## NEW CHARACTERIZATIONS OF VON NEUMANN REGULAR RINGS AND A CONJECTURE OF SHAMSUDDIN

## CARL FAITH



A theorem of Utumi states that if R is a right self-injective ring such that every maximal ideal has nonzero annihilator, then R modulo the Jacobson radical J is a finite product of simple rings and is a von Neuman regular ring. We prove two theorems and a conjecture of Shamsuddin that characterize when R itself is a von Neumann ring, using a splitting theorem of the author on when the maximal regular ideal of a ring splits off.

## Introduction.

Using splitting off theorems for the maximal Von Neumann regular ideal M(R) of a ring R in the author's paper  $[\mathbf{F}]$ , we verify a conjecture of Shamsuddin's as a consequence of the following:

**Theorem 1.** Let R be a ring with Jacobson radical J. The f.a.e.c.'s:

- (1) R is von Neumann regular (= VNR).
- (2) R is semiprime,  $\bar{R} = R/J$  is VNR, M(R) splits off, and J is an annihilator (left or right) ideal.

As another consequence of M(R) splitting we deduce:

**Theorem 2.** Let R be a two-sided continuous (e.g., two-sided self-injective) ring. Then, R is VNR iff R is a semiprime ring whose Jacobson radical is an annihilator ideal.

We now state:

384 C. Faith

Shamsuddin's Conjecture. Let R be a ring such that R/J is a VNR and a finite product of simple ideals  $A_1, \ldots, A_n$ . Then R is VNR iff R is a semiprime ring and J is an annihilator ideal.

Proof of Theorem 1: The necessity if trivial. Conversely, by assumption,  $R = M \times R_2$ , where M = M(R) and  $R_2$  has zero regular ideal, that is,  $M(R_2) = 0$ . Moreover,  $J \subseteq R_2$ . We shall show that  $R_2 = 0$ , and then R = M(R) is von Neumann regular. Since R is semiprime each nonzero ideal I of R satisfies

$$^{\perp}I\bigcap I=I^{\perp}\bigcap I=0$$

where the exponent  $\bot$  denotes the annihilator on the appropriate side. Clearly  $\bot J \supseteq M$  hence  $\bot J = M \oplus (\bot J \bigcap R_2)$ , hence assuming J is a right annihilator, then

$$(*) J = (^{\perp}J)^{\perp} = M^{\perp} \bigcap (^{\perp}J \bigcap R_2)^{\perp}.$$

Since  ${}^{\perp}J \cap R_2 = \ell_{R_2}(J)$  is the left annihilator of J in  $R_2$ , then

$$\left(^{\perp}J\bigcup R_2\right)^{\perp} = \ell_{R_2}(J)^{\perp} = M + r\ell_{R_2}(J)$$

where R() denotes right annihilation in  $R_2$ . Using (\*) and the fact that  $M^{\perp} = R_2$ , then

$$J = M^{\perp} \bigcap (M + r\ell_{R_2}(J))$$

$$= R_2 \bigcap (M + r\ell_{R_2}(J)).$$

Since  $R_2 \cap M = 0$ , and  $R_2 \supseteq r\ell_{R_2}(M)$ , then (\*\*) implies that  $J = r\ell_{R_2}(J)$ . If  $R_2 \neq 0$ , then  $J \neq R$ , hence  $\ell_2(J) \neq 0$ . But  $R_2$  is semiprime (along with R), hence  $\ell_2(J) \cap J = 0$  which shows that  $L = \ell_2(J)$  embeds canonically in  $\bar{R}_2 = R_2/J$ . Since

$$\bar{R} = R/J = M \times (R_2/J)$$

is VNR, then  $\bar{R}_2 = R_2/J$  is also VNR, and hence L is a VNR ideal. This shows that L is an VNR ideal of  $R_2$  contrary to the fact that  $M(R_2) = 0$ , that is  $R_2$  has no nonzero regular ideals. This contradiction shows that  $R_2 = 0$ , and hence R = M(R) is VNR as asserted.

Proof of Conjecture: By Theorem 2 of [F] (and its Corollary), M = M(R) splits off in R as a ring direct summand iff the canonical image  $\bar{M}$  of M in  $\bar{R} = R/J$  splits off as a right or left ideal. Under the assumption

of the conjecture, the only ideals of  $\bar{R}$  are the finite products of a subset of  $\{0, A_1, \ldots, A_n\}$  without repetitions, and all of these are necessarily ring direct summands of  $\bar{R}$ . Thus  $\bar{M}$  splits off in  $\bar{R}$ , hence M splits off in R, so Theorem 2 applies to prove that R is VNR.

Proof of Theorem 2: By the main theorem of  $[\mathbf{F}]$ , M(R) splits off in any two-sided continuous (eg. self-injective) ring, so Theorem 1 applies.

We conclude with another corollary as applications of two theorems of Utumi. In

Corollary 3. If R is a right self-injective ring in which maximal ideals have nonzero annihilators, then R is semiprime iff R is VNR. In this case, R is a finite product of simple rings.

*Proof:* By Theorem 2.3 of [U1], R is a finite product of simple rings, and J is an annihilator ideal. Moreover, R/J is VNR by Theorem 4.8 of [U2]. Thus the truth of Shamsuddin's conjecture completes the proof.

**Acknowledgement.** Professor Ahmad Shamsuddin made this conjecture during his visit to Rutgers University in September 1994. I have to thank him also for the reference [U1] used in the proof of Corollary 3.

## References

- [F] C. Faith, The maximal regular ideal of self-injective and continuous rings splits off, *Arch. Math.* 4 (1985), 511–521.
- [U1] Y. Utumi, Self-injective rings, J. Algebra 6 (1967), 59–64.
- [U2] Y. UTUMI, Continuous rings and self-injective rings, *Trans. Amer. Math. Soc.* **118** (1965), 158–173.

Department of Mathematics Rutgers University Hill Center for Mathematical Sciences Busch Campus New Brunswick, New Jersey 08903 U.S.A.

Author's mailing address: 199 Longview Drive Princeton, NJ 08540 U.S.A.

Primera versió rebuda el 5 de Desembre de 1995, darrera versió rebuda el 10 d'Abril de 1996