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NEW CHARACTERIZATIONS OF
VON NEUMANN REGULAR RINGS

AND A CONJECTURE OF SHAMSUDDIN

Carl Faith

Abstract
A theorem of Utumi states that if R is a right self-injective ring
such that every maximal ideal has nonzero annihilator, then R
modulo the Jacobson radical J is a finite product of simple rings
and is a von Neuman regular ring. We prove two theorems and a
conjecture of Shamsuddin that characterize when R itself is a von
Neumann ring, using a splitting theorem of the author on when
the maximal regular ideal of a ring splits off.

Introduction.
Using splitting off theorems for the maximal Von Neumann regular

ideal M(R) of a ring R in the author’s paper [F], we verify a conjecture
of Shamsuddin’s as a consequence of the following:

Theorem 1. Let R be a ring with Jacobson radical J . The f.a.e.c.’s:

(1) R is von Neumann regular (=VNR).
(2) R is semiprime, R̄ = R/J is VNR, M(R) splits off, and J is an

annihilator (left or right) ideal.

As another consequence of M(R) splitting we deduce:

Theorem 2. Let R be a two-sided continuous (e.g., two-sided self-
injective) ring. Then, R is VNR iff R is a semiprime ring whose Jacob-
son radical is an annihilator ideal.

We now state:
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Shamsuddin’s Conjecture. Let R be a ring such that R/J is a
VNR and a finite product of simple ideals A1, . . . , An. Then R is VNR
iff R is a semiprime ring and J is an annihilator ideal.

Proof of Theorem 1: The necessity if trivial. Conversely, by assump-
tion, R = M ×R2, where M = M(R) and R2 has zero regular ideal, that
is, M(R2) = 0. Moreover, J ⊆ R2. We shall show that R2 = 0, and then
R = M(R) is von Neumann regular. Since R is semiprime each nonzero
ideal I of R satisfies

⊥I
⋂

I = I⊥
⋂

I = 0

where the exponent ⊥ denotes the annihilator on the appropriate side.
Clearly ⊥J ⊇ M hence ⊥J = M ⊕ (⊥J

⋂
R2), hence assuming J is a

right annihilator, then

(∗) J = (⊥J)⊥ = M⊥
⋂

(⊥J
⋂

R2)⊥.

Since ⊥J
⋂

R2 = 	R2(J) is the left annihilator of J in R2, then

(
⊥J

⋃
R2

)⊥
= 	R2(J)⊥ = M + r	R2(J)

where R() denotes right annihilation in R2. Using (∗) and the fact that
M⊥ = R2, then

(∗∗)
J = M⊥

⋂
(M + r	R2(J))

= R2

⋂
(M + r	R2(J)).

Since R2

⋂
M = 0, and R2 ⊇ r	R2(M), then (∗∗) implies that J =

r	R2(J). If R2 �= 0, then J �= R, hence 	2(J) �= 0. But R2 is semiprime
(along with R), hence 	2(J)

⋂
J = 0 which shows that L = 	2(J) embeds

canonically in R̄2 = R2/J . Since

R̄ = R/J = M × (R2/J)

is VNR, then R̄2 = R2/J is also VNR, and hence L is a VNR ideal. This
shows that L is an VNR ideal of R2 contrary to the fact that M(R2) = 0,
that is R2 has no nonzero regular ideals. This contradiction shows that
R2 = 0, and hence R = M(R) is VNR as asserted.

Proof of Conjecture: By Theorem 2 of [F] (and its Corollary), M =
M(R) splits off in R as a ring direct summand iff the canonical image M̄
of M in R̄ = R/J splits off as a right or left ideal. Under the assumption
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of the conjecture, the only ideals of R̄ are the finite products of a subset
of {0, A1, . . . , An} without repetitions, and all of these are necessarily
ring direct summands of R̄. Thus M̄ splits off in R̄, hence M splits off
in R, so Theorem 2 applies to prove that R is VNR.

Proof of Theorem 2: By the main theorem of [F], M(R) splits off
in any two-sided continuous (eg. self-injective) ring, so Theorem 1 ap-
plies.

We conclude with another corollary as applications of two theorems of
Utumi. In

Corollary 3. If R is a right self-injective ring in which maximal ideals
have nonzero annihilators, then R is semiprime iff R is VNR. In this
case, R is a finite product of simple rings.

Proof: By Theorem 2.3 of [U1], R is a finite product of simple rings,
and J is an annihilator ideal. Moreover, R/J is VNR by Theorem 4.8 of
[U2]. Thus the truth of Shamsuddin’s conjecture completes the proof.
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jecture during his visit to Rutgers University in September 1994. I have
to thank him also for the reference [U1] used in the proof of Corollary 3.
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