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NORMAL BASES FOR THE SPACE
OF CONTINUOUS FUNCTIONS
DEFINED ON A SUBSET OF z,

ANN VERDOODT

Abstract

Let K be a non-archimedean valued field which contains (@, and
suppose that K is complete for the valuation ||, which extends the
p-adic valuation. V4 is the closure of the set {ag"|n =0,1,2,...}
where a and g are two units of Zp, g not a root of unity. C(V; —
K) is the Banach space of continuous functions from V, to K,
equipped with the supremum norm. OQur aim is to find normal
bases (rn(z)) for C(Vq — K), where r(z) does not have to be a
polynomial.

1. Introduction

The main aim of this paper is to find normal bases (r,(z)) for the
space of continuous functions on Vg, where r,(z) does not have to be a
polynomial.

Therefore we start by recalling some definitions and some previous
results.

Let E be a non-archimedean Banach space over a non-archimedean
valued field L.

Let f1, f2,... be a finite or infinite sequence of elements of E. We say
that this sequence is orthogonal if || fi + - - - + ak fi| = max{| e fil| :
i=1,...,k} for all k in N (or for all k£ that do not exceed the length of
the sequence) and for all a;,...,q4 in L. If the sequence is infinite, it

follows that || 3" a fi|| = max{||a;fi|| : i =1,2,...} for all ay, aa,... in
L for which _li;n a;fi = 0. An orthogonal sequence fi, fa,... is called

orthonormal if || f;|| = 1 for all 4.
This leads us to the following definition:
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If E is a non-archimedean Banach space over a non-archimedean val-
ued field L, then a family (f;) of elements of E is a (ortho)normal basis
of E if the family (f;) is orthonormal and also a basis.

An equivalent formulation is (see [1, Propositions 50.4 and 50.6))

If F is a non-archimedean Banach space over a non-archimedean val-
ued field L, then a family (f;) of elements of E is a (ortho)normal basis
of E if each element z of F has a unique representation = Y _x; f; where

T
2; € L and x; — 0 if i — oo, and if the norm of z is the supremum of
the norms of ;. .

Let Z, be the ring of p-adic integers, Q, the field of p-adic numbers,
and K is a non-archimedean valued field, K containing QJ,, and we sup-
pose that K is complete for the valuation | - |, which extends the p-adic
valuation. Let a and g be two units of Z,, ¢ not a root of unity. We define
V, to be the closure of the set {ag™|n =0,1,2,...}. The set V, has been
described in [3]. Let C(V; — K) (resp. C(Z, — K)) be the Banach
space of continous functions from V; to K (resp. Z, to K) equipped
with the supremum norm. N denotes the set of natural numbers, and Ny
is the set of natural numbers without zero.

We introduce the following:

If z is an element of Qp, = can be written in the following way:
+oo .
z = Y a;p’ where a_; is zero for i sufficiently large (i € N) (see
j=—oo
[1, section 3 and section 4]). This is called the Henseldevelopment of

the p-adic integer z. We then define the p-adic entire part [z], of = by
-1 ) n—1 )
[z, = 3 a;p’ and we put z, =p"[p~"z], = 3} a;p’ (n€N).

j=—o0 j=—o0
We write m < z, if m is one of the numbers zg, z;,... . We then say
that “m is an initial part of 2 or “z starts with m” (see [1, section 62]).

s .
If n belongs to No, n = > a;p’ where a; # 0, then we put n_ =
j=0
s—1 i
>~ a;p’. We remark that n_ < n.
=0

In [1, Theorem 62.2], we find the following result which is due to van
der Put:

Theorem.
The functions go, g1,... defined by

gn(z) =1 z’fﬁ <z,
=0 otherwise,
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form a normal basis for C(Z, — K). If f is an element of C(Z, — K),

o0
then f can be written as a uniformly convergent series f(z) = Y Ygr(x)
k=0

where vo = f(0) and yn, = f(n) — f(n-) if n € No.

We now survey the content of this paper:

In Theorem 1 of section 2, our aim is to find a basis (e,(z)) analogous
to van der Put’s basis, but with the space C(Z, — K) replaced by
C(Vg — K). If f is an element of C(V; — K), then there exist elements

ai of K such that f(z) = Y axer(z) where the series on the right-hand-
k=0

side is uniformly convergent. We are able to give an expression for the

coefficients ay.

In Theorem 2 of section 3, we prove the following result:
Define rn(z) = ) cnjje;(2), €nyj € K, cnin # 0 ((en(z)) as in Theo-
3=0

rem 1 below).

Then (r,(z)) forms a normal basis for C(V; — K) if and only if for
all n|jr,|| =1 and |epn] = 1.

In Theorem 3 of section 3, we give an extension of Theorem 2:

Let (rn(z)) be such a sequence which forms a normal basis for

C(Vy — K), and let (sp(x)) be a sequence such that s, (z)= 3" dn;;7;(x),
=0

dn;j € K, dn;n # 0. Then (s,(z)) forms a normal basis for C(V, — K) &
lsnll = 1, ldnin| = 1 |dn;;| < 1, ldnin| = 1.

Acknowledgement. I thank professor Van Hamme for the advice he
gave me during the preparation of this paper.

2. Proof of the first theorem

We start with some lemmas and some definitions.

Definition.
If b and z are elements of Z,, b = 1 (mod p), then we put b* = lim b™.

n—I
The mapping: Z, — Z, :  — b® is continuous.

For more details, we refer the reader to [1, section 32].

Notation.
Take m > 1, m the smallest integer such that ¢™ = 1 (modp).
We have 1 <m < p—1 and (¢™)* is defined for all z in Z,.
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Definition.

Let k be a natural number prime to p. We denote by Z,(k) the pro-
jective limit Z,(k) = !i_n_l(Z/kij) X (Z/KZ) X Lp.
b
In the following lemma we use the fact that Z,(m) = (Z/mZ) x Z, to
denote an element of Z,(m) as ¢ = (r,y). Also, if n € N, n =r+ mk
(0 <r < m) then the map n — (r, k) imbeds N in Z,(m).

Lemma 1.

The mapping ¢ : Zp(m) — V, : (r,y) — ag"(¢™)¥ is a homeomor-
phism.

The proof of this lemma can be found in [2, p. 377].

Corollary.

If g =1 (modp), i.e. m =1, then the mapping: Z, — Vy : ¢ — ag®
is a homeomorphism.

Let 3 be an element of Z,\{0}. We want to know the valuation of the
p-adic integer (¢™)? — 1. Therefore we need two lemmas:

The following lemmas (2 and 3) are proved in [3]:

Lemma 2.
Let o be an element of Z,, a =1 (modp"), @ # 1 (modp™*!) r > 1.

If (p,r) # (2,1), B € Z,\{0} then o® = 1 (modp"t%A), of # 1
(nlodpr+l+0rdp,@)_

Corollary.

Let ¢™ = 1 (modp*®), ¢™ # 1 (modp*o+'). If (p, ko) # (2,1), B €
Z,\{0} then (¢™)® =1 (mod pko+ordsB), (qm)B % 1 (mod pko+1+erds B),

In Lemma 2 we excluded the case where (p,r) = (2,1). This case will
be handled in the following lemma:

Lemma 3.

Let o be an element of Zy, o = 3 (mod 4). Define a natural number n
bya=1+2+2%,e=¢p+612+622%°+...,0=€1 =+ =€p_1 =1,
En = 0.

If B € Z5\{0}, ords 8 = 0 then af =1 (mod2), o # 1 (mod 4).
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If B € Z2\{0}, ordz B = k > 1 then o =1 (mod 2nH2+ord28) of =1
(mod 2ﬂ.+3+01‘d2 ,6')

Corollary.
If g = 3 (mod4), we define a natural number N by g = 1 + 2 + 22%¢,
E:E(]+612+6222+...,&‘{) =E1=-""=EN-1 —_-]., ey = 0.

If B € Z,\{0}, orda 8 = 0 then ¢° =1 (mod 2), ¢° # 1 (mod4).

If B € Z\{0}, orda B =k > 1 then ¢° =1 (mod 2V+2+ordz ) gf +£ 1
(mod 2N+3+Dl’d2 ﬁ)_

We remark that is possible to write each z and element of V; in the
following way: z = ag'=(q™)®* where i, is a natural number, 0 < i, <
m, and where a, is an element of Z,. This immediately follows from
Lemma 1. This leads us to the following definition:

Definition.

We now define a sequence of functions ey in the following way. Write
k(€ N) in the form k =i +mj, 0 <i < m (i, j € N). The functions e
are defined by

ex(z) = eirmi(z) =1 if 2 = ag™=(¢™)** where i, =1, j < a,.

=0 otherwise.

Let us use the notation B(b, ™) for the 'open’ disc with radius r and with
center b, i.e. B(b,r™) = {z € V,||z—b| < r}, and B(b,r) for the ’closed’
disc with radius r and with center b, i.e. B(b,r) = {z € V,||z —b| < r}.

In the following lemmas we will show that the functions ex(z) are
characteristic functions of discs. There exists a kg such that ¢™ =
(modp*), g™ # 1 (modp*o*!). We distinguish two cases: (p, ko) #
(2,1) (Lemma 4), and (p, ko) = (2,1) i.e. ¢ =3 (mod4) (Lemma 5). If
we use the same notation in Lemmas 4 and 5 as in the definition, we
have

Lemma 4.

Let ¢™ = 1 (modp*°), ¢™ # 1 (modp**1) and suppose (p,ko) #
(2,1).

If 0 € i < m then e;(z) is the characteristic function of the closed
disc B(ag',p~*), and if 0 < i <m, j > 1 then ex(z) = eitjm(z) is the

characteristic function of the open disc B (a,qi(qm)j, (P_Ji) B
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Proof:
3 .
Let j = Y a;p’ be the Henseldevelopment of j € Ng, with as different
i=0
from zero.

If we use the notation z = ag®(¢g™)** (0 < i, < m) for an element x
of V5, we will show the following:
a) if0<i<m:|z—aq'| <p ¥ if and only if i; =.
. . -k,
b) if0<i<m,j>1:|z—ag(¢g™)|< P—JE if and only if i, =1,
7 < ay.
We first prove a). If i, = i, then |z — ag’| = |ag's(¢™)** — aq’| =
|(g™)®= — 1| < p~*° by the corollary to Lemma 2.
If i, # ¢, then

|z — ag’| = lag™ (¢™) — aq’|
= max{|ag*=(¢™)* — ag**|, |ag™* —ag'[} =1,

since |agi=(¢™)%* — ag'=| < p~*, |ag’= — ag’| = 1. This proves a).

Now we prove b).

Suppose iy = i, j < ag. Then |z — ag*(¢™)’| = |(g™)*="7 — 1| <
p~Fo—(s+1) by the corollary following Lemma 2, since j is an initial
part of ay. Since j is strictly smaller than ps+1) we conclude that

. , ~kg
|z — ag'(¢™)’] < B5—.

For the converse, suppose |z — ag'(¢g™)?| < P_Ji Then we must have
that i, equals %, since otherwise |z — ag*(¢™)’| = 1:

|z — ag*(¢™)’| = lag™ (¢™)*= - ag*(¢™)")|
= max{|ag"* (¢™)** —aq'*|, |ag'* —aq'|, |ag' —aq'(¢™)’|}
=1

since |ag'=(g™)%= — ag'=| < p~*°, |ag’ — ag'(g™)?| < p~*o (corollary to
Lemma 2) and |ag® — ag’| = 1 if i, is different from 3.

So we have |(g™)*="7 — 1] < Gﬂ and from this it follows that
|(g™)*=—3 — 1| < p~*e—(s+1) gince j is at least p*. This means that
ord,(a, — 7) is at least s + 1 (again by the corollary to Lemma 2) and
so we conclude that j is an initial part of a,. W

Lemma 5.
If g =3 (mod4), with g = 1+2+2%, wheree =eg+e12+622%+...,
€0 =€1 =+ =€en_1 = 1, ey = 0, then eg(z) is the characteristic
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function of Vg, and e;(x) is the characteristic function of the open disc
(aqg (2 (N+2)) ) i1

Proof:

In this case m equals one and we use the notation z = ag®= for an
element z of V.

It is clear that eg(z) is the characteristic function of V.
If j is at least one, we prove: |z —ag’| < 2“}& if and only if § < az.

Suppose j < a;. Then |z — ag’| = |¢go=—7 — 1] < 2-N+2)=(s+1)

(corollary following Lemma 3), and since j is strictly smaller than 2511,
we conclude |2 — ag’| < ki

. Then |¢g%=~7 — 1| <
and so |¢%=~7 — 1| < 2-(N+2)=(s+1) gince j is at least 2°. By the

corollary to Lemma 3, we have that ords(a, — j) is at least s+ 1 and so
J is an initial part of a;. B

For the converse, suppose |z — a¢’| <
o= (N+2)

o—(N+2)
j

Corollary.
The functions (ex(z)) are continuous functions on V.

In the following theorem we prove that the sequence (ex(z)) forms a
normal basis for C(V, — K). This implies that if f is an element of

C(Vy — K), there exists elements aj of K such that f(z) = ) axexr(x)

k=0
where the right-hand-side is uniformly convergent. We are able to give an
expression for the coefficients a;. The proof of this theorem is analogous
to the proof of Theorem 62.2 in [1].

Theorem 1.

The functions (ex(z)) form a normal basis for C(Vy — K). If f is an
element of C(V, — K) then f can be written as a uniformly convergent

oo
series f(z) = ) arex(z) where
k=0

(%) ax = f(ag®) _ . . _ if0<k<m
ak = Girjm = f(ag*(q™)’) — flag*(¢™)-) #0<i<m,j>0.
Proof:

Let f be an element of C(V; — K), and let ax be defined as ax =
flag*) if 0 < k < m, ax = Girjm = flag'(¢™)’) — flag'(q™)-) if
0<i<m,j>0.
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We first prove that ay tends to zero if k tends to infinity: for all € > 0,
there exists a J such that k > J implies |ak| < e. To prove this, we
distinguish two cases:

i) Let ¢™ = 1 (mod p*), ¢™ # 1 (mod p*e*1), with (p, ko) # (2,1).

Since the function f is continuous on Vj, it is uniformly continuous
on V;, and so there exist an S, such that |z — y| < p~(ko+5) implies
|f(z) — f(y)| < e. We then put J = pSm.

If k > J, and k equals i+jm with 0 < i < m, then we have that j > p°
and so (corollary to Lemma 2) |ag*(¢g™)? —ag*(¢™)’~| = |(¢™)? - —1| <
p~*o+5) and this implies that |ax| = |f(ag*(¢™)?) — f(ag*(¢™)-)| <e.

ii) Let ¢ = 3 (mod4), g = 1+2+2%, e =gg+612+&22+ ...,
=€) =---=¢en_1 =1, ey = 0. We remark that m equals one in this
case.

Since the function f is continous on Vg, it is uniformly continuous
on V,, and so there exist an S, such that |z —y| < 27 (N+2+5) implies
|f(z) — f(y)| < e. We then put J = 25.

If £ > J, then (corollary to Lemma 3) |¢* — ¢"~| = |¢*7 %~ — 1| <
2~ (N+2+5) and this implies that |ax| = |f(¢¥) — f(¢*-)| <e.

We conclude that aj tends to zero if £ tends to infinity.

If f is an element of C(V, — K), we introduce a function g(z) defined
by g(z) = > akex(z) with ax as in (x). Since |lakex| < |ax| — 0,

k=0
the series on the right-hand-side converges uniformly, so the function g

is continous as a uniformly limit of continuous functions. We can prove
that g(ag®) = f(ag*) if 0 < k < m and that g(aq*(¢™)?)—g(ag*(¢g™)’~) =
f(agi(g™)?)—f(ag'(g™)?-) for 0 < i < m, j > 0. Then we have g(ag*) =
f(ag®) for all natural numbers k£ and by continuity, we conclude that

f(z) = g(z).
So we have f(z) = Y ager(z), with ax as in (x).
k=0
It is clear that || f]| < I(I}lg.i(ﬂak”, but we also have |f(ag®)| < || f|| and
|(ag(q™)?) — f(ag'(g™)’-)| < [If|l, so we conclude || f|| = max{|ax|}.
Finally we prove the uniqueness of the coefficients.

If f(z) = Zawk(x} Zbkek( ), then }° (ax — bk)ex(z) = 0. So
k=0
md.x{|a,-c - bk|} = 0, from whlch it follows that ax = by for all k. This

proves the theorem. W
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3. More bases for C(V, — K)
We can make more normal bases, using the basis (ex(x)) of Theorem 1:

Theorem 2.
Let (en(x)) be as above, and define r(z) = ) cnyj€i(T), Cnyj € K,
=0

Cnin # 0. Then (rn(z)) forms a normal basis for C(Vq — K) if and only
- zlf "Tn" =1 and |Cn;n| =1 fO'f' alln.

The proof of this theorem will not be given here, since it is analogous
to the proof of Theorem 2 in [3].

Remark.

An analogous result can be found on the space C(Z, — K), if we
replace the sequence (e, (z)) by the van der Put basis (gn(z)) from the
introduction.

We can extend Theorem 2 to the following:

Theorem 3.

Let (rn(z)) be a sequence as found in Theorem 2, which forms a normal
basis for C(V, — K), and let (sn(x)) be a sequence such that s,(z) =

_nzodn;jrj(x); dn;j €K, dun #0.
j=

Then the following are equivalent:

i) (sn(z)) forms a normal basis for C(Vg — K). .
i) [[snll =1, |dnn| = 1.
ili) |dn| <1, |dn:n| = 1.

Proof: .
i) « ii) follows from Theorem 2, using the expression 7,(z) =

3 ¢n.jei(x), and ii) & iii) follows from the fact that (r.(z)) forms a
§=0
normal basis. B
Examples.
1) If a sequence (r,(z)), as found in Theorem 2, forms a normal
basis of C(V, — K), then so does (s(z)), where s,(z) = ro(z) +
ri(z) + -+ + ra(z): apply iii).
2) If we put for 0 <i < m,
ri(z) =1 if z = ag*=(q™)* where iy =i
=0 otherwise,
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anf for k£ > m we put

T(Z) =Tigmi(z) (0<i<m) =1 ifz= .f;qe"“(qm)""z
where i, =1, j 4 ay.

=0 otherwise.

then (r,(z)) forms a normal basis for C(V, — K). We can apply
iii) since rj(z) = ej(z) for 0 < i < m, ri(z) = ei(z) — ex(x) for
k=i+mj,0<i<m,j>0. If fe C(V, - K), then there exists

oo
a uniformly convergent expansion of the form f(z) = 3 cxri(z),
k=0

where
Ck = Citjm . _ _
= f(ag*(g™)’-) — f(ag'(¢™)?) f0<i<m,j>0, and
¢ =flag) =) citjm if0<i<m.
j=1
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