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NORMAL BASES FOR THE SPACE
OF CONTINUOUS FUNCTIONS
DEFINED ON A SUBSET OF zp

ANN VERDOODT

A bstract
Let K be a non-archimedean valued field which contains Qp and
suppose that K is complete for the valuation • 1, which extends the
p-adic valuation . Vq is the closure of the set {agn in = 0, 1, 2, . . . }
where a and q are two units of Zp, q not a root of unity. C(Vq -->
K) is the Banach space of continuous functions from Vq to K ,
equipped with the supremum norm . Our aim is to find norma l
bases (rn (x)} for C(Vq --~ K), where rn (x) does not have to be a
polynomial .

1 . Introduction

The main aim of this paper is to find normal bases (r(x)) for the
space of continuous functions on Vq , where rn (x) does not have to be a
polynomial .

Therefore we start by recalling some definitions and some previous
results .

Let E be a non-archimedean Banach space over a non-archimedean
valued field L .

Let f1 , f2 , . . . be a finite or infinite sequence of elements of E. We say
that this sequence is orthogonal if IIaifi + • • • +

	

fk II = max{ i i aczfi l j
i = 1, . . . , k} for all k in N (or for all k that do not exceed the length of
the sequence) and for all a l , . . . , ak in L . If the sequence is infinite, it

follows that E ai fi = max{iia ifi : i = 1, 2, . . . } for all a l , a2, . . . in
i= z

L for which
i
hm aifi = O . An orthogonal sequence f1 , f2 , . . . is called

orthonormal if 11 fi II = 1 for all ~ .

This leads us to the following definition :
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If E is a non-archimedean Banach space over a non-archimedean val-
ued field L, then a family (fi) of elements of E is a (ortho)normal basi s
of E if the family (fi) is orthonormal and also a basis .

An equivalent formulation is (see [1, Propositions 50 .4 and 50 .61 )

If E is a non-archimedean Banach space over a non-archimedean val-

ued fieid L, then a family (fi) of elements of E is a (ortho)normal basi s

of E if each element x of E has a unique representation x = Exifi where

xi E L and xi --> 0 if i

	

oo, and if the norm of x is the supremum of

the norms of xi .

Let 7Lp be the ring of p -adic integers, Qp the fieid of p-adic numbers ,
and K is a non-archimedean valued fieid, K containing Qp, and we sup-
pose that K is complete for the valuation ~ • ~ , which extends the p-adic

valuation . Let a and q be two units of Zp , q not a root of unity. We define

Vq to be the closure of the set {aqnln = O, 1, 2, . . . } . The set Vq has been
described in [3] . Let C(Vq - -} K) (resp . C(Lp ---~ K)) be the Banach
space of continous functions from Vg to K (resp. Zp to K) equipped
with the supremum norm . N denotes the set of natural numbers, and No
is the set of natural numbers without zero .

We introduce the following :

If x is an element of Qp , x can be written in the following way :
+oo

x = E aipj where

	

is zero for i sufficiently large (i E N) (see
i_—oc

[1, section 3 and section 4]) . This is called the Henseldevelopment of

the p-adic integer x . We then define the p-adic entire part [x] 1, of x by
1

	

n- 1
[x] p = E aipa and we put xn — pn [p—nx]p — E ajpi (n E N) .

.7=-00

	

i=-oo
We write m q x, if m is one of the numbers xo, x 1 , . . . . We then say

that "m is an initial part of x" or "x starts with m" (see [1, section 62D..
s

	

If n belongs to No, n = E aip2 where as

	

0, then we put n_ =
j=o

s- 1
E cl ip.) . We remark that n_ q n .
j=o

In [1, Theorem 62 .2], we find the following result which is due to van
der Put :

Theorem.

The functions go, gla . . . defined by

gn(x) =1 ifn q x ,

= 0 otherwise,
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foren a normal basis for C(7L P —> K) . If f is an element of C(7G P —> K) ,
00

then f can be written as a uniformly convergent series f (x) = E rykgk (x )
k= 0

where 'yo = f (0) and ryn = f (n) — f (n_) if n E Np .

We now survey the content of this paper :
In Theorem 1 of section 2, our aim is to find a basis (e(x)) analogous

to van der Put's basis, but with the space C (7Lp --- + K) replaced by
C(Vq —} K) . If f is an element of C(Vq ~ K), then there exist elements

ak of K such that f (x) = Eakek(x) where the series on the right-hand-
k=o

side is uniformly convergent . We are able to give an expression for the
coefficients a k .

In Theorem 2 of section 3, we prove the following result :
n

Define rn (x) = E cn ;jej (x), cn ;j E K, Cn ;n

	

0 ((e(x)) as in Theo-
j=o

rem 1 below) .
Then (r(x)) forms a normal basis for C(Vq ~ K) if and only if fo r

all n f ~rnll = 1 and Icn ;n1 = 1 .
In Theorem 3 of section 3, we give an extension of Theorem 2 :
Let (rn (x)) be such a sequence which forms a normal basis fo r

n
C(Vq ---} K), and let (sn(x)) be a sequence such that sn (x) = E d n;jrj (x) ,

j=o
dn ; j E K, dn;n O . Then (s(x)) forms a normal basis for C( Vg --} K) <=>
II Snll = 1, k1n ;n I = 1 <=> Idn ;j 1 ç 1, Idn ;n I = 1 .

Acknowledgement . I thank professor Van Hamme for the advice he
gave me during the preparation of this paper .

2 . Proof of the first theorem

We start with some lemmas and some definitions.

Definition .
If b and x are elements of Z, b 1 (mod p), then we put b~ = lim b n .

n--} x
The :mapping: 7Lp ---} 7L p : x ~ bx is continuous.
For more details, we refer the reader to [1, section 32] .

Not ation .

Take m ~ 1, m the smallest integer such that qm 1 (rnodp) .
We have 1 ç m ç p -- 1 and (qm)X is defined for all x in 7L .
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Definition .

Let k be a natural number prime to p . We denote by 7LP (k) the pro-
jective limit 7Lp (k) = lim(7L/kpj7L) (Z/kZ) x Z .

In the following lemma we use the fact that 7Lp (m) = (Z/mZ) x 7Lp to
denote an element of 7%p ( rn ) as x = (r, y) . Also, if n E N, n = r + mk
(o Ç r C rri) then the map n —+ (r, k) imbeds N in 7Lp (m) .

Lemma 1 .

The mapping c,o : 7Lp(m) --} Vq : (r, y) —> ag r (gm)y is a homeomor-

phisrn .

The proof of this lemma can be found in [2, p . 377] .

Corollary .

If g 1 (mod p ) , i . e . m = 1, then the mapping : 7Lp ~Vg : x

	

aq'
is a homeomorphism .

Let ~ be an element of 7L p \{0} . We want to know the valuation of the
p-adic integer (gm)O — 1 . Therefore we need two lemmas :

The following lemmas (2 and 3) are proved in [3] :

Lemma 2.

Let a be an element of 7Lp , a 1 (moda 1 (modr 1 .

If (p, r)

	

(2,1), ,C3 E 71p\{o} then a@

	

1 (modpr+ordp,Q ),

	

1

(mod pr+ l+vrdp ,Q ) .

Corollary .

Let qm

	

1 (modpko), qm

	

1 (modpko+l) . lf (p, k0 )

	

(2,1 ) , ,C3 E
71p\ {o} then (gm))3 1 (modp"+ord

P
Q

), (gm)P 1 (modpk°+1+°rdp Q) .

In Lemma 2 we excluded the case where (p, r) = (2, 1) . This case wil l
be handled in the following lemma:

Lemma 3.

Let a be an element of Z2, a 3 (mod 4) . Define a natural number n
by a = 1+2+22 E, E = eo + ~12 + E222 + . . ., Eo =El = . . . — En_l = 1 ,
En = O .

If ,3 E Z 2\{O}, ord2 ~ = 0 then a0 T 1 (mod 2), aP # 1 (mod 4) .
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If i5' E Z 2 \{O}, ord2 fi = k ~ 1 then cx~ - 1 (mod2 2+02 ~), a0 # 1

(mod 2n+3+ord2 i5') .

Corollary.

If q 3 (mod 4), we define a natural number N by q = 1 + 2 + 22 e ,
e = ea + e 1 2 + e2 2 2 + . . . = e i = . . . = EN—1 = 1, E N = 0 .

If fl E Z2 \{O}, orde fi = 0 then qQ - 1 (mod 2), q a # 1 (mod 4) .

If Q E Z 2 \{O}, orde fi = k > 1 then q Q 1 (mod2 2+01 ' 2 ~), qp 1
(mod 2N+3+ord e

We remark that is possible to write each x and element of Vq in the
following way : x = agi x (gm

)°e x where i x is a natural number, 0 < ix C
m, and where as is an element of Zp . This immediately follows from
Lemma 1 . This leads us to the following definition :

Definition .

We now define a sequence of functions ek in the following way. Write
k(E N) in the form k = i + m j, 0 Ç i C m (i, j E N) . The functions e k

are defined by

ek(x) = e i -I-mj( x ) = 1 if x = agzx (gm )'x where ix = 2, q (xx .

== 0 otherwise.

Let us use the notation B (b, r- ) for the 'open' disc with radius r and with
center b, i .e . B(b, r- ) = {x E Vq l Ix -bi C r}, and B(b,r) far the 'closed '
disc with radius r and with center b, Le . B (b, r) = {x E Vg ! i x— b l Ç r} .

In the following lemmas we will show that the functions e k (x) are

characteristic functions of discs . There exists a ko such that qm EE. 1

(modp c 0) , qm # 1 (modp co) . We distinguish two cases: (p, ko )

(2,1) ( :Lemma 4), and (p, ko ) = (2,1) Le . q - 3 (mod4) (Lemma 5) . If

we use the same notation in Lemmas 4 and 5 as in the definition, we

have

Lemma 4.

Let qm . - 1 (modp'0), qm

	

1 (modp'0+l) and suppose (p, kp )

(2,1) .

If 0 < i < m then e i (x) is the characteristic function of the closed

disc B (aqi , p-k® ) , and if 0 Ç i C m, j > 1 then e k (x) = e i+jm(x) is the

-,~ -

characteristic function of the open disc B (aq(qm)2, (P0)

	

.
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Proof:
s

Let j = E

	

be the Henseldevelopment of j E No, with a s different
i=o

from zero .

If we use the notation x = ag ix (g
m

}°` x (O Ç is C m) far an element x
of Vq , we will show the following :

a) if o Ç i C m : 1 x— agi 1 Ç p-" if and only if i s = i .

b) if o Ç i c m, j

	

1 : Ix - agi (gm
)j 1 C P 	 j ° if and only if =

j q a x .
We first prove a) . If ix = i, then Ix — agi = 1

	

— ag i =
1x — 11 Ç p-k° by the corollary to Lemma 2 .

If

	

then

Ix -
agz

I=
agZx ( gm}ax _ aqz

= max{ I agzx (gm rx — aq ix 1, Iaqzx — agz 1 } = 1 ,

since laqix (qm)x — agzx C p- k0 , Iaqix — agi = 1 . This proves a) .

Now we prove b) .

	

Suppose is — i, j

	

as . Then 1x -- ag i (gm ) j 1= I(gm)"x-j
- - 11 <

p- k °-(s+
1

) by the corollary following Lemma 2, since j is an initial

part of a~ . Since j is strictly smaller than p(8+1) , we conclude tha t

I

	

¡

	

11

	

°

ix — agzlgmliI
C

	

k
.

k

For the converse, suppose Ix — agi (qm)i < P
j

° . Then we must have

that

	

equals í, since otherwise 1x -- agi (g
m

)j I = 1 :

Ix — agz(gm)a 1 =
lagzx (

qm )
"x -- aqi (gm) a } 1

= max{ agzx ( gm )"
x

— aqzx 1, I aqix _ aqz 1,
laqi — agz l

gm l
i 1 }

= 1

since laqix (qm)ESx — aqzx < p-'0, 1aqi — agz (gm) 3 I Ç p-k ° (corollary to

Lemma 2) and lag ix — aq i = 1 if is different from i .

So we have 1

	

ax -j — 11 <

	

and from this it follows that

1
— 11 Ç

p-k°
-

(
s+ 1) since j is at least ps . This means that

ordP (as — j) is at least s + 1 (again by the corollary to Lemma 2) and

so we conclude that j is an initial part of a~ . n

Lemma 5.

lf q 3 (mod 4), with q = 1 + 2 + 2 2e, where s = so + e 1 2 +
s222

+ . . . ,

Eo = E1 = . . . = EN-1 = 1, EN = O, then eo(x) is the characteristic
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function of V9 , and ei (x) is the characteristic function of the open disc

B (aqj , (2-'2))
J

Proof:

In this case m equals one and we use the notation x = agax far an
element x of Vq .

It is clear that eo(x) is the characteristic function of Vq .

If j is at least one, we prove : ix — agj ~ < 2

	

	 (N. +2 ) if and only if j q ax .
3

Suppose j q cx x . Then lx — aqj I _ le x - i — 11 < 2-(N+2)-(s+1 )

(corollary following Lemma 3), and since j is strictly smaller than 2s+1 ,

we conclude — aqj < 2
-~N+ 2 )

For the converse, suppose lx— aqj < 2	 7 2 ) . Then q~` x Tj — C

2
-(N+2)

and so

	

-1 i C 2-(N+2 ) -(s+1) since j is at least 2S . By the
3

corollary to Lemma 3, we have that ord 2 (cxx — j) is at least s + 1 and so
j is an initial part of cxx . ■

Corollary .
The functions (e k (x)) are continuous functions on Vq .

In the following theorem we prove that the sequence (ek (x)} forms a
normal basis for C(Vq -~ K) . This implies that if f is an element of

co
C(Vq -~ K), there exists elements ak of K such that f(x) = >l akek(x)

k= o
where the right-hand-side is uniformly convergent . We are able to give an
expression for the coefficients ak . The proof of this theorem is analogou s
to the proof of Theorem 62.2 in [1] .

Theorem 1 .

The functions (e k (x)) form a normal basis for C(Vq ~ K) . lf f is an
element of C(Vq ---~ K) then f can be written as a uniformly convergent

cc
series f(x) = Eakek(x) where

k= o

ak = f(aqk )

	

if 0 < k < m
ak = ai+im = f(ag2 (4 m)j ) — f(a42 ((Im)J-) if 0 < i c m, j > 0 .

Proof:

Let f be an element of C(I/q ~ K), and let ak be defined as ak =

f(aq k ) if 6 Ç k < m, ak = ai+jm — f(agz(qm)j ) — f(agz(gm )j-) if

0 ÇiCm, j > O .
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We first prove that ak tends to zero if k tends to infinity : for all e > 0 ,
there exists a J such that k ~ J implies ia k l < E . To prove this, w e
distinguish two cases :

i) Let qm

	

1 (modpk°), qm

	

1 (modpk ° +1 ), with (p, ko)

	

(2,1) .

Since the function f is continuous on Vq , it is uniformly continuous
on Vq, and so there exist an S, such that 1x - y i < p- (ko+s ) implies
f (x) - f (y) ~ C E . We then put J = psm .

If k ~ J, and k equals i+ j m with 0 Ç i C m, then we have that j ~ ps
and so (corollary to Lemma 2) I

	

- agi ( gm)i- ! =
(qm)J_a__1 Ç

p -(kQ+s) and this implies that kkI = f (agi (gm ) 3 ) - f(aq(qm ) 3 ) I C E .

ii} Let g 3 (mod 4 ) , q-- 1+2+2 2 e, e= eo+e 1 2 + E222 + . . . ,
EO = El = • • • = eN -1 = 1, EN = O . We remark that m equals one in this
case .

Since the function f is continous on Vq , it is uniformly continuous
on Vq, and so there exist an S, such that ix - y i < 2- ( N+ 2 + s ) implies

~ - f(y ) ~ C E . We then put J = 2s .

If k ~ J, then (corollary to Lemma 3) I qk -
qk-

I = I qk-k- - 1I Ç
2( 2 +8) and this implies that lak = f (q k ) - f (q k - } 1 C E .

We conclude that ak tends to zero if k tends to infinity.

If f is an element of C (1/g -4 K), we introduce a function g(x) defined
~

by g(x) = > akek(x) with a k as in (*) . Since lia ke k ~I Ç ia k i —> 0 ,
k= 0

the series on the right-hand-side converges uniformly, so the function g

is continous as a uniformly limit of continuous functions . We can prove

that g(aqk) = f (aqk) if O . < k < m and that g(ag i (gm ) j )—g(aq i (qm}j - ) _

f (agZ (gm) 3 )- f (agi (gm)j- ) for 0 Ç i C m, j > 0 . Then we have g(aqk ) =
f(aqk ) for all natural numbers k and by continuity, we conclude that
f (x) = g(x) .

00
So we have f (x) = E a k e k (x), with a k as in (*) .

k-o

It is clear that iif < ó á~x{ia k but we also have f (aq k) ~ IfM and

(agi (qm)i) - f(agi (qm ) i_ )i < IIfM so we conclude f ii = óax{la ki} .

Finally we prove the uniqueness of the coefficients .
00

	

00

	

00
If f(x) = E ake k (x) = E b k e k (x), then E (ak - bk )ek (x) = 0. So

k=a

	

k=o

	

k=o
omax{ I a k - b id} = 0, from which it follows . that a k = bk for all k . This

proves the theorem. ■
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3. More bases for C(Vq K)

We can make more normal bases, using the basis (ek(x)) of Theorem 1 :

Theorem 2.
n

Let (e(x)) be as above, and define rn (x) = E cn , j e j (x), cn, j E K,
j=o

cn ; n 0 . Then (r(x)) forms a normal basis for C(Vq ---} K) if and only

if

	

= 1 and iCn ;n! = 1 for all n .

The proof of this theorem will not be given here, since it is analogou s

to the proof of Theorem 2 in [3] .

Reraark.

An analogous result can be found on the space C(7Lp —> K), if we

replace the sequence (e(x)) by the van der Put basis (g(x)) from the

introduction .

We can extend Theorem 2 to the following :

Theorem 3.

Let (rn (x)) be a sequence as found in Theorem 2, which forms a norma l

basis for C(Vq —> K), and let (sn(x)) be a sequence such, that sn(x) =
n

Edm ;jnj (3), dn ;j E K, dn ;n D .
J=o

Then the following are equivalent:

i) (sn(x)} forms a normal basis for C(Vq —> K) .
ii}

	

=1, I dn;nl = 1 .
iii) Idn ;j Ç 1, k41 ;nI = 1 .

Proof:

i)

	

ii} follows from Theorem 2, using the expression
n
E cn ;j ej (x), and ii} <=> iii) follows from the fact that (r(x)) forms a
j=o
normal basis . ■

Exa:mples .

1) If a sequence (r(x)), as found in Theorem 2, forms a normal

basis of C(Vq --> K), then so does (s(x)), where sn (x) = ro (x) +
r l (x) + . . . + rn (x) : apply iii) .

2) If we put for O Ç i C m,

ri (x) = 1 if x = agzx (gm)" where ix =

= 0 otherwise,

rn(x)
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anf for k ~ m we put

rk (x) = ri+7mj (x) (0 ç i C m) = 1 if x = aqi x (qm )a x

where ix = i, j

= 0 otherwise .

then (r(x)) forms a normal basis for C(Vq --} K). We can apply
iii) since ri(x) = e i (x) for 0 Ç i < m, rk (x) = e i (x) — ek (x) for
k = i+mj, 0 Ç i C m, j> 0 . If f E C(Vq —> K), then there exists

a uniformly convergent expansion of the form f (x) = E ckrk(x) ,
k=0

where

Ck = Ci+jm

= f (ag i (gm ) j- ) — f (ag i ( g m )i ) if 0 Ç i < m, j 0, and
cc,

c i = .f ( agz ) - E ci+jm

	

if 0 c i C m .
j=1
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