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ON EXTENSIONS OF PSEUDO-INTEGERS

HEATHER RIES

Abstract

An abelian group A is pseudofree of rank k if the p-localization
of A is isomorphic to the p-localization of ZF for all primes p,
ie. Ay = Z’; for all primes p. If £ = 1, we call A a group of
pseudo-integers. We may assume, in this case, that Z C A C (P
and that for any prime p; there is a maximal exponent r; so that
;%7 € A. The group A is then generated by {;}‘; | pi is a prime}

and we write A = {;}-;}, We say a pseudofree group of rank k is

completely decomposnlzbie if it can be written as the direct sum of
k groups of pseudo-integers.

If A is pscudofree of rank &, B is pseudofree of rank {, and
B »— FE — A is an extension in Ext(A, B} then F must be
pseudofree of rank k -+ [. In this paper, we consider Ext(P, P)
for P = (;}w;) and P = (;}T> groups of pseudo-integers. We de-

termine when it is possibl;:, in terms of the defining exponents
of P and P, for Ext(P, P) to contain certain extensions (which
we'll call nontrivial) where E is completely decomposable as a
pseudofree group of rank 2. We find that Ext{f, P) contains such
extensions if and only if r; < 7, almost everywherc and r; < 7; for
an infinile number of primes,

0. Introduction.

In [1] Casacuberta and Hilton introduce the concept of the extended
genus of a nilpotent group N, denoted EG{N). Tt is defined to be the set
of isomorphism classes of nilpotent groups M so that the p-localizations
of M and N arc isomorphic for all primes p, i.e. M, = N, for all
primes p. If A is a finitely-generated abelian group, they show that to
study EG{A) it is only necessary to examine EG(Z*) where £ is the
torsionfree rank of 4. The exiended genus of Z is completely described
in [2]. There it is indicated that if A € EG(Z) then 4 is similar in
many ways to Z and hence A is called a group of pseudo-integers. We
will adopt this terminology and, accordingly, if A € EG(Z*} we will say
that A is pseudofree of rank k. As in [1], we define a pseudofree group
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A of rank k to be completely decomposable if it is the direct sum of k

k
groups of pseudo-integers, i.e. 4 = €3 A; where each A, is a group of
i=1
pseudo-integers.

In this paper, we investigate Ext(P, P) for P and P groups of pseudo-
integers. In 5], the structure of Hom(P, P) and Ext(P, P) as abelian
groups is identified, while in [4] it is shown that, for certain P and P,
Ext{P, P) contains extensions P >» E —» P where F is not completely
decomposable as a pseudofree group of rank 2. Here we should note
that for any extension P »— E — P of P by P, E must be pseudofrce
of rank 2 since p-localization is exact and Z; is a p.i.d. In this paper,
we determine when it is possible for Ext{P, P} to contain extensions
P > E — P where F is a certain type of completely decomposable
pseudofrec group of rank 2, ie. F = I3 @ B, for particular groups of
pseudo-integers B and By,

In Section 1, we define the type of completely decomposable extension
(which we will call nontrivial) that we hope to find by making clear our
restrictions on By and Bz. We describe, in Section 2, when P embeds
into By @ B, for arbitrary groups of pseudo-integers P, By, and B,.
Since we want the quotient resulting from such an embedding to be
isomorphic to P {and hence torsionfree), in Section 3 we characterize
the torsion subgroup of the quotient resulting from a given embedding
of P into By @& B;. Finally, in Section 4, we have a theorem which
allows us to determine when such a quotient 1s in fact isomorphic to
P. We then find exactly when Ext(P, P) contains nontrivial completely
decomposable extensions in terms of defining characteristics of P and P.

These results were completed as part of my dissertation at SUNY-
Binghamton. I would like to cxpress my deepest appreciation to my
advisor, Professor Peter Hilton, for his invaluable guidance and constant
encouragement.

1. Pseudo-Integers and Extensions.

For A, B abelian groups, we state an interpretation of Ext{A, B) which
may be found in {3]. The extensions B > Ey - Aand B — E; - A
are said 1o be cquivalent if there exists 4 : E7 — Eg so that the following
diagram commutes:

B —_ E1 —* A

I L |
B — Eg - A

Since 1 is necessarily an isomorphism, the above rclation is an equiva-
lence relation and Ext{ 4, B) is regarded as the sct of equivalence classes
of extensions. It may be shown to have an abelian group structure with



ON EXTENSIONS OF PSEUDO-INTEGERS 389

zero element the equivalence class of the extension B — Bd A —» A
where B ¢mbeds naturally into B® A and B ® A projects naturally onto
A

In this paper we shall be concerned with certain extensions of the form
P+ E — P where P and P are groups of pseudo-integers and E is
necessarily pseudoiree of rank 2. However, before we consider particular
extensions in Ext{P, P) we will note some results previously obtained on
the algebraic structure of Hom(P, P) and Ext(P, P) as abelian groups.

We first introduce notation to be used throughout the paper. In [2]
it is demonstrated that if P is a group of pseudo-integers then we may
assume Z C P C @ and for any prime p; there is a maximal exponent
r; > 0 8o that € P. Moreover, as may be easily shown, 7 is then

generated by the set {—r | p; is a prime} and the elements of /> are

represented by reduced fractlonb $ where b has prime power factors pi- )
with §; < ;. We will henceforth denote P by (;3-—) and assume all
fractions mentioned to be reduced. '

We will often employ the following result {also from (2|} concerning
the isomorphism problem for groups of pseudo-integers.

Theorem. Assume P = (?,—) and H = { -} are groups of pseudo-

integers. Then P2 H if and only if r; = &; aimost everywhere.

Now suppose P = = (—g—) are groups of pseudo-integers.

The above thecrem 1mphes that to determme Hom(P, P) one need only
consider the case where 7; > r; for infinitely many ¢ and the case where
7: < r; everywhere, The following results are then obtained in [5]
which show that Hom{ P, P) is either trivial or another group of pseudo-
integers.

Theorem. If 7; > r; for infinitely many i then Hom(P,P)=10.

Theorem. If F; < r; for all 1 then Hom(P,P) o (%‘) where [; =
. Py
= ‘.'F"'t'.

A special case of a theorem proved for pseudofree groups of arbitrary
rank then describes Ext{P, P).

Theorem. Suppose P and P are groups of pseudo-integers. Then
Ezt(P,P) = V & {Q/Z)' " where V is a Q-vector space of rank ¢ and
is the rank of Hom{P, P}.
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In this paper, we shall consider extensions P — E —» P in Ext{P, P)
where E is completely decomposable as a pseudofree group of rank 2,
ie. E = B @ By for By and By groups of psendo-integers. We will
sometimes refer to F ilself as the extension. Now it is clear that one such
extension is always present, i.e. the zero extension P P@ P —» P
in Ext(P, P). So we wish to determine when Ext{P, P) contains other,
less obvious completely decomposable extensions. We therefore define a
completely decomposable extension P »— By @ By —» P to be trivial if
P~ PB,, P2 Byor P By, P2 B, and nontrivial otherwise. As we see
from the following theorem, our definition guarantees that a nontrivial
extension will not belong to the zero element of Ext(P, P). Hence our
goal will be to describe when Ext{P, P} contains nontrivial completely
decomposable extensions.

Theorem 1.1. I[f P— B, & B, -»_}_’ is nontrivial in Ext(P, P) then
the extension is also nonzero in Exi{ P, P).

Proof: Suppose P — By & By — P does belong to the zero element
in Ext(P, P). This implies that P — By © By — P is equivalent to
the natural extension P — P @ P — P. Hence B; @ By is necessarily
isomorphic to P& P. Now in [4] it is shown that the decomposition of a
pseudofree group of rank 2 must be unique, i.e. if P@ P = B, © B, then
P~pB, P> B,or P By P = B, Thus we have a contradiction
" since we assumed our extension to be nontrivial. W

2. Embeddings.

Since we wish to find extensions of the form P+ By @ By —» P, we
must first determine when it is possible to embed P into B, & B;. We
note that since P, By, Bs are subgroups of ), to describe an embedding
of P into By @ B; we need only indicate the ordered pair to which 1 € P
11; sent. For, if 1 — (2,22} in B) @ By then § & (ulb, ﬂzb) for any
¢ep.

We shall consider only embeddings of the form 1 — (21,22} where
u; # 0 and uy # 0 as otherwise, either the quotient has torsion {(and
hence could not be isomorphic to P) or we are led to a trivial extension.
For suppose that P s By © B, —» P is an extension in Ext(P, P) so
that P embeds into By @ B, with the embedding 1+ (2*,0) for some
uy # 0. Now £1852 > B, /P g B, and £18%2 > P, But By /P is a
torsion group and hence must be trivial which indicates that By = P.
Now 135 must then be isomorphic to P and we see that the extension is
trivial. Of course an embedding of the form 1 — (0, ¥2) for some uz # 0
yields a similar resuit,

v“ug
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The next two theorems address the problem of embedding P into B, @
B, The first describes when a specific homomorphism from P to Q& Q
is an embedding and the second shows when it is possible, in terms of the
exponents of P, By, and By, to embed P into By & By. For n € Z and p,
a prime, let vp, (n) be the usual p;-valuation of n, i.e. the highest power
of p; that divides n. Then for ¥ in Q, we define v,, (£) = vp, (u) —vp, (v).
Finally, let P = {—v-) By = (—m—) and By = (—.—) represent the groups

of pseudo- mtegers

Theorem 2.1. The embedding of P into Q & Q defined by 1 —
(32, 22) is an embedding of P into B\@® By if and only if r;—uy, () <m;
and vy — vy, (32) £ ny for all i

Proof: Now 1 — (2, 32) restricts to an embedding of P into B, & B, if
andonlylf—s-—H( “ —%-—)EB;L(DBQ for all 1. But-+631<=>

vip,' ' vzp,

p‘(-—lr) T 'upl(—l) —T; P o~y = 1y — ’upz(;ll) < m;.
Simllarly, _—%-— €EBy=ri—vp(2)<n. A

Note that, in particular, 1 — (1,1) defines an embedding of P into
Bi @B ifand only if r; < my; and r; < n; for all 4.

Theorem 2.2. The group of pseudo-integers P embeds into B) & By
if and only if 7 < my and r; < 0, almost everywhere.

Proof: Assume P embeds into By D By and let 1 — (3, 32) be an
embedding. Since v, (2) = 0 and vy, () = 0 for all but a finite
number of 4, it is clear from Theorem 2.1 that r; <My, Ty < on; almost
everywhere.

If we suppose that r; < m,; and r; < n; almost everywhere, we can
easily construct an embedding. Let Sy = {j | r; > m;} and Sz =
{k | 7« > nx} and consider the embedding of B into @ @& @ defined
by 1 — (]] p;j_mi‘, [T pi* 7). It can be readily verified that r, —

JES k€52

v (11 pj,J ™Y < my and 1 — v, ( [ pFT™) < n; for all £ and hence,
€S kESa
by Theorem 2.1, we have an embedding of P into B, & B,. &

3. Torsion Subgroups of Quotients,

Recall that our goal is to determine when it is possible to find non-
trivial completely decomposable extcnsions in Ext(P, P) i.e. extensions
of the form P »— B, © By — P where certain conditions are placed on
By, By, Since, for such an extension to exist, the quotient B—"fpﬁ must
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be isomorphic to P, we must determine when it is possible to embed P
into B; @ Bz so that the resulting quotient is torsionfree. Hence in this
section we characterize the torsion subgroup of &——39332 with respect to a
given embedding. This characterization, given in the next two theorems,
is essential to our determination of the existence of completely decom-
posable extensions in Ext(P, ). Given an embedding of P into B1 & Ba,
we will use £} to represent the resulting quotient of B; © B, by F, 1.c.
Q= @‘ We will represcnt the torsion subgroup of this quoticnt by
TQ. Also, we will assume P = (;}«1—), B = (Ef}q}, and B; = (;‘lsj)

Theorem 3.1. Suppose P embeds inle By ® By with the embedding
defined by 1 — (1,1). Then TQ = PZ/p; "Z where ; = min(m;,n,).
Pi

Proof: We first show that TQ = {(2‘2)331531032} Suppose [(&, £2)]

L b
is a coset in TQ. There must cxist an integer & so that k(P,$2) €

im P = {(z,z) | z € P} (since 1 +— (1,1) gives the embeddlng) Hence
(2.82) = (3,) for some 7 € P and [(, 32)) ¢ LRBNEEADR) Ko
assume [(%, %)] is a coset in ﬂg—g—lﬁf’f&—w Since b(%, %) = (a,0) €
1mP1nBl€BBg [( SN ETQ.

So TQ = ik ‘fB‘nBZ} o BISBE, Now By N By = (L) where

l; = min(m;, n;). Hence 1022 = (L )/P = @Z/pl‘ i, smce a torsion

abelian group is the direct sum of 1ts - torsmn subgroups. Note that
I, —r, = min{m;,n;) — r; > 0 for all ¢, since r; € m; and r; < n; for all
i by Theorem 2.1. K

Now we use Theorem 3.1 to determine the torsion subgroup resuiting
from an arbitrary embedding,

Theorem 3.2. Suppose F embeds into 81 & By with the embedding
defined by 1 — (2, 2). Then TQ = @Z}/;ﬁ\i “™Z where I/ = min(m; +

Up, {3, 7 + vp ().

Proof: Consider the following commutative diagram

1 — ¥ ﬁ)
vt vz

P — Ba B,

Il | gz

P — B aoH

1 - (1,1)
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where B] = () with m{ = m; + v, (%), By = (—7) with o} =
Pt p‘."
ni+ U, (32), and 2o 2 0 By 9 By ¥ B @ Bj is the isomorphism

defined as mult1p11cat10n by ot in the first coordinate and by Z in

the second. Note that 1 — (1,1} does define an embedding of P into
Bi ® B;. For, since 1 — (31, 32) is an’embedding of P into B, @ Bs,
ri Sy +up (B) =m and 1 < g+ v, (32) = 7 for all § by Theorem
2.1. Thus 1 — (1,1} is an embedding of P into B} & Bj also by Theorem
21 Let @' = Eiﬂ)—Bi be the quotient resulting from this embedding.
Now Q 2 ) since :il © 32 induces an isomorphism on the quotients.

Hence TQ = TQ' = @Z/pi "Z where I! = min{m!,n}) by Theorem
P,
3.1, and the theorem is proved. B

The theorems in the remainder of this scction are not necessary to
prove our eventual result on the existence of completely decomposable
extensions in Ext{P, P). However, given that P, 13,, and B; are groups
of pseudo-integers so that it is possible to embed P into B; @ B», the
theorems provide insight into the naturc of the torsion subgroups of
Q= 5-1——3 which occur with respect to different embeddings. For,
given one such torsion subgroup, we arc able to determine all other
torsion subgroups which it is possible to obtain. We also find, in terms
of the exponents of P, By, and B,, when it is possible to embed P with
a torsionfree quotient. Moreover, we describe under what conditions a
given embedding will have a quotient that is torsionfrece. Again, we let
P= (511;—), B, = (;;_LT), and By = (}% represent the groups of pseudo-
integcré. ' ‘

Theorem 3.3. Suppose P embeds into B, © By with T(Q = @Z/pf‘,

Py
k, 2 0. Let EBZ/pf" with k} > 0 be a torsion group. There exists an
Pi
embedding of P into B & By s0 that TQ) =2 @Z/pf‘ if and only if ky = k!
P
almost everywhere,

Proof: Let 1 — (£, 2] be an embedding of P into B1 ® B, 50 that
TQ = @Z/pf‘z We know that r; —~ vy, (32) < m; and ry — vy, (32) <y
for all z ('I heorem 2.1). Also, by Theorem 3.2, k; = I; — »; where §; =
min{m; + vp, (E), 7 +vp, (32)).

Now assume 1 — {3+, ‘; is an embedding of P into 3] @ Bs so that

T = @Z/pl-‘z‘ As above, k] = [ —r, where ] = min(m; +vp, (3}, i+
P
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vp,($2)). Since vy (F) = v, (§2) = v, (32) = vp, (32} = 0 for almost
all 4, {; = I/ = min(m;,n;) almost everywhere. Hence k; = k; almost

everywhere.
Now suppose k; = ki almost everywhere. Let 51 = {i| ki > &},
ik >kEyu= [ ™ andv = [[p" ~*_ Note that if
1€ 5, i€ S
i € S1U.S5; then vy, (%) = ki —k; and otherwise v, (2) = 0. We can show
that 1+ (2% 2¥2)3 g an embedding of P into B, ®B;. Forif¢ ¢ 5:US,,

vy ! vz

o, (50 = 7y, (8) < g and 73— 03, (252) = 1~ 0 () < s
Ifie S1U5,r— qu(% :T:_@p‘( Y= (kl— ki) =7y — Up‘('”—l) kK +

min{m; +vp, (32), n:+0p, (32)) - 73 < ”p‘( L) —kitmitup (2 ) =My
ki < m;ask] 2 0. An analogous argument shows that 17— Up, (2 g 2) <
Hence, we ha\re an embedding by Theorem 2.1.

We see that the torsion subgroup of Q with this embedding is
GBZ/;pz Z. From Theorem 3.2, TQ = GBZ’/p “" where !/ = min{(m; +

‘(Wf“) n; + U (B2)) = L + vy (2). Ife € 51U Sy, then I} = {; and

3;—?3 = L’i‘“'f‘i = ki - k: Ifie S]USQ, "fz = Ji‘l—b’p‘(;) = :‘fz+{kz'—kl)
ki+r;and hence !, —r; = k. W

Corollary 3.4. Let P, By, and By be groups of pseudo- integers so
that P embeds into By ® Bz. Then TQ is finite for all embeddings of
P into By ® By or TQ is infinite for all embeddings of P into By &
By. Moreover, if TQ is always finite then P embeds into B, & By with
torsionfree quotient.

For the next theorems we establish the following notation. Let
gt (P)={i|r; >0} and Bi\P = (;}i—;) where 5; = max(m; — r;,0).

Theorem 3.5. Suppose P embeds into By @ By, There exists an
embedding of P into B1 @ By so that @ is torsionfree if and only if
ot (BA\PY Nt {B\P) is finite.

Proof: Suppose ot (B1\P) Na*(B\FP) is infinite. Let 1 — (2,32
be an arbitrary embedding of P into By @ Bs. Select p; so that ¢ €
o (B\P) N a™{BA\P) and v, {v1) = vp,(ve) = 0. Then note that

r= (r:rlb.ﬁ, ;;%ﬁ] € By @ B,. Certainly z ¢ im P C B, ® B, but p;z

is the image of ;‘7‘-— € Pin B) @ B;. Hence ( has torsion,

Now assurne that ot (Bi\P) N o*(Ba\P) is finite. Let S1 = {¢ |
r; > my; or r; > n;} and note that, by Theorem 2.2, S, is finite. Let
Sy = {i| ri < m and r; < n;} and also note that Sy is finite since
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0+(81\P) Not(B\P) is finite. Now if i & 5, U S, then r; < my, n; and
;=m;orr; =n,. Let 1 — (“:1 bz ) be an embedding of P into B, @ Bs.
By Theorem 3.2, TQ = EBZpI' 2 where I; = min(m; + up, (34,7 +

Up,(22)). Let 83 = {7 | vp‘ (3+) # Oor vy (32) # 0} so that if ¢ & S
then {; = min(m,,n;}. Now 1f1 & 51U 8;U 53 then §, = min{m,, n;) = r;
and hence T'Q) has only a finite number of nontrivial p-components. Thus
there exists an embedding of /2 into B) & B, so that the torsion subgroup

of the quotient is trivial (Theorem 3.3). &

So given that P embeds into By, @& B, with torsionfree quoticnt, we
know that r; < my, n; for almost all ¢ and ¢+ (B;\P)No T (By\P) is finite.
The following theorem enables us to decide when a given embedding will
have a torsionfree quatient in the special case where r; < my;, n; for
all i and ot {B1\P) N ot {B2\P) is empty. Although we will not do so
explicitly here, we could use a commutative diagram as in the proof of
Theorem 3.2 to extend the result to the more general case.

Theorem 3.6. Suppose P embeds into By & By with forsionfree quo-
tient. Assume also that vy < mq, n; for alli and o (By\P)N o™ {Bs\P)
is empty. Let 1 — (24, %) determine an embedding of P into By @ Bs.
Then @ has torsion zf and only if there exists p; so that p; | wy or
holds and p; | ug or vo holds where v 1s the condition thati € o ¥ (B \ P}
and vy (1) < my — ri, o is the condition thet i € o7 (By\P) and
Vo (1}2) < Ty — T

Now suppose Q has torsion and let [(%lL %5)] be a nontrivial cosct of

finite order. Hence there exisls & € Z (k > 1), £ € P,sothat k{gk, f =
(8 c2) = B @B, So —i = ¥ and —Z = ;:;U , where we may assume

duy ! dug T hdwn

75 to be reduced (if it were not, we would replace 75 with its reduced

form). Since our chosen coset was nontrivial, t3 % P and hence there
exists p; so that vy, (kd) > ;. Now (34, 52) = (35, g%) € i@ B,
and ot (B1\P) Mo+ (B\P) is empty s0 p; | uy or p; | ue. We assume
i | u1 and note that if p; | us also, there is nothing more to prove.
Otherwise, since vy, (kd) > r; and 3% € B, we have i € 67 (By\ P} and
Up, (V2) < 1y — 7y, 1.c., we have Condltl{}ll 2. Similarly, if we had assumed
P. | ua then we could conclude that p; [ #; or v is true.

Let p; be a prime so that p; | u) or v holds and p; | us or v
holds, I’f P |’u1 and p; | u2 then u; = p;u) and up = puh. Now
T = (=i, =2-) € B, © By since we assume %, ¥ are reduced and

Pov1 B2 L T

ry < my, n; for all 2. Note that ¢ ¢ im P in By @ By but p;z is the
image of ;}-,.- in By ® By. Thus [z] is a nontrivial torsion element in Q.
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Now assume p; | ¢, and 2 holds and again let Uy = piuth. Observe that
z = (—'rL' —3——) £ B, @ B, for as above —?'—1— € By and v, ensures

that —ﬁ%— ¢ Bg Also as above [z] is an olement of order p; in Q. A

symmetrlc argument shows that @ has torsion if we assume condition 1
and that p; | up. Since oH{B1\P)Not{B\P) is empty the casc where
both =, and e hold cannot occur. B

4. Torsionfree Quotients.

We are almost ready to describe when Ext(P, P) contains nontrivial
completely decomposable extensions. Recall that this means that we
seek the existence of groups of pseudo-integers By and By (P ¢ B, or
P % By and P ¥ By or P % By) so that P embeds into B; & B; with
quotient isomorphic to P. Hence, given that P embeds into By ® By, we
now characterize the torsionfree quotient of @@ = &ig—&, dencted Q/T¢,
with respect to any embedding. This allows us, in the particular case
when the torsion subgroup TQ is trivial, to decide if @ is isomorphic
to P. Again we represent our groups of pseudo-integers by P = (=%},

p*
By = (), and By = (k).

Theorem 4.1, Suppose that P, By, and By are groups of pseudo-
integers so that P embeds into By @ By with quotient {. Then the tor-
sionfree quotient of Q, denoted Q/TQ, with respect to any embedding of
P into By @ By is isomorphic to (;!;‘—) where 5; = max{m;, n;).

Proof: Since P embeds into B; & By, we know that »; < my, n; for
almost all ¢ by Theorem 2.2. Qur argument considers the two cascs '
that r; < m;y, n; for all 1 and r; £ ™y, m, for all ¢. We suppose first
that r; < my,n; for all ¢ o that 1 — (1,1) determines an embedding
of P into By ® B; {Theorem 2.1). By the proof of Theorem 3.1, we

know that 7@ with respect to this embedding is HE:5) ;B’HBZ} nd
B G}B
hence Q/TQ = gy cBmBz e %ﬁﬁ%lnBz}. Now consider the
[

following sequence

(G9)12eninm) = Biom > ()

k3

where ¢ is inclusion, 7 is defined by n(3,82) = 3+ — £, and 5 =

max(m;, n;}. We see that the sequence is exact. First we note that im
i C ker m. Now suppose (§3,§2) € ker 7. Then £ — £ = 0 which

implies 3 = & and hence that (g, 2) € im i. Finally, we show that =
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is onto. Let — be an arbitrary genera.tor of {4 o . Now g; = ma.x{m,- 1)
and so if 5; = m, then fr{j;_n;,(]) Otherw1se (0, ——n—) = —. Our

sequence is thus short exact and @ /TQ ———‘}Bh%%W = (;},—)

We now assumec that r; £ m,,n; for all 7 and we let 1 — (—11, ;;i

determine an arbitrary embedding of P into By @ B>, Consider the
following commutative diagram

1 = (3,72)

P B, @ B - Q

It ly=01g22 L@
P — BieB & - @

1 — (L1)

where Bl = (L) with m{ = m; + vp(21), By = { Ly with n! =
Pt bt

n + v (2), Q = L%B?-, Q = E;E—Bé, % 18 the isomorphism defined
by multiplication by 1‘:—1; in the first coordinate and by E% in the second,
and 1 is the isomorphism induced by i on the quotients. We note that
1+~ (1,1) is an embedding of P into B{ ® B). For, since 1 — (-, %2) s
an embedding of P into By ® By, r; — upi( J<m;andr, — Up‘(;f) < n;
for all ¢ by Theorem 2.1. Hence r; < m‘ + vpl.(;)-f) =m; and r; <
n; + vp, {32} = n; for all i and again by Theorem 2.1, 1 — (1,1) is an
embedding of P into By & B).

Since # is an isomorphism from @ to Q’, % restricts to ¥’ : TQ = TQ'.
Thus we have the following commutative diagram

TG — Q@ —» Q/TQ
L [ ;

¥
TQ! s Qr . Q!/TQ’

where 1,{; is the isomorphism induced by % on the torsionfree quotients.
Now P embeds into B] @ B, by 1 — {1,1) so0 by an argument identical
to the above Q'/TQ' = (—r) where s, = max(m},n]) = max(m; +

Up (22} + v, (B2)). Let s; = max(m;, n;) and note that s; =
almost everywhere, Hence {3} & (;,T) and thus Q/T¢ = Q’/TQ’
Pt :

(L) = (r—ﬁ‘—) where s; = max{m;, n;). We remark that if P embeds into

lie eff"«

Bj © B, with torsionfree quotient then 2 (51;;). [ |
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All the theorems in Sections 2 and 3 gencralize in the obvious ways

k
to the case where P is embedded into € B;, B; = (;rérj), the direct
=1 i
sum of & groups of pseudo-integers for & > 2. However, we see that
Theorem 4.1 does not generalize. For, we might expect that if 7 em-

k k
beds into (D B; with quotient @ = €D B;/P then the torsionfree quo-
=1 j=1

k=1
tient Q/TQ would be isomorphic to @ B} where B; = (;glw), $iy =
j=1 :

3

max(m;;,my,, ). But this is not always true. It is certainly the case that

{(2.2, bneﬂ& D s;
TG = = and hence Q/TQ = e
{2 N3e(18:}

Further , we can show that the following sequence is exact:

k k k-1
a a a i " ;
(gigﬁ‘wb) 5 € ﬂ ~ DB > DB
i=1 =1 =1
k k=1
where ¢ is inclusion map and 7 : @B; — (BB is defined by
j=t i=1
?T(bl,bg, R ,bk) = (bl —ba,ba— b3, b — bk) Bowever, it is not in
general true that = is onto. For suppose for some p;, my, = 1, my, = 2,
my, = 1 so that max(m,, m“) = 2 and max{m,,, mi,) = 2. It is not pos-
sible to find an element in 69 B; whlch goes to (—5, e 0,---,0) under 7.
1=1

So we know only that Q/TQ@ = im w = {{by —bo,ba — b3, -+ be_1 —br} |
b, € By) in @B}
j=1

We now determine when Ext{P, P) contains nontrivial completely de-
composable extensions.

Theorem 4.2. Let P = ( -} and P = ( -y be groups of pseudo-

integers. Then Ext(P, P) conf,ame nonmma! completeiy decomposable
extensions if and only if 7y < 7, almost everywhere and r; < ¥; for an
wmfinite number of primes.
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Proof: Suppose Ext(P, P) contains nontrivial completely decompos-
able extensions. Let P — By GBBQ —» P bhe such an extension where B; =
(54;) By = (—n—) and 1+ (32, %2} determines the embedding of P into

t.' T
ByaB,. Smce Q= 3‘19,82 is isomorphic to P,  is torsionfree. By The-
orem 3.2, T@ = @Z/pz"_""Z where I; = min(m; +vp, (32), i +vp, (32)).

Hence I; = 7, for all &, Let Sy ={i| vp, (3} # 0 or v, {32) # 0} and
note that 57 is finite. For: € 8y, 1; = mm(mz,nt) Now by Theorem 4.1,
GITo=Qx= (—,-—) where s; = max{m;,n;). So P = (—s—) which implies

that 7; = s; for almost all 4. Let Sy = {17 # 5.} For 1€ 5 US: (a
finite set), r; = min{my, n;} < max(m;, n;) = 5, = 7. Suppose 7; < 7
for only a finite number of primes and let S3 = {i | r; < #}. For
i€ S U5 U 8y (a finite set), r; = min(mi,ni) = max{m;,n;) = 7;.
Hence m; =n; =r; = 7; and P>~ P~ B, ™ B, which contradicts our
assumption of nontriviality.

Now suppose r; £ 7; almost everywhere and r; < ¥; for an infinite
number of primes. We may assume without loss of generality that r; < 7,
everywhere. For, since r; < 7, for all but a finite number of primes, we

could replace P with an isomorphic group P’ = (-} so that 7] < 7; for

all primes. Now let $ ={i|r; </} and § = {z"| ri = 7;}. Divide S
into two disjoint infinite subscts Sy and Sp. Let B, = (F}T") where m; =
i 1€5: ry 1€85US
_and By = {-2 here n; =
{ﬁ- i€S,U8 2 = (5) where n {ﬂ- i€ s
1= {1,1) determines an embedding of P into [} © B; since r; < my, 7
for all . By Theorem 3.1, TQ = @Z/pi“”‘ where [; = min(my, n;).

. Now

But min(m,,n;) = min(r;, 7)) = 7y smce T, < 7 for all ¢ and thus TQ
is trivial. According to Theorem 4.1, @Q/TQ = @ = (;s?) where §; =
max(m;, n,). But max(m;,n;) = max{r;,7;) = 7;. Hence Q = (Elg) =P
Now P¥ B, P¥ B,, P¥ By, and P ¥ Bj since $) and S are infinite
sets. Thus P »— B, ¢ By ~» P with the embedding 1 — (1,1) is a
nontrivial completely decomposable extension of P by 7. B

We can now prove the following theorem which will allow us to simplify
our notion of ﬂontrivial extension. We again assume P = (A}w) P =

( =) B = 3, and By = (“ﬂ—) are groups of pseudo—mtegers

Py

Theorem 4.8. Suppose P — B, & By — P is exact. Then P> B,
if and only if P = By,
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Proof: We see, from the Proof of Theorem 4.2, that r;, = min(m;,n;)
almost everywhere. By Theorem 4.1, ¥; = max{m;,n;) almost every-
where. Hence r; = my; almost everywhere if and only if m; £ n; almost
everywhere if and only if 7; = n; almost everywhere, W

We could just as easily prove that if P — By @ By — P is exact
then P 2 B, if and only if P 2 B). These results do allow us to make
our definition of nontrivial extension more concise. We had previously
defined an extension P — B ® B, — Ptobetrivial f P B, P = By
or P2 By, 7~ B, and nontrivial otherwise. With regard to the above,
such an extension is now trivial if P = By or P = B5 and hence nontrivial
if P# By, and P 2 By, We note that we could just as easily use Pin
place of P in our new definition.

In [4] it is shown that if P = (;lg;) and P = (;l,—) are groups of pscudo-

integers so that r; < 7; for an infinite number of i then Ext(P, P) con-
tains extensions P~ E —» P where F is indecomposable as a pseudofree
group of rank 2. So, referring to Theorem 4.2, we sce that if Ext(2, 1)
contains extensions which are completely decomposable it must also con-
tain those which are not. Further, we can use the theorems in Section
I to describe the abelian group structures of Hom(P, P) and Ext(P, P)
for the case when Ext{P, P) contains completely decomposable exten-
sions, i.e. when r; < #; almost everywhere and r; < 7; for an infinite
number of i. Since r; must be less than 7; for infinitely many 1, we
see that Hom(P, P} must be trivial and hence Ext{P, P) & V & (Q/7Z)
where V is a {J-vector space of rank ¢. It seems that we should be able
to determine where the completely decomposable extensions are to be
found in this structure. Do they correspond to torsion clements, infinite
elements, mixed elements, or some combination of these? We may also
ask a similar question for the indecomposable extensions.
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