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MULTIPLIER ExTENSION AND SAMPLIN G
THEOREM ON HARDY SPACES

QIYU SUN

Abstract
Extension by integer translates of compactly supported function
for multiplier spaces on periodic Hardy spaces to multiplier spaces
on Hardy spaces is given . Shannon sampling theorem is extende d
to Hardy spaces.

1 . Introduction and statement of results

The purpose of this paper is to establish a natural extension from
multiplier spaces M(p) on periodic Hardy spaces HP (T) to multiplie r
spaces M(p) on Hardy spaces HP (R) by integer translates of a function
~ and to extend Shannon sampling theorem to Hardy spaces. It is the
continuation of [13] on stability of integer translates of a function bu t
with different interest . In [13], the following stability problem of intege r
transiates of 0

( 1 )

	

c-l llf IIHP(Z) E f(n)O(x — n )
nEZ

Cllf11HP(Z )
HP (R )

was considered which arises in the interpolation of sequences by functions
and plays an important role in multiresolution analysis, where o C p <
oo, f = {f(n)}Ez is a tempered sequence, HP (Z) and HP (R) denote s
Hardy spaces on Z and R respectively, and Z is the set of integers .
A natural replacement of the norm in (1) when p = oo is the norm
as multiplier operator on HP(T) and HP (R) respectively, which is an
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original inspiration to consider multiplier extension here . To this end ,

we introduce some notations . ~
Let ~ be a smooth function such that supp ~ c {4ó Ç lxl Ç A} ,

O(x) > Co on {ó < lx l < 1} and EmEZ .P (2m x) = 1 for x O, where

¿)(x )Co is a positive constant and the Fourier transform is defined by _
f e 2'i' y+P(y)dy . Denote (D,(x) = 2m cl9(2mx) for m E Z . Now we define

Hardy spaces HP(R) by

HP(R) = f E S'(R) ; I_ (E Om * fi2)

-m.E Z Lp (R )

and define Hardy spaces HP (T) (c .f. [3D by

HP (T) = .Í(x) = E fke2irzks E St(R ) .

kEZ

E P.* f 1 2
m>

~
2

LP (T )

where we denote the space of tempered distributions by S'(R), the norm

of p- integrable functions on R and T by ii • 1ILP(R) and by Il • l ,
respectively and T = R/Z denotes the torus . For a measurable functio n

m on R, we say that m is a multiplier on HP (R) if

(2)

	

II FIIHPR) Ç cmll f1111P(R )
„

	

..
holds for any Schwartz function f, where F = mf. We denote the

infinum Cm in (2) by IImIIMP . For a sequence m = {ñ(n)}, we say

that m is a multiplier on HP(T) i f

(3)

	

IGII H P T ) ~ crn II9II HP(T )

k
27rikac E S ' (R) 5

kE Z

llf111IP(T)

	

ifol +
E fk e2nikx

2 m C~k 1

C2
7'41

i
p

di
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holds for every trigonometric polynomial g(x) = Ekez gke27rik' , where
G(x) _ Ekez rn(k)gke 2 "rikx . Also we denote IIrnI1]() the infinum C,ñ
in (3) .

The classical result of de Leeuw [7] on multiplier said the restriction to
the integer lattice of a continuous multiplier on LP(R) is a multiplier on
LP(T) when 1 C p < oo . In 1992, Liu [8] extended the above conclusion
to Hardy spaces. The multiplier extension was considered by Jodeit [6] ,
Berkson and Gillespie [2] . Let be a continuous function with compac t
support . Denote the space of sequences by S and the linear span of
integer translates of by S(0) = {> mEZ C(n)O(x — n) ; {C(ri)} E S} .
Define a natural map O' from S to S(0) by

0* ' :

	

{C(n)} C(n)O(x — n) E S( q5) .
nEZ

We say that the integer translates of are globally linearly independen t
if O*' is one -to-one . Denote the restriction of O' on M(p) by 1 . Berkson
and Gillespie [2] proved that 1 maps M(p) to M(p) boundedly under
the hypotheses 1 C p < oa and ~ = x [_1,1] * Ao, where x [_1,11 is the

characteristic function of , * denotes the convolution operator
and Ao is a bounded variation function supported in [-, 1] . In this
paper, we will prove

Theorern 1 . Let o < p < oa and ~ have compact support. Iff I~~x} Imin( 1 fp) dx C +oo, then 1 maps M(p) to M(p) boundedly .

We improve Berkson and Gillespie's result since under their hypothese s
i Ç C(1 + I4 —2 and f I0̂ (x)i dx < oa. Applying to Bochner-Riesz
summation operator Bs, we reproved that Bb maps HP (Rn) to LIP (Rn )
when b>p — 2 and o C p < 1 [11], [12] when we let

	

_

To consider the inverse of Theorem 1, we introduce the paraproduct
Ph and show that Ph maps HP (T) to HP(R) .

Theorem 2. Let ~ be a continuous function with compact support. If
O' : S—> S(0) is one-to-one, then 1 has bounded inverse 1 —1 : M(p) n

S~~} —+ Ú(p) .
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In the proof of Theorem 1 and Theorem 2, Lemma 2 plays an impor-
tant role . If we assume Lemma 2 is true, or m(x) = > flEZ C(n)O(x—n) E
L°° implies {C(n)} E l°°, then it suffices to assume 1 is one- to-one
in Theorem 2. In particular Theorem 2 can be written as that 1 has
bounded inverse 1 —1 : M(p) M(p) provided 1 has bounded
inverse 1' : M(2) f1 S(0) ~ Ñ(2) and is a continuous function wit h
compact support, where 4 < p < oo. The continuity condition oi

l can bedropped in one spatial dimension since for any distribution on
R such that is one-to-one there exists a univariate spline Bk such
that ~ = B k * ~ is continuous and ~*' is one-to-one. But I do not
know how to construct this modifier Bk in high spatial dimensions . By
Fourier transform characterization of global linear independence in [9] ,
the box spline and Daubechie s ' scaling function satisfy the condition on

~ in Theorem 2 .

Shannon sampling theorem [10] plays an important role in signa l
analysis. It says a function with its Fourier transform supported in
[—1 + E, — E] for some 0 < E < 2 has its LP (R ) norm comparable
to its 1P (Z) norm of its restriction to integer lattices Z where 1 <
p < oo . In 1990, R. Torres [14] extended the aboye conclusion to

Besov spaces. Let {m}m>~ be a family of sequences such that ~7z~

	

—

	

~
is smooth, supp 4)m (1) C{2-m- 2 < 111 ç 2_m}, O~ Co on

Tm , Tm , where ■:Dm lIl = >IIflEz 4)m (n)e 2'znl , To = { $ Ç IS I Ç 1} and Tm =
{2m S I~I S 12 — 1 . Define (c .f. [13] or [14] }

H°(Z) = S {/(n)}nEZ ;

	

(I rn* f(n)I 2 ) a

)

P <+o0 1 ,
nEZnEZ m� U

where f = {f(n)} is a tempered sequence and ~,,,,,* f (72) = >.IkEZ 4),,, (n—
k) f(k) .

,.
Theorem 3. Let 0 < p < +oo . If f E S' (R) with supp f C

[—1 + e, — e] for some 0 < E < 2 , then the inequalit y

C—1 11{f(n)}IixP(z) Ç ~~f~~xP(x) ~ cíí{f(n)}IIxP(z)

holds for some constant C dependent of e and p only.
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For simplicity in the exposition we restrict ourselves to one spatial
dimension, all results can be extended to high spatial dimensions . The
results of Theorem 1 and 3 can be extended to spaces of Triebel-Lizorki n
type trivially. The big letter C will denote different constant at different
occurance .

2. Sorne lemmas

To prove our theorems, we will use the following fundamental lemmas.

Lemma 1 . c.f. [15] . Let f E S ' (R) have its Fourier transform con-
tained in a compact set . Therefore

(4)

	

* f(x)l

	

cm(1fir)(x)

holds for every Schwartz function '?P and o < r < 1, where M denotes
Hardy-Littlewood maximal operator and the constant C depends on the
seminorm of r and the radius R for which f is supported in the bal l

with radius R and center zero .

Proof of Lemma 1 : Without loss of generality we assume x = O,

M(I f 19(0) C +oo and supp f c H, 4 ~ by dilation invariance . Write

(s)

	

f (x) = E f(n)y)(x — n) ,
nE Z

for some Schwartz function cp such that supp cp c H, 1] . Hence ~ f

(0)IT < Enez 1 f(n)I r (1 +

	

To prove (4), we first prove

>InEZ 1f(n) i r (1 + Ini) —3 < +oo . Recall that f E S'(R) and supp f C
-4, . Therefore f(n)~ < C(1 + 1 n1) N for some constants C and N .

On the other hand we have

I~

	

1 T E f(m)ir(1 +~m—nl)-(N+3 )

mE Z

by (5) and

if(n)l r ( l + lni)- 3

raf Ç2 k + x
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by summing over Il Ç 2k and integrating over 161 C ~o < 1 ,
where So is chosen later and CN is independent of 6o. Denote

Ak = E2k- x <InIC_ 2k 1+ InIY3• Therefore E3.- A3 < 2Cs0 +

2CN 160 IrAk+ 1 . Conversely if we assurne E i= l° Aj ~ 4Cso for some ko ,
s

then Ejk—° +1 s

	

I
Aj � 1 + 4CN so I

r C60 , which contradicts Ek.° 1 IAI ç
k 0

+ s
C Ej=l (1 + IC2sN provided 6o is chosen small enough . This

proved
EThZ I .f(n ) i

r
(1 + I< +ao .

Furthermore by (5) we have

I U+ á ) I`+ C l ál' E I

	

n — mD -a

mE Z

for some constant C independent of f and by integrating over 161 Ç 6 o
for some sufficiently small 6o > o we ge t

~
3 <CJ ~+ IxD3dx < CM(' i~~)( 0 ) .

n

	

R

Therefore Lemma 1 is proved . ■

Lemma 2. Let the integer transiates of the continuous function b e

globally linearly independent. If m(x) = Enez C(n)O(x — n) E M(p) ,

then {C(n)} E

	

and l< Cilmii M ( p) •

Proof of Lemma 2: First we prove

(6 )

	

li m ilL—(R)

	

Climilm (p ) .

Obviously (6) is true when 1 < p < oo since Marcinkiewicz real in-

terpolation, 1 mMM(2) = IIm~~L~~R} and II mIIM(P) = iimIIm(p,) wher e

p' = --~-- ' Hence the matter reduces to proving (6) for o C p Ç 1 . Forp— 1
f E HP (R), we have the atomic decomposition f(x) = Er_o Akak(x )

with C—1 II f MHP(R) ç(Er o IÀ k 1» ç C f ~ f IIHP(R), where ak are (p,2,$ )

atoms and s ~ p~ — 1 . We call that a is an (p, 2, s) atom if there exists an

interval 1 such that supp a c 1, 11 a M L 2 ( R) < 1 1 1 1- t, and f x"a(x) dx =

o for o < cx < s . It is easy to show Ex} is continuous, Iá(x)i ç
1-- 1

and I< CIx l
s+l

II i Ps+2— ~ . Hence I< Cixi~1 — 1
CIII P

	

and

I ç Ero I akl lá k (x)I ç C(E°° o

	

Denote ft (x) =

t~ p f () . Therefore ft (x) =

	

ak ( ak ) t (x) and C 1 (o I ak I) pk
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C (Eko IAki P ) P . Recall that m E M(p) for 0 < p < 1 .
Hence

I C II .ft II HP (R )

	

c ll .f II HP(R )

and
Im(x)t ( l P ) f(tx)I <_ c II .fIIx p (R) I x I P- i

for all t > O. Therefore l ( A ) < C ll f Iixp (R) for every x

	

0

when we let t = ixl—1 and (6) is proved for 0 < p < 1 by choosin g
f E HP (R) such that f 1 on the unit sphere .

Second we prove

(7 )

	

II{C(n)}iii ...(z)

By [l, Theorem 1 .3], there exists a local algebraic dual {An } of {O(x —
n)}, which says AnO (x — k) = Snk and there exists a bounded set K
such that A te, f = 0 when f E S(0) and supp f fl (K + n) = O, where we
define the Kronekker symbol 6nk by Snn = 1 and 5 nk = 0 when n k .
Recall that ~ is continuous . Hence there exist finite points x i E K and
weights C(x 2 ) such that Anf = Ei C(x 2 ) f (x i + n) for every f E S(0) .
This shows IC(n)I = Anmi < for every n E Z. Therefore (7)
holds and Lemma 2 is proved by combining (6) and (7) . ■

Lemma 3 . ([4] or [5, Theorem A .1]) . Let 1 < p < ~-oo and 1 <
q < -loo . Therefore the following Fefferman-Stein vector-valued maxima l
inequality

IkEZ

	

L P (R) kE Z

Cc

LP(R )

holds where M denotes the Hardy-Littlewood maximal operator on R as
usual .

Let h and rj be two Schwartz functions such that supp ~ c {I xj ç 20 }
and (x) = 1 on {IxI Ç 40 } . Let be as in the definition of Hp (R) .
For f E HP(T) we introduce a new type of paraproduct operator Ph
defined by

(8)

	

Phf(x) - E (7h-ri * h ) ( x ) (1'm * f) ( x ) ,
m> o

where 77,n (x) = 2m r] ( 2 mx) .
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Lemma 4 . Let Ph be defined by (8) and h be a Schwartz function .

Then Ph maps HP (T) to HP(R) ,

llPhfiiHPR)

	

C II .fIIHP (T) •

Proof: Observe that

	

* h (x)l ç CN (1+ I far every N> 0 and

some CN independent of m . Also observe that supp(eri,n *h) N),.1z * f))" C
{2m Ç lxi ç 2ó 2m } and

	

* f (x + k) = ~m * f(x) for all k E Z .

Therefore

iiPhfiiP(R) < c L l

y

kEZ" "

G C II .fIIHp (T)

(E 1(97m * h)(s)( Tm * f)(s) 1 2

1

<CE dx((1
+ 1k~}--max(4,1)4~jm * f ( x )1 2

and Lemma 4 is proved . ■

3. Proof of theorems

Proof of Theorem 1 : Let {C(n)} be a multiplier on HP (T) and
supp q5 c HM, 4 M~ for some M > 1. Denote m(x ) = E C(n)O(x — n) .
Let ■:I) k be as in the definitio n of HP (R) . Writ e f = fo + f 1 + f2 , where
fo = Ik<2M1 * f and fi = >k>M1 d› 2k+z * f for i = 1, 2, where M1
is a positive integer such that 2 M1 > 20M. Observe that

m(x)( cl, k * fr(x) =

		

E

	

C(1)O(x — 1)( ■bk * f)A (x )
1l 1<22Mi -F M

for k < 2N~1 . Write O'(x) = InEZ O' (Z) 7/)(x --

	

for some ~ E

S(R ) with supp zj~ c {lx I < $ } , where O' denotes invers e Fourier trans-
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form. Therefore

( E 1(m(1.k*f)A)'(x)1 2L k<2M1k C 21V11

~
~

dx

�.c

	

E

	

lc( l ) I p
I11<2 2M 1 +M

min(p,1 )
max(p,1 )

o V

fz 2

p
2

kC21Vf1
dx

� ClI{C(1)}111.3(z) f ( E (M('bk
R rc<zMl

2

* f)r (x)) 1

	

dx

II fM(p)

	

H P (R) 5

where 6 C r C min(p,1) . The first inequality follows Hólder inequality

and >nEZ lan l Ç (>nz lfor 4 C p Ç 1, the second inequality
follows from Lemma 1 and

sup E I+ n)Imin(p,1) C kdx

(see [13, Lemma 6]}, and the third inequality follows from
Lemma 2 and Lemma 3 . For k write 0 (x )(1. k * f)A (x + n) =

EiEZ Ck,n (I)e 2'/lVlñ(x'M) for some Schwartz function ~ with
supp ~ c {fxI Ç D .. Therefore we ge t

(m(k * f}n)V `x) =E

	

E

	

C(n)Ck,n(1)e
-27ri'77(Mx _ 1 )

iEZ 2k —2 � InlC2 k

since 2m1 3 20M and

C'k n (1) e -- 27rin x
J

2k -25InlC2k

	

,

f 0(Y) (E(f

	

j+ )e_ 2 )7rinac e-27Tidy d y

nEZ
(f*k)(x+n)(x+n _

y1 E
C

i l

M~
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by Poisson summation formula . Hence

E I(M (1'2k+i * frY(x)i 2

	

dx
k>M l

1Hn(R) G C L

E C(n)C2k+i,n( l )
e-27rira -

I~~M1 22k+i-2 C
iniC2 2k + i

x (1+Mx–lD 2 dx

E C(n)C2 k +i ,7z(l)e --27ri7zs

2 2k+xT2 C
lnlC22k+ i

dxÇ c E
zEZ -1 I ~~M 1

p
2

E
C'2 k+i , n(l)e

-27CZ7Lx

2 2k-{-i- 2 C

l n l C22 k +i

dx< Cii {C(n)} 11%. p

k7 M1

2 E (Df*'2k+i(x+n)
'

lEZ —z k>Ml nE Z

max (p, l

C Ci {c(n)}II1Pj~ij(P) (f

	

)') dxl

X E — E I

z k>Ml

5 Cil{C(n)}11 PA-1(p)

	

11 PHp(R) ,

and Theorem 1 is proved . ■

Proof of Theorem 2: Let m(x) = EnEZ C(n)«x — n) be a multiplie r

of HP(R)P(R) and f(x) =
IIEZ

	

is a trigonometric polynomial .

x ¿'(x+n
M)

dx
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Observe that J(k)I < Ck ilf Il HP(T) • Therefore we assume f (0) = 0
without loss of generality. Writ e

(9 ) (me) (Phf) ( .)" )' (x )

= E E C(72 + IC)ff~ry,,,(I)h(I)O(I—n)e-2'ix

gn,kEZ-m,> 0

= E E cl:,m * (Tn f)(x) 2 e2'"E (y+k)(m*hh)(Xy_k)dy

nEZ m� o

	

T

	

kEZ

	

+ E(rf)(x) 2 e 2~rrin y E

	

+ 1~ }h(x — y — k) d~y ,
nEZ

	

f

kEZ

where (rf)(x) = EkEZ C (n + k) f (k)e2'k' and the second equality
J(n)follows from Poission summation formula >nEZ f (n) = > nEZ

	

and~
Em> o

	

= 1 on {II ~ 1} . Let ho be a smooth function with compact
support such tha t

E '(y+k)ho(—y—k) = 1 on

	

- ,
1 1

kEZ

since for every y E [—2, there exists k E Z for which ~(y + k) 0
by the Fourier transform characterization of global linear independence
of integer translates of [R] . Denote h2 (x) = ho(x — 2-Ni) and the
characteristic function on [2 -Ni, 2-N(i + 1)) by xi , where N is chosen
later and -21" -1 < i c 2iV-1 — 1 . Therefore multiplying Xi , on the two
sides of (9), we get

lIIXz(x)(m(pn.if)T(x) I

-f-C E Xi(x)ITn.f(x) l2 z (l + I7Ll)—2/ min (P, 1 )
nEZ

+ GyAmo ixi(x) I E (1 + InD-2/ min( p ,l )
nEZ

(E Orn*(7-nf)(x )l 2)
m?0

where Amo (h)

	

su

	

i

	

¡( ~L.~`

	

() k h~

	

p—2 nr -- 1 C Ç2 N—1 EIki
l

Ç ? ~-2lm7ma Mm *~~

	

i --

f(k
) (a)k hz

IIL~ } 2 and

	

= o for

	

ç 2mo . It is easy to prove Amo (h) Ç
C2-mQ . Recali that (8), m E M(p) and i

	

ç Cid .f II H,(T) for Iki Ç
2mo . Hence

TOfliLP(T) < ~iN,mo II mI M~P) l f 1IPHP (T )
+ c(2–N/2 + 2-Tn0)

E IiTnf II PH P (T)(1 + lnl)' ,
nEZ
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holds for some constant C independent of N and mo by Lemma 4. Define
the Hilbert transform H by

H f (x) = E fke2nikac — E fke27r i1e s

k>o

	

k<o

for f (x) =
IIkEZ

fke2'zkx . Therefore H maps HP (T) to HP (T) and

MfIIm ç C I IHf 11 LP (T) + cI I f I I LP (T) .

In high spatial dimensions, we can use Riesz transforms to replace Hilbert
transform [8] . Hence we hav e

IITomp (T) ~ c~,mo 11 m ill/4p) 11 f I

+ C(2--N /2 + 2'°

Observe that supn Ez IftnfMHP(T) c + oo when f is a trigonometric poly-
nomial and {C(n)} E L°° by Lemma 2 . Therefore by choosing N and mo
large enough we ge t

SUP M'r fMHP(T)

	

c II m II M(p) II .f II Hv(T )
nEZ

for every trigonometric polynomial f . Theorem 2 is proved . ■
~

Proof of Theorem 3: First the right inequality. Since supp f C
~-- + E, — E] for some o < e <

	

Write f(x) >flEZ f (n )2P(x — n)
~

where ~ is a Schwartz function such that ~ (x) = 1 on H- + 4 , ~ — 1 1

and supp c [— 2 + g , 2 — g ~ . Observe that

~rra * f (x) = E f(n) f +b(2mC)(C)ei2'(x—n )1 d~

nEZ

,.
where we denote (çof)A() = (1;

	

,.
(2mC)(C)j(C) for m E Z and f~~} =

>ITiEZ f (n)e2' inl . Observe that

* f (x) = E ço*_,,(f)(n)g(x – n )
nEZ

nEZ
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where g is a Schwartz function with supp g C [-1- + 1s , 2 - 1s when

m ç O, * f = 0 when m ~ 1 and ~ is chosen approciately . Therefor e
by Lemma 1 we get

(E I 4). * f(x )I2)
z

(E (E 4(fXn)g(x-n))
m>0 nEZ

21

LP (R)

2

C

LP(R)
i
2

( 0m70
E Iso7n.(f)(n ) l

Cli{f(n)}11H.p(z) .

Now the left inequality. By the procedure used as in the proof of
Lemma 1, it suffices to show E k (E,,n<o Im* f (k)12) 2 < +oo . Since f E

S'(R), we get il■m * f (k)l < CN,m(2'+IkD N for some N and all m > O .
As in the proof of Lemma 1, we get >JkEZ

	

* f (k)1(1+ kl) -Nl < +oo

and LkEZ 14)m*f(k)l(i+lkD-Nl < Ci EkEZ O
for some C independent of f and m, where NI are chosen later . Therefore

CC

LP(Z)

(>: 1
m.70

< CJ E

	

( Im*f(x)I2 ) r
dx(1 + Ik1)Ni

m>0

~

for so :me N1 Ç

	

+ 2 . Still by the procedure used as in the proof

of Lemma 2, we get EkEZ(Em> q 7z * f(k)i2 )5- C +oo and

ikEZ(im~O

	

* f(k)12)1 Ç C11 f 111p(R) . Hence the left inequalit y
and Theorem 3 is proved . ■
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