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ASYMPTOTIC VALUES AND THE
GROWTH OF ANALYTIC FUNCTIONS
IN SPIRAL DOMAINS

J. E. BRENNAN AND A. L. VOLRERG

Abstract

In this note we present a simple proof of a theorem of Hornblower
which characterizes those functions analytic in the open unit disk
having asymptotic values at a dense set in the boundary. Our
methed is based on a kind of §-mollification and may be of use in
other problems as well.

1. Introduction

It is a well-known fact that if f is analytic in the open unit disk D and if
|f] is subject to a sufficiently strong growth restriction, then f has radial
limits almost everywhere on 0D. In 1963, however, G. R. MacLane [14]
extended that principle to & much larger class of functions, where radial
limits are completely inadequate for a description of boundary bebavior.,
A function f analytic in DD is said to have an asymptotic value X at the
point (g € 0D if there exists an arc I lying in D with one endpoint at
¢o such that

(1.1) flz) — Aas 2z — (o along T

Here, A = oc is allowed and it is entirely possible for a given f to have
more than one asymptotic value af a single point (p € 8D (cf.[14], [186]).
The MacLane class 4 consists of those nonconstant analytic functions
having asymptotic values at a dense set in 8D,

The principal goal of MacLanc’s work is to obtain conditions on a
given f sufficient to guarantee that f € A, and his results are based on
the following simple fact: If f 1s analytic in D and v is an arc on 8D
then either

(i) f has asymptotic values at a dense set in -y or;

(i) there exists a sequence of Koebe arcs vy, tending to a nontrivial

subarc ¥’ of v such that |f(z)| =c>0on v, n=1.2,...
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In particular, if as usual,

M(r) = M{r, f} = sup |f(z}|

|z|=r

it can be shown (cf.[14]) that f € A whenever
1
(1.2) / (1~ 7r)log™ M(r)dr < co.
0

Nearly a decade later Hornblower [10] {(cf. also [9]) improved MacLane’s
result, replacing (1.2} with the weaker, and apparently sharp, criterion

1
(1.3) / log™ logt M(r)dr < 0.
0

In addition to establishing the sufficiency of (1.3) he also proved that,
corresponding to each € > 0, there are functions not in A for which

£

1.4 logtloet M(1) € —

On the other hand, more than fifty years ago Valiron [22] {(cf. also [23,

p. 191]) had actually shown that Hornblower’s examples must have the
property that

log loglog M
(1.5) lim sup 28108108 M)
r—1 —log(l—1})

and he further showed that equality in (1.5) is possible, from which it
follows that, for any € > 0, there are functions not in A with

1
+ + L ————
(1.6) log™ log™ M(r) < TR

Unfortunately, the work of Valiron seems to have been overlooked by
subsequent authers and we are grateful to A. E. Eremenke for bringing
it to our attention.
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The examples constructed by both Valiron and Hornblower are rather
long and quite technically involved. Our primary objective is to present
a simple example of the Valiron-Hornblower type based on a kind of
&-mollification. Although this work was carried out before we became
aware of [22], it is, nevertheless, closer in spirit to the work of Valiron
than to that of Hornblower.

Cur second objective is to give a new proof of the sufficiency of (1.3)
based on an idea of E. M. Dyn'kin [7]. Hornblower's original proof
in [10] relies (and so indirectly does ours) on a well-known theorem
of Beurling, Levinson, Sjéberg and Wolf concerning the existence of a
greatest subharmonic minorant to a given function (cf. [1], (2], [12],
(13], [21], [25]). A special case of the latter was obtained much carlier by
Carleman [4], but his method is quitc general in nature. Later MacLane
[15] found another approach leading to the sufficiency of (1.3) and in the
process gave a new proof of the Beurling-Levinson-Sjdberg-Wolf theorem,
which, incidentally, was also discovered by Gurarii [8]. Definitive results
in this direction can be found in articles (5] and [6] of Domar (cf. also
11, p. 374-383)).

There are, of course, other ways in which to describe or capture the
boundary behavior of analytic functions subject to a growth restriction,
the most noteworthy being in terms of distribution theory. It follows
from the Schwartz program that if f is aralytic in I then the functions
fr = f(re®) converge as r 1 1 to a distribution supported on 8D if and
only i there exist constants C, k such that

c
(1.7) M) g5 <l

The corresponding result for functions with very rapid growth is due
to Beurling [1] and is this: As r 1 1 the functions f, converge to a
generalized distribution if and only

1
(1.8) / log™ log® M{r)dr < 0.
0

We do not, at present, know of any direct connection between the exis-
tence of asymptotic and distributional boundary values.
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2. Functions with no asymptotic values

In this section we shall outline a procedure for constructing analytic
functions with a given growth, having no asymptotic boundary values.
Later in Section 3 we shall present the more techrical defails associated
with that construction.

To this end let M({r) be a given nondecreasing function defined for
0 < r < 1 such that M{r) > e and let us assume that

)
(2.1) / log log M {(r)dr = +ca.
o

Setting u(r) = loglog M{1 — 2r) we obtain a nonincreasing function
on 0 < r < 1/2 with /% u(r)dr = co. With only mild regularity
assumptions on M{r) {or equivalently on u(r)) we arrive at our main
theorem:

Theorem 1. If M{r) is given as above satisfying (2.1) and if, more-
over,

(1) rp(r) =G asr -0

(2) p(ryZzep(2r),0<r<if2ande>1

1

{3y f gy dr <00
then there erists a function f analytic in D, not however belonging to
A, such that

(2.2 Mr, fi < M(r), 0<r <l

It should be noted here that pl(r) = m is a typical function satis-
fying the conditions of Theorem 1 and it represents the sitvation studied
by Hornblower [10]. Also, taking u = log|f| we recover a theorem of
Rippon [20] and Hayman (9], since u is subharmonic and, as we shall
see, has no asymptotic boundary values on &0,

As a first step in the proof we define

1/2
(2.3) xw = [ uitsee

Evidently, ¥ is a monotonically decreasing function and x{(04) =
liigx(y) = o0, We can, therefore, define ¢¥{z) = x!{z) for z > 1
” .

and ¥ can be extended to the entire interval (0,4o00) in such a way
that ¥{0+)} = oo. The domain O bounded by the two curves ¥{z) and
Pz + 2m) will be of special interest.
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y = ¥lz)

i, T

Figure 1
The map J{w} = €' takes O onto O = D\ T, where
(2.4) [: 2| = g ¥re2)

is a spiral asymptotic to 8D. If we now choose a conformal map G : & —
I={(=¢+1in: |9 < 7/2} with G{+00) = +00 we can, in principle,
lock for functions with a given growth in II and by transferring them to
! we might hope to obtain the desired example.

Figore 2
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Fix a > 1, define l,(¢) = expexp(al) for { € II, and consider the
following two regions: :

(i) B+ ={Ce:nl < £}
(i) B.={¢ell: T +e<n < =}, € small and positive.

The function
(2.5) Lo(z) = 1,(G(—ilog z})), z2€Q

is defined on @ and grows like {, in the corresponding spiral domains
S; = JoG~Y(By). In particuler, if a = 1 + ¢ is close to 1 then

(iii) La(2) mocasz—dD, z€ 5,
(iv) Lo(z) »0asz—- 38D, z€ 5 .

Hence, L, can have no asymptotic values at 0. However, it has jump
discontinuities all along I" and so does not directly suite our purposc.
Qur main task will be to construct an analytic function sufficiently close
to L, that it inherits the same behavior in 5 and S...

Step 1. We begin by mollifying L, in the following way: For each
z € D let D, be the disk with center at z and radius §{1 —|z[}. Here, § is
a small, but fixed, positive constant to be specified later. Next consider
the average

1

(2.6) F&) =5 /.

La(C)dAc.

Although F is still not analytic in D, if 3 is chosen properly we can
arrange that

(4) F(2) = Lo(z} for z€ T = J o GTH{R)

(8) |F(z}l < CM(|z])

(6) |0F(z)| € const < oo,
Because F(z) — oo as z — 8D along I'y and |F(z)| is bounded on T,
there can again be no asymptotic values on 8D,

Step 2 consists in selecting an analytic component of F' defined by
setting

2.7) A =)~ L [ F Qg4
TJlp C —Z

Since, by virtue of property (6), |F — A| € const < oo all the requisite
growth restrictions are preserved and A(z} is the function we are looking
far.
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3. Technicalities of the construction

Our task here is to verify assertions {4), (5} and (6) of Section 2. And,
we can assume without ioss of generality that

(i) —yp'(y) = culy), ¢ > 0
for some positive ¢. Otherwise, we could simply replace u{y) by

2
) = [ B0,
¥

taking care to check that u(y) and g (y) are comparable and that (i) is
satisfied by virtue of property (2). Let us also recall that ¥ = x~!, s0
that if y = ¥(x), then by (1)

¥iz) o =1

P(z)  yply)
as x — oo or, equivalently, as y — (. Hence, %ﬁl —0Dasx — o
and it follows that for any ¢ > 0,
(3.1) 8(z) <{zx) < {1+ €)8(z), z = z{e}

where §(x) = ¥{x} — ¥{x + 27) is the vertical width of O at the point z.

To establish property {4} it is sufficient to prove that if z € g then
the disk D, of radius 8(1 — |2]) does not meet T" if 8 is small {and
fixed} and z is near 8D. To this end let us suppose that z € I's and
let { = G{—%logz) be the corresponding point in II, which, of course,
lies on the real axis R. Denote by @ the family of curves lying in II and
separating { from n = 7/2, that is, from the top; Q* is the conjugate
family defined relative to the bottom. The length-width ratio of ( is

Q) = i

where i(@Q) and [{Q" ) denote the infimum of the lengths of the rectifiable
members of () and @*, respectively. Evidently, p(@Q) is bounded and
bounded away from zero as { — +oo along R. Since this is 2 conformally
invariant property of p, (cf. McMillan [17], [18]}, it follows from (3.1)
that § can be chosen as indicated; hence (4).
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To confirm assertion (5) we appeal to a theorem of Warshawski (cf.
[24, p. 296] and [9, p. 761]} according to which

x{log1/lz)) s
(3.2) Re G(—ilogz) = ’-'Tf 7o) + C+ 0(1)
1

as z — 0D, since property {3) assures that the crucial assumption

(3.3) / ) do:+] —-deﬁk/ o) =

st
=kf—— <o
oy (y)

is satisfied. Note that (3.1) has also been used. Hence, it follows that

for z near 8D
(3.4}

: x(loz1/12l) 24
|La(z}| = |expexp aG{—ilog z}] < expexp ﬂa/ o) +Ca
1

and, again taking (i) and (3.1) into account, we conclude that

: x(1/20-1z) g
Lo{2)| € expexp K/ vl
|La(2)] < exp 1 "0

(3.5) < expexp K p(1/2(1 - [2))
< M{[2[).

The constants K, C are, of course, absolute and with no loss of generality
we have assumed that X = 1. Consequently, these estimates and the fact
that
[F(z)l < sup  |La{C)
1£—=1<8(1- |21}
lead directly to the desired inequality (5).

Thus, it remains only to prove {6) or, equivalently, that [8F(2)| <
K < oo throughout I, To accomplish this we first express L, as the
sum of an analytic function H and the Cauchy integral of a measure v
supported on [:

(3.6 Lal) = HGG) + 5 [ S

The important thing to note here is that dv(z) = j{2}dz where, for each
z € T, the density

(2} = E{Lalz™) — Lalz™))
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is the jump of L, across T', the sign being chosen to agree with the
orientation of I". Introducing the kernel

1 dA,
K(z,t)= —
=101 J, 1=¢
and integrating (3.6) with respect to area it follows that
1
(3.7) F(z) = H(z) + —,/K(z, Bdu(t).
2mi T
On the other hand, it is a relatively simple matter to check that
L, gD,
K(z,t) = -2
) wt—2) re D
IDZJ 1 =
from which we casily conclude that
5 1[5 (D}
< — dlv|(t) < ——==.
BRI < 5 [0 e < M2

The iast expression vanishes unless D, NT # ¢ and so we have the
estimate

1 .
BF(z)| < { 1041 CesgPﬁFfLa(C)I, i D.NT # ¢

0, otherwise.

And, moreover, when { € I' Warshawski’s estimate (3.2) takes the par-
ticularly convenient form

|La ()| = |expexpaGi—ilog ()| <

- x{log /IS gy
< —|cos —a - — .
< exp{ | cos 2a| exp (wa/l 50 + Ca

From this it follows easily that if { € T" then

_gerlet1=1C1)

(3.8) [La{() <€ ,

where § = [cos Sa| and ¢ > 0 is suitably chosen, since by (3.1)

x(og 1/1¢1) ¢ xX(21-1¢D) g
— > —_—
fl at) = / W(E)

~Ig1)
g /2(1 ‘ #) g > u(2(1 = [¢)) - log2

-l¢l ¥
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provided, of course, that { is close to 8D. Therefore, adjusting the
constant in (3.8) to a account for the fact that z € D,, but perhaps
2z € I', we conclude that

A 1 nie(t—)zl))
1BF(2)} < ———ce™%
{1 —1zi)
everywhere in D, and so is trivially bounded, since p(r} ~ 1/rasr -0
- by way of assumption {i).

4. Functions belonging to class A

Qur goal here is to give a short proof of the following theorem of
Hornblower [10].

Theorem 2. Let f(2) be analytic and nonconstent in D and let
M(r) = sup|f{z)]. If

|z|=r
1
(4.1 ] logt log® M(r)dr < oo
0

then f € A.

All known proofs, including Hornblower’s, are based on a result of
Levinson (12, p. 135], concerning the growth of harmonic measure in a
cusp (cf. also Beurling [2, p. 381]). We are able to avoid any mention
of harmonic measure by making use of the following result of Dyn’kin,
the details of which can be found in [7].

Lemma. Let M{r) be a monotonically increasing function defined for
8 < r < 1 such that {{.1) is satisfied and let v, v be two subarcs of 8D
with v C ry. Then there exists a function ¢ € C such that

(1) ¢=1ony

(2) ¢ =0 outside a neighborhood of v

(3) 188(2)| < 2y 2 € D.

To prove Theorem 2 let us suppose that f is analytic in D) and that
(4.1) is satisfied. Assuming that f & A there is an arc v € 8D, no
point of which is the endpoint of an asymptotic path for f. It follows,
without loss of generality, from our remarks in Section 1 (cf. (ii)} that
there exists a sequence of Koebe arcs vy, — - such that f is bounded on
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U Now choose ' C <y and corresponding function ¢ as in Dyn’kin’s
lemma. Extend each

Figure 3

arc v, to a simple closed curve enclosing & region D, in such a way
that D, - Dasn — co. Foreschn =1,2,...let g, : D, - D bea
conformal map with g,(0) = 0. Applying Green’s theorem to fg, ¢ we
cenclude that, for each 2z in some fixed neighborhood of ',

|7 (2)gn(2)8(2)] < %/D %ﬁ“_f—f@mﬁ

tlimeup [ PO

n—ooo Sy, |C - Z|

IQ;(C)HdCI + const.

from which it follows that [f(z)g,(z}| < Ci(1 — |z])~* + C; in a neigh-
borhood of v/, since f% lg,.{CHIdC] £ 27 and, by the Koebe distortion

theorem, f, lgn (Q)|?*<dA < M with M depending only on diam (D).
On the other hand, the Carathéodory convergence theorem implies that
|g..] — 1 pointwise and boundedly almost everywhere in D, and therefore

(4.2) @ <Gl — 2"+ Cy

in a neighborhood of 4. This, together with the boundedness of f on
Uyn, implies immediately that f is in fact bounded near . To see this
just choose Ay, A2 € 4" and note that (z — A}z — Az} f is bounded. As
a result f must have radial limits almost everywhere on v/, contrary to
assumpticn. Therefore, f € A
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