
H3(x, y, z) = (P (x, z) + ay,Q(x) + z, x)
H4(x, y, z) = (P (x, y) + az,Q(y) + x, y)
H5(x, y, z) = (P (x, y) + az,Q(x) + by, x)

where P and Q are polynomials with max{deg(P ),deg(Q)} = 2 and
abc 6= 0.
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Remark 2.3. If τ(x, y, z) = (y, z, x), then H4 = H3 ◦ τ , H2 = H5 ◦ τ ,
H1 = H5 ◦ τ2.

Remark 2.4. Some Generic Dynamical differences between the vari-
ous classes: Assume for simplicity that the constants |a|, |b|, |c| < 1.

First of all the elementary maps and the class H1 distinguish them-
selves from the other classes by the fact that the maps fix a hypersurface
and the orbits of all points outside this hypersurface converge to it.
Hence the dynamics reduces to two dimensions. In the case of H1, the
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maps reduces to a Hénon map on the fixed hypersurface z = α. In the
case of the elementary maps, the orbits in the fixed hypersurface z = α
converge to the fixed curve y = β on which the maps are automorphisms.
In fact both the elementary maps and the maps of class H1 are semidi-
rect products over a mapping A(z) = cz + d, i.e. there is a function
z → fz(x, y) ∈ Aut(C2) such that F (x, y, z) = (fz(x, y), A(z)).

Hence we need only to find dynamical differences between the
classes H2, H3, H4, H5.

First we can observe that it is natural to consider the maps H2, H3

together as opposed to the maps H4, H5. There is a dynamical dif-
ference in the asymptotic dynamics. For the maps H2, H3, the orbits
generically converge to one point at infinity. For example, for the map
H3, if P (x, y) = Ax2 + · · · , Q(x) = Bx2 + · · · , then this is the point
[A:B: 0: 0] at infinity in projective coordinates. On the other hand, for
the maps H4, H5 the generic orbit converges to a complex line at infinity.

It remains to distinguish dynamically the maps H2 and H3 as well as
to distinguish the maps H4 and H5.

Comparing the maps H2 and H3, we observe that the map H2 is a
Hénon map in the last two coordinates, (y, x)→ (Q(y) + bz, y). In other
words such a map F is a semi-direct product over a mapping h(y, z) ∈
Aut(C2), i.e. there is an analytic function (y, z) → Ay,z ∈ Aut(C) such
that F (x, y, z) = (Ay,z(x), h(y, z)). This sets H2 apart from H3.

Comparing the maps H4 and H5 we consider again their behaviour at
infinity. We see that there is a P 1 at infinity which is mapped to itself.
For H4 this map is a second degree polynomial, while for H5 this map
is rational of degree 2, i.e. has a more complicated dynamics.

3. The Proof of Theorem 2.1

Let G be the family of degree at most 2 polynomial self-map of C3

with nowhere vanishing Jacobian determinant. For any f ∈ G, we can
write f in the following form:

f(x, y, z) = (f1(x, y, z), f2(x, y, z), f3(x, y, z)).

Because the degree of f is at most 2, the Jacobian matrix of f is as
follows:

f ′(x, y, z) =

w1(x, y, z) w2(x, y, z) w3(x, y, z)
w4(x, y, z) w5(x, y, z) w6(x, y, z)
w7(x, y, z) w8(x, y, z) w9(x, y, z)


where wj(x, y, z) = ajx+ bjy + cjz + dj for 1 ≤ j ≤ 9.
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Since the determinant of the Jacobian matrix f ′(x, y, z) is a nonzero
constant, all coefficients of the polynomial det(f ′) must be zero except
the constant. In particular, the coefficients of x3, y3 and z3 must be
zero, i.e.,

(1) det(A) = det(B) = det(C) = 0

where

(2) A =

 a1 a2 a3

a4 a5 a6

a7 a8 a9

 , B =

 b1 b2 b3
b4 b5 b6
b7 b8 b9

 , C =

 c1 c2 c3
c4 c5 c6
c7 c8 c9

 .

It is easy to see that both b1 and a2 are the coefficient of xy in
f1(x, y, z), this implies that b1 = a2. By looking at the coefficients of xy,
yz, and xz in f = (f1, f2, f3), we obtain the following table:

b1 = a2 c1 = a3 c2 = b3

b4 = a5 c4 = a6 c5 = b6

b7 = a8 c7 = a9 c8 = b9

Table (ABC)

By using the above table we can write our function f in the following
form:

(3) f(x, y, z) = (φ1(x, y, z) + L1(x, y, z), φ2(x, y, z)
+ L2(x, y, z), φ3(x, y, z) + L3(x, y, z))

where

φ1(x, y, z) =
1
2
a1x

2 +
1
2
b2y

2 +
1
2
c3z

2 + b1xy + c2yz + c1xz

φ2(x, y, z) =
1
2
a4x

2 +
1
2
b5y

2 +
1
2
c6z

2 + b4xy + c5yz + c4xz

φ3(x, y, z) =
1
2
a7x

2 +
1
2
b8y

2 +
1
2
c9z

2 + b7xy + c8yz + c7xz

L1(x, y, z) = d1x+ d2y + d3z + e1

L2(x, y, z) = d4x+ d5y + d6z + e2

L3(x, y, z) = d7x+ d8y + d9z + e3.
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Let’s introduce the following trivial lemma which is useful in our proof
of Theorem 2.1.

Lemma 3.1. Let F = (f1, . . . , fn) be a polynomial self-map of Cn of
degree at most 2, with nowhere vanishing Jacobian. Let g and h be any
affine automorphisms of Cn. We denote the degree 2 homogeneous part
of F by (φ1, . . . , φn) and the degree 2 homogeneous part of g ◦ F ◦ h by
(ψ1, . . . , ψn). Then the following statements are equivalent:

(i) There exist constants α1, . . . , αn with
∑n
j=1 |αj | 6= 0 such that∑n

j=1 αjφj ≡ 0,

(ii) There exist constants βj with
∑n
j=1 |βj | 6= 0 such that∑n

j=1 βjψj = 0.

Proof: Clear.

Remark 3.2. For the map F in above lemma, if we want to prove
that

∑n
j=1 αjφj ≡ 0, we can simplify JF , the Jacobian matrix of F , by

composing constant invertible matrices in both sides of JF . Note that
J(g◦F◦h) = Jg(F (h))JF (h)Jh = JgJF (h)Jh, i.e., we have to use the new
variables for the Jacobian matrix of F , but this doesn’t matter because
Jh is a constant matrix and therefore we may keep the original notation
as the new variables.

Let’s recall the following result from [HO]:

Lemma 3.3. Let f(x, y) = (f1(x, y), f2(x, y)) = (P1(x, y) +A1(x, y),
P2(x, y) +A2(x, y)) be a polynomial self-map of C2 of degree at most 2,
with nowhere vanishing Jacobian, where Pj(x, y) is the corresponding
degree 2 homogeneous polynomial of fj and Aj = fj − Pj. Then the
homogeneous polynomials P1 and P2 are proportional.

Lemma 3.4. If for all constants α, β and γ with |α|+ |β|+ |γ| 6= 0,
we have αφ1 + βφ2 + γφ3 6≡ 0, then there exist affine automorphisms g
and h such that

(4) ψ1 = x2, ψ2 = xy, ψ3 = y2,

where (ψ1, ψ2, ψ3) is the degree 2 homogeneous part of the map g ◦ f ◦ h.

Proof: Let φ = [φ1:φ2:φ3] : P 2 → P 2. Since the Jacobian de-
terminant of φ is 0, the rank of φ is at most 1. If φ1 ≡ 0, then
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1φ1 + 0φ2 + 0φ3 ≡ 0. So WLOG, we may assume that φj 6≡ 0 for
j = 1, 2, 3.

(i) If the rank of φ is 0, i.e., φ is constant, then we may assume that
[φ1:φ2:φ3] = [1: 0: 0]. In this case, we have

0φ1 + 1φ2 + 0φ3 ≡ 0.

(ii) If rank of φ is 1, we may assume that φ([1: 0: 0]) = [1: 0: 0] and
that φ([x: 0: 1]) is non-constant.

Let

(φ1, φ2, φ3)|[x:0:1] = (a1x
2 + b1x+ c1, a2x

2 + b2x+ c2, a3x
3 + b3x+ c3).

Then since φ([1: 0: 0]) = [1: 0: 0], a1 6= 0, a2 = a3 = 0.
Hence

(φ1, φ2, φ3)|[x:0:1] = (a1x
2 + b1x+ c1, b2x+ c2, b3x+ c3).

Since φ([x: 0: 1]) is non-constant, it follows that b2 or b3 6= 0. By
Lemma 3.1 we may assume that b2 6= 0 and b1 = b3 = 0.

Hence
(φ1, φ2, φ3)|x:0:1] = (a1x

2 + c1, b2x+ c2, c3).

If c3 = 0, then we have φ3 = 0, so we have 0φ1 + 0φ2 + 1φ3 6= 0, which
is impossible. Hence c3 6= 0, so we may assume that

(φ1, φ2, φ3)|[x:0:1] = (x2, x, 1).

Hence φ(y = 0) = (XZ = Y 2). Sice φ has rank 1, φ(P 2) ⊂ (XZ =
Y 2), so

(5) φ1φ3 ≡ φ2
2.

(1) If φ1 = cφ2 for a nonzero constant c, then φ1 − c−1φ2 + 0φ3 ≡ 0.

(2) If φ3 = cφ2 for a nonzero constant c, then we have 0φ1 + c−1φ2 −
φ3 ≡ 0.

(3) Hence φ1 6= c1φ2 and φ3 6= c2φ2 for any constants c1 and c2. Then
φ2 must be a product of two nonproportional linear factors, φ = L1L2.
This implies that φ1 = c1L

2
1 and φ3 = c3L

2
2 or vice versa. Setting L1 = x

and L2 = y and scaling we finish the proof of the lemma.
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Lemma 3.5. There exist constants α, β and γ such that |α| + |β| +
|γ| 6= 0 and

αφ1 + βφ2 + γφ3 ≡ 0.

Proof: If for all constants α, β and γ with |α| + |β| + |γ| 6= 0, αφ1 +
βφ2 + γφ3 6≡ 0, then by Lemma 3.1 and Lemma 3.4 we may assume that
ψ1 = x2, ψ2 = xy, ψ3 = y2.

In this case, the Jacobian matrix of f is as follows:

f ′(x, y, z) =

 2x+ d1 d2 d3

y + d4 x+ d5 d6

d7 2y + d8 d9

 .

Since the Jacobian determinant is a nonzero constant, then

det

 2x+ d1 d2 d3

y + d4 x+ d5 d6

d7 2y + d8 d9

 = det

 d1 d2 d3

d4 d5 d6

d7 d8 d9

 = const. 6= 0.

But

det

 2x+ d1 d2 d3

y + d4 x+ d5 d6

d7 2y + d8 d9

 = 2d9x
2 − 4d6xy + 2d3y

2 + · · · .

This implies that d3 = d6 = d9 = 0, i.e.,

det

 d1 d2 d3

d4 d5 d6

d7 d8 d9

 = 0.

This is a contradiction.

Proof of the Theorem 2.1: If deg(f) = 1, then it is easy to see that f
is an affine automorphism.

If deg(f) = 2, then by Lemma 3.5 we can assume that there exist
constants k1 and k2 such that

φ3 = k1φ1 + k2φ2.

Then

(6) f = (φ1 + L1, φ2 + L2, k1φ1 + k2φ2 + L3).
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Let g1(x, y, z) = (x, y, z − k1x − k2y), then g−1
1 (x, y, z) = (x, y, z +

k1x+ k2y). Then

(7)

F1(x, y, z) : = g1 ◦ f ◦ g−1
1 (x, y, z)

= g1 ◦ f(x, y, z + k1x+ k2y)
= (φ4(x, y, z) + L4(x, y, z), φ5(x, y, z)

+ L5(x, y, z), L6(x, y, z))

where φj are degree 2 homogeneous polynomial and Lj(x, y, z) are de-
gree 1 polynomial and written as Lj(x, y, z) := αjx+ βjy+ γjz + ρj . In
particular, |α6|+ |β6|+ |γ6| 6= 0.

We will classify L6 into the following 3 cases:

Case (i): α6 6= 0.
Let g2(x, y, z) = (α6x + β6y + γ6z + ρ6, y, z), then g−1

2 (x, y, z) =(
1
α6

(x− β6y − γ6z − ρ6), y, z
)

. Then

(8)
F2(x, y, z) : = g2 ◦ F1 ◦ g−1

2 (x, y, z)
= (φ7(x, y, z) + L7(x, y, z), φ8(x, y, z) + L8(x, y, z), x)

where φj are degree 2 homogeneous polynomials and Lj(x, y, z) are de-
gree 1 polynomials and written as Lj(x, y, z) := αjx+ βjy + γjz + ρj .

Then the Jacobian matrix of F2 has the following form:

(9) F ′2(x, y, z) =

 (φ7 + L7)′x (φ7 + L7)′y (φ7 + L7)′z
(φ8 + L8)′x (φ8 + L8)′y (φ8 + L8)′z

1 0 0

 .

Then since det(F ′2(x, y, z)) is a nonzero constant,

det
(

(φ7 + L7)′y (φ7 + L7)′z
(φ8 + L8)′y (φ8 + L8)′z

)
= a nonzero constant.

Then for any fixed x, we may consider

Fx(y, z) = (φ7 + L7, φ8 + L8)

as a degree 2 polynomial self-map of C2 with nowhere vanishing Jacobian
determinant.

We can write

φ7 + L7 = a7x
2 + b7y

2 + c7z
2 + d7yz + e7xy + f7xz + · · ·

φ8 + L8 = a8x
2 + b8y

2 + c8z
2 + d8yz + e8xy + f8xz + · · ·
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By Lemma 3.3 it follows that the homogeneous polynomials b7y2 +
c7z

2 + d7yz and b8y2 + c8z
2 + d8yz are proportional. Moreover we make

the following claim:

Claim. The homogeneous polynomials b7y2+c7z2+d7yz+e7xy+f7xz
and b8y2 + c8z

2 + d8yz + e8xy + f8xz are also proportional.

JFx(y, z) =
(

2b7y + d7z + e7x+ k1 2c7z + d7y + f7x+ k2

2b8y + d8z + e8x+ k3 2c8z + d8y + f8x+ k4

)
and detJFx(y, z) = a nonzero constant independent on x.

(1) Since b7y2 + c7z
2 + d7yz and b8y2 + c8z

2 + d8yz are proportional,
we may compose an invertible constant matrix, say M1, to the left of the
matrix of JFx(y, z) to kill the y, z terms in the first row or second row.
WLOG, we may assume that we killed the y, z terms in the first row.
Now our Jacobian matrix becomes

M1JFx(y, z) =
(

e7x+ k1 f7x+ k2

2b8y + d8z + e8x+ k3 2c8z + d8y + f8x+ k4

)
.

Note that e7, k1, f7, k2 are different from the original values, for simplic-
ity we still use the same notation. The following discussion will follow
the same rule.

(2) If e7 = f7 = 0, then we are done.

(3) If e7 6= 0, f7 6= 0, then we may compose an invertible constant
matrix to the right of the matrix M1JFx to kill f7. Now the matrix
becomes (

e7x+ k1 k2

2b8y + d8z + e8x+ k3 2c8z + d8y + f8x+ k4

)
.

Since the determinant of this matrix is a nonzero constant, we have
c8 = d8 = f8 = 0. If e8 6= 0, we will use the fact e7 6= 0 to kill e8. So
now the matrix ix (

e7x+ k1 k2

2b8y + k3 k4

)
.

The determinant of this matrix is e7k4x− 2b8yk2 + k1k4− k2k3 which
is a nonzero constant. This implies that e7k4 = 0, b8k2 = 0. e7 6= 0
implies that k4 = 0. k2 cannot be 0 otherwise the determinant is 0, so
b8 = 0.
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Now our matrix is pretty simple:(
e7x+ k1 k2

k3 0

)
.

It is easy to see that our claim is true for the map Fx with above matrix
as its Jacobian matrix. By Lemma 3.1 and Remark 3.2, we proved our
claim.

(4) If one of {e7, f7} is 0 and the other is different from 0, then go to
the case (3).

By the above claim we can write

φ7 + L7 = a7x
2 + ψ7(x, y, z) + L7(x, y, z)

φ8 + L8 = a8x
2 + ψ8(x, y, z) + L8(x, y, z)

where ψ7(x, y, z) = b7y
2 + c7z

2 + d7yz + e7xy + f7xz and ψ8(x, y, z) =
b8y

2 + c8z
2 + d8yz + e8xy + f8xz are proportional. This implies that

either (i-a) ψ8 ≡ kψ7 for some constant k; or (i-b) ψ7 ≡ 0.

Case (i-a): ψ8 = kψ7 for some constant k.
Let g3(x, y, z) = (x, y − kx, z), then g−1

3 (x, y, z) = (x, y + kx, z),

F3(x, y, z) : = g3 ◦ F2 ◦ g−1
3 (x, y, z)

= (a7x
2 + ψ7(x, y + kx, z) + L7(x, y + kx, z), a′8x

2

+ L′8(x, y, z), x)
= (p1(x) + ψ(x, y, z) + l7(y, z), p2(x) + l8(y, z), x)

where a′8 is the new coefficient of x2 after the compositions, L′8 is the
new linear function, p1, p2 are the polynomial of x of the corresponding
coordinates, l7, l8 are linear functions of y, z of the corresponding co-
ordinates, ψ(x, y, z) is the degree 2 homogeneous polynomial except the
x2 term in a7x

2 + ψ7(x, y + kx, z) + L7(x, y + kx, z).
Now we assume that the linear function l8(y, z) = α8y + β8z with

|α8|+ |β8| 6= 0.
If α8 6= 0, let g4(x, y, z) = (x, α8y + β8z, z), then

H3(x, y, z) : = g4 ◦ F3 ◦ g−1
4 (x, y, z)

=
(
p1(x) + ψ

(
x,

1
α8

(y − β8z), z
)

+l7

(
1
α8

(y − β8z), z
)
, α8(p2(x) + y) + β8x, x

)
.
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Since the Jacobian determinant is a nonzero constant, ∂
∂z (p1(x)+

ψ(x, 1
α8

(y − β8z), z) + l7( 1
α8

(y − β8z), z)) = nonzero constant. So we
may rewrite H3 in the following form:

(10) H3(x, y, z) = (P (x, y) + az,Q(x) + by, x)

where P and Q are polynomials with max{deg(P ),deg(Q)} = 2 and
a 6= 0.

If α8 = 0, then β8 6= 0. In this case, following a similar discussion as
above, we may rewrite our map F3 as the following form:

(11) F3(x, y, z) = (p(x, z) + cy, q(x) + β8z, x)

where p(x, z) is a degree at most 2 polynomial of x and z.
Let g(x, y, z) = (β8x, y, β8z) and let H1 = g ◦ F3 ◦ g−1, then H1 has

the following form:

(12) H3(x, y, z) = (P (x, z) + ay,Q(x) + z, x)

where P and Q are polynomials with max{deg(P ),deg(Q)} = 2 and
a 6= 0.

Case (i-b): ψ7 ≡ 0.
In this case, F2(x, y, z) = (p1(x) + l7(y, z), a8x

2 + ψ8 + L8, x) where
p1(x) is polynomial of x and l7(x, y) = α7y + β7z.

If α7 6= 0, let g(x, y, z) = (x, α7y + β7z, z), since the Jacobian deter-
minant of g ◦ F2 ◦ g−1 is a nonzero constant, it is easy to check that
g ◦ F2 ◦ g−1 has the following form:

(13) G2(x, y, z) = (q(x) + y, p(x, y) + az, x)

where P and Q are polynomials with max{deg(P ),deg(Q)} = 2 and
a 6= 0.

If α7 = 0, then β7 6= 0. In this case, F2 = (p1(x) + β7z, a8x
2 + ψ8 +

L8, x). Using the fact that the Jacobian determinant of F2 is a nonzero
constant, we have that ∂

∂y (a8x
2 + ψ8 + L8) = nonzero constant. So we

can rewrite F2 in the following form:

(14) G4(x, y, z) = (q(x) + bz, p(x, z) + ay, x)

where P and Q are polynomials with max{deg(P ),deg(Q)} = 2 and
ab 6= 0.
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Let g(x, y, z) = (y, x, z), then

H4 := g ◦G2 ◦ g−1 = (P (x, y) + az,Q(y) + x, y)(15)

H2 := g ◦G4 ◦ g−1 = (P (y, z) + ax,Q(y) + bz, y)(16)

where P and Q are polynomials with max{deg(P ),deg(Q)} = 2 and
ab 6= 0.

Therefore, in the case (i) the map F2 is affinely conjugate to one of
the maps H2, H3, H4, H5.

Case (ii): α6 = 0 and β6 6= 0.
In this case, we construct the following affine map g5:

g5(x, y, z) = (x, β6y + γ6z + ρ6, z).

Then g−1
5 (x, y, z) = (x, 1

β6
(y − γ6z − ρ6), z).

(17)
F5(x, y, z) : = g5 ◦ F1 ◦ g−1

5 (x, y, z)
= (φ9 + L9, φ10 + L10, y),

where φj are degree 2 homogeneous polynomials and Lj(x, y, z) are de-
gree 1 polynomials and written as Lj(x, y, z) := αjx+ βjy + γjz + ρj .

Then the Jacobian matrix of F5 has the following form:

(18) F ′5(x, y, z) =

 (φ9 + L9)′x (φ9 + L9)′y (φ9 + L9)′z
(φ10 + L10)′x (φ10 + L10)′y (φ10 + L10)′z

0 1 0

 .

The property that det(F ′5(x, y, z)) = a nonzero constant implies that

det
(

(φ9 + L9)′x (φ9 + L9)′z
(φ10 + L10)′x (φ10 + L10)′z

)
= a nonzero constant.

Then following the same arguments in the proof of case (i), we can
prove that F5 is conjugate to one of the following maps:

H2(x, y, z) = (P (y, z) + ax,Q(y) + bz, y)
H4(x, y, z) = (P (x, y) + az,Q(y) + x, y)
G3(x, y, z) = (q(y) + z, p(y, z) + ax, y)
G5(x, y, z) = (q(y) + bx, p(x, y) + az, y)
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where P and Q are polynomials with max{deg(P ),deg(Q)} = 2 and
ab 6= 0.

But Gj is conjugate to Hj by the affine map g(x, y, z) = (y, x, z) for
j = 3, 5. So F5 is affinely conjugate to one of the maps H2, H3, H4, H5.

Case (iii): If α6 = β6 = 0.
In this case, γ6 6= 0. Then we have

F1(x, y, z) = (φ4 + L4, φ5 + L5, γ6z + ρ6).

Then the Jacobian matrix of F1 has the following form:

(19) F ′1(x, y, z) =

 (φ4 + L4)′x (φ4 + L4)′y (φ4 + L4)′z
(φ5 + L5)′x (φ5 + L5)′y (φ5 + L5)′z

0 0 γ6

 .

The fact det(F ′1(x, y, z)) = a nonzero contant implies that

det
(

(φ4 + L4)′x (φ4 + L4)′y
(φ5 + L5)′x (φ5 + L5)′y

)
= a nonzero constant.

Then the same arguments as in the proof of case (i) implies that F1 is
conjugate to one of the following maps:

H1(x, y, z) = (P (x, z) + ay,Q(z) + x, cz + d)(20)
E(x, y, z) = (P (y, z) + ax,Q(z) + by, cz + d)(21)

where P and Q are polynomials with max{deg(P ),deg(Q)} = 2 and
abc 6= 0.

We finish the proof of Theorem 2.1.

4. Some dynamical properties of Hj

Remark 4.1. For an elementary map E(x, y, z) = (P (y, z) + ax, by+
Q(z), cz + d), E has at most 1 isolated fixed point, in fact, it is easy to
check the following facts:

(i) Ifc 6= 1, a 6= 1, b 6= 1, then E has only one isolated fixed point;
(ii) If c = 1, d 6= 0, then E has no fixed point;

(iii) If c = 1, d = 0, then E has a fixed z-plane for any given z and
the set of fixed points of map E, Fix(E), has only the following
possibilities:

(1) Empty (for example: b = 1, Q(z) = 1);

(2) Entire-curves;

(3) 2-dimensional complex surfaces.
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Remark 4.2. For the mapH1(x, y, z) = (P (x, z)+ay, x+Q(z), cz+d),
if P (x, z) doesn’t depend on x, thenH2

1 is a special case of our elementary
map E. So the discussion of its dynamics goes to the study of elementary
maps. If c = 1, d = 0 and P (x, z) = kx2 + · · · with k 6= 0, then this map
is essentially an Hénon map of C2 for any fixed z. Therefore in general
we believe that H1 has interesting dynamics if P (x, z) = kx2 + · · · with
k 6= 0.

Remark 4.3. For the map H2(x, y, z) = (Py, z) + ax, z +Q(y), y), if
a = 1 and P (y, z) = 0, then the map H2 is essentially an Hénon map
of C2 for any fixed x. So if Q is a degree 2 polynomial, we believe that
the map H2 has interesting dynamics. Otherwise we have some trivial
examples like this: H2(x, y, z) = (y2−x2 +x, y, z). It is easy to see that
H2

2 is an identity map.

Remark 4.4. For H3(x, y, z) = (P (x, z) + ay, z + Q(x), x), we have
the following facts about its fixed points:

(i) If P (x, x) + aQ(x) = 0, then we have 2 possibilities:

(i.a) If a = 1, then Fix(H3) is a entire curve;

(i.b) If a 6= 1, then H3 has only one fixed point (0, Q(0), 0).
(ii) If P (x, x) + aQ(x) 6= 0 and

(ii.a) The degree of the polynomial P (x, x) + aQ(x) ≤ 1, then it
is easy to see that the Fix(H3) could be an empty set, one
point or an entire curve;

(ii.b) The degree of the polynomial P (x, x) + aQ(x) = 2, then it
is easy to see that the H3 has exactly 2 isolated fixed points
counted with multiplicity. We believe that the H1 in this
case has rich dynamics.

Example 4.5. There are some interesting examples of H3 in the case
of P (x, x) + aQ(x) = 0 and a = 1 with H3

3 is an identity map. For
example, H3(x, y, z) = (z2 + y, z − x2, x).

Remark 4.6. Follow the same discussion as in Remark 3.6, we know
that H4(x, y, z) = (P (x, y) + az, x+Q(y), y) has 2 isolated fixed points
counted multiplicity if P (y − Q(y), y) + Q(y) + (a − 1)y is a degree 2
polynomial of y. We also believe that H4 has rich dynamics in this case.

Remark 4.7. For the map H5(x, y, z) = (P (x, y) + az, by +Q(x), x),
if b = 1 and Q(x) = 0, then the map H5 is essentially an Hénon map of
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C2 for any fixed y. If P and Q are degree 2 polynomials, we believe that
the map H5 has interesting dynamics and different from the dynamics
of Hénon map in C2.

There are also some uninteresting examples like this: H3(x, y, z) =
(2xz, 2y−x2, x). It is easy to check this map has only one periodic point
which is the fixed point at the origin.

Remark 4.8. For every map of Hj and E, the degree of its inverse
polynomial could be 3 or 4 if the deg(P ) = deg(Q) = 2. But it must be
2 if either deg(P ) ≤ 1 or deg(Q) ≤ 1.

Remark 4.9. The detailed discussion of the dynamical properties of
our maps Hj and E will appear in our forthcoming papers.
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