DUAL DIMENSION OF MODULES OVER NORMALIZING EXTENSIONS

Ahmad Shamsudnin

Abstract

Let $S=\sum_{i=1}^{n} R a_{2}$ be a finite normalizing extension of R and suppose that $S_{S} M$ is a left S-module. Denote by $\operatorname{crk}(A)$ the dual Goldie dimension of the module A. We show that $\operatorname{crk}\left(R_{R} M\right) \leq$ $n \cdot \operatorname{crk}(s M)$ if either $s M$ is artinian or the group homomorphism $M \rightarrow a_{i} M$ given by $x \mapsto a_{i} x$ is an isomorphism.

1. Let R be a ring and let M be a left R-module. The Goldie dimension of M, defined as the cardinality of a maximal independent family of submodules of M, is denoted by $\operatorname{rk}(M)$. A family A_{1}, \ldots, A_{n} of proper submodules of M is said to be coindependent if for each index $i, 1 \leq i \leq n, A_{i}+\bigcap_{\jmath \neq i} A_{j}=M$. A family $\left(A_{i}\right)_{i \in I}$ of submodules of M is said to be coindependent if each of its finite subfamilics is coindependent. The module M is said to be hollow if $M \neq 0$ and if every proper submodule of M is superfluous in M. Every family of submodules of M contains a maximal coindependent subfamily. The cardinality of a maximal coindependent family of submodules of M, denoted by $\operatorname{crk}(M)$, is called the dual Goldie dimension of M. We shall need the following results, which can be found in [2], [3], [6].
1.1. If N is a proper submodule of M and if crk is finite then there exists a finite family of submodules $\left(A_{i}\right)_{i \in I}$ of M such that $\{N\} \cup$ $\left\{A_{i}: i \in I\right\}$ is coindependent, M / A_{i} is hollow for each $i \in I$, and $N \cap \bigcap_{i \in I} A_{2}$ is superfluous in M.
1.2. $\operatorname{crk}\left(M_{1} \oplus M_{2}\right)=\operatorname{crk}\left(M_{1}\right)+\operatorname{crk}\left(M_{2}\right)$ for any modules M_{1} and M_{2}.
1.3. If N is a submodule of M then

$$
\operatorname{crk}(M / N) \leq \operatorname{crk}(M) \leq \operatorname{crk}(M / N)+\operatorname{crk}(N)
$$

and, when $\operatorname{crk}(M)$ is finite, $\operatorname{crk}(M / N)=\operatorname{crk}(M)$ if and only if N is superfluous in M.
1.4. It follows from 1.3 and the exact sequence

$$
0 \rightarrow M /\left(N_{1} \cap N_{2}\right) \rightarrow\left(M / N_{1}\right) \oplus\left(M / N_{2}\right) \rightarrow M /\left(N_{1}+N_{2}\right) \rightarrow 0
$$

for submodules N_{1} and N_{2} of M that if $\operatorname{crk}(M)$ is finite then

$$
\operatorname{crk}(M)-\operatorname{crk}\left(M /\left(N_{1}+N_{2}\right)\right) \leq \sum_{i=1}^{2}\left(\operatorname{crk}(M)-\operatorname{crk}\left(M / N_{i}\right)\right) .
$$

Let now $R \subset S$ be a finite normalizing extension, write $S=\sum_{i=1}^{n} R a_{i}$ where $a_{i} R=R a_{i}$ for each $i, 1 \leq i \leq n$, and let ${ }_{s} M$ be a left S-module. We fix this notation throughout this article. It was shown in Bit-David and Robson [1] that

$$
\operatorname{rk}\left({ }_{s} M\right) \leq \operatorname{rk}\left({ }_{R} M\right) \leq n \cdot \operatorname{rk}\left({ }_{s} M\right) .
$$

Since the proof of the second inequality appeals to Zorn's lemma, it is not clear that a formal dual of this result holds true. The purpose of this note is to show that under certain conditions, the inequality

$$
\begin{equation*}
\operatorname{crk}\left({ }_{R} M\right) \leq n \cdot \operatorname{crk}\left({ }_{S} M\right) \tag{*}
\end{equation*}
$$

is valid.
2. If $a \in S$ is a normal element of S, that is, if $R a=a R$, then for a submodule N of ${ }_{R} M, a N$ is a submodule of ${ }_{R} M$. The map $K \mapsto a^{-1} K \cap$ $N=\{x \in N \mid a x \in K\}$ is a one-to-one function that takes a family of coindependent submodules of $R_{R}(a N)$ into a family of coindependent submodules of ${ }_{R} N$, so $\operatorname{crk}(a N) \leq \operatorname{crk}(N)$. If $a M=M$ and a is not a zero divisor on M then the map $K / N \mapsto a K / a N$ becomes a one-to-one function that takes a coindependent family of R-submodules of M / N to a coindependent family of submodules of $M / a N$. It follows that in this case, $\operatorname{crk}(M / a N) \geq \operatorname{crk}(M / N)$. We shall find it necessary to introduce the set \mathcal{N} of all submodules ${ }_{R} N$ of ${ }_{R} M$ such that $S N=M$.

Lemma 2.1. If N_{1}, \ldots, N_{k} is a coindependent family of submodules of ${ }_{R} M$ such that $S N_{i} \neq M$ for $i=1, \ldots, k$ then $S N_{1}, \ldots, S N_{k}$ is a coindependent family of submodules of S_{S}.

Proof: This follows from the observation that $S N_{i}+\bigcap_{j \neq i} S N_{j} \supseteq$ $S\left(N_{i}+\bigcap_{j \neq i} N_{j}\right)$.

Proposition 2.2. If N is a minimal member of \mathcal{N} then

$$
\operatorname{crk}\left({ }_{R} N\right) \leq \operatorname{crk}\left({ }_{S} M\right) \leq \operatorname{crk}\left({ }_{R} M\right) \leq n \cdot \operatorname{crk}\left({ }_{R} N\right) \leq n \cdot \operatorname{crk}\left(S_{S} M\right)
$$

In particular, (*) is true when either of the modules ${ }_{R} M$ or ${ }_{S} M$ is artinian.

Proof: The first incquality follows from Lemma 2.1 and the minimality of N. Since M is the homomorphic image of $\oplus_{i=1}^{n} a_{2} N$, we deduce from 1.3 and the remarks preceding Lemma 2.1 that $\operatorname{crk}_{R} M \leq n \cdot \operatorname{crk}_{R} N$. Note that by Lemanoire [4], $R M$ is artinian if and only $S_{S} M$ is artimian.

Corollary 2.3. If M is a module such that ${ }_{R} M$ has a submodule N with $S \otimes_{R} N \cong{ }_{S}(S N)$ then $\operatorname{crk}\left({ }_{R} N\right) \leq \operatorname{crk}(s M)$. In particular, we have
(i) $\operatorname{crk}\left(R_{R} R\right) \leq \operatorname{crk}(s S)$;
(ii) if $S \otimes_{R} M \cong s_{S} M$ then $\operatorname{crk}\left({ }_{R} M\right)=\operatorname{crk}(S M)$.

Proof: If K is a submodule of ${ }_{R} N$ then the hypothesis implies that $S \otimes_{R}(N / K) \cong S N / S K$. It follows from Shamsuddin [5] that $S K \neq M$ if $K \neq N$. Lemma 2.1 now gives the inequality $\operatorname{crk}\left({ }_{R} N\right) \leq \operatorname{crk}\left({ }_{S} M\right)$. Observe that $S \otimes_{R} R \cong s_{S} S$ and we always have $\operatorname{crk}(S M) \leq \operatorname{crk}\left({ }_{R} M\right)$, so the last two statements follow.

Proposition 2.4. Suppose that for each $i, 1 \leq i \leq n$ the group homomorphism $M \rightarrow a_{2} M$ given by $x \mapsto a_{i} x$ is an isomorphism. Then

$$
\operatorname{crk}(s M) \leq \operatorname{crk}\left({ }_{R} M\right) \leq n \cdot \operatorname{crk}\left({ }_{S} M\right)
$$

Proof: We show first that if $\operatorname{crk}\left(S_{S} M\right)$ is finite then so is $\operatorname{crk}\left({ }_{R} M\right)$. By induction on the integer $k, 1 \leq k \leq n$, we show that if ${ }_{R} M$ has an infinite coindependent family of submodules then there exists an infinite coindependent family $\left(M_{i}\right)_{i \in \mathbb{N}}$ of submodules of ${ }_{R} M$ such that the family $\left(\bigcap_{j=1}^{k} a_{j}^{-1} M_{i}\right)_{i \in \mathbb{N}}$ is coindependent. We may assume that $a_{1}=1$, so the base case of the induction is clear. Let $1 \leq k<n$ and assume that $\left(\bigcap_{j=1}^{k} a_{j}^{-1} M_{i}=T_{i}\right)_{2 \in \mathbb{N}}$ is coindependent. Put $a=a_{k+1}$ and observe that $\left(a^{-1} M_{i}\right)_{i \in \mathbb{N}}$ is coindependent. If $a\left(\bigcap_{i=r}^{\infty} T_{i}\right)+\bigcap_{i=r}^{\infty} M_{i}=M$ for some $r \in \mathbb{N}$ then the family $\left(T_{i} \cap a^{-1} M_{i}\right)_{i \geq r}$ is coindependent and we are then done. Otherwise, \mathbb{N} partitions into disjoint non-empty finite subsets A_{i} such that for each $j \in \mathbb{N}, N_{j}=a\left(\bigcap_{i \in A_{j}} T_{i}\right)+\bigcap_{i \in A_{j}} M_{2}$ is a proper submodule of M and so the family $\left(N_{j}\right)_{j \in \mathbb{N}}$ is coindependent. But $\bigcap_{i \in A}, T_{i} \subseteq \bigcap_{i=1}^{k+1} a_{i}^{-1} N_{j}$ and because $\left(\bigcap_{i \in A}, T_{i}\right)_{i \in \mathbb{N}}$ is coindependent, we conclude that $\left(\bigcap_{i=1}^{k+1} a_{i}^{-1} N_{j}\right)_{j \in \mathbb{N}}$ is also coindependent. Since
the submodules $\bigcap_{i=1}^{n} a_{i}^{-1} M_{j}$ are actually S-submodules of ${ }_{S} M$, we deduce that ${ }_{s} M$ has infinite dual Goldie dimension.

Next we show that

$$
\operatorname{crk}\left({ }_{R} M\right) \leq n \cdot \operatorname{crk}(s M)
$$

It is possible to choose a member $N \in \mathcal{N}$ such that $\operatorname{crk}(M / N)$ is as large as possible. By 1.1, there exists a family H_{1}, \ldots, H_{r} of submodules of M such that N, H_{1}, \ldots, H_{T} is coindependent, $N \cap H_{1} \cap \cdots \cap H_{r}$ is superfluous in ${ }_{R} M$ and each M / H_{i} is hollow. Since $M /\left(N \cap H_{i}\right) \cong M / N \oplus M / H_{i}$, we have $\operatorname{crk}\left(M /\left(N \cap H_{i}\right)\right)>\operatorname{crk}(M / N)$, hence $S\left(N \cap H_{i}\right) \neq\left(N \cap H_{i}\right)$. Lemma 2.1 now implies that $r \leq \operatorname{crk}(s M)$. It follows from 1.1 and 1.3 that $\operatorname{crk}\left({ }_{R} M\right)=\operatorname{crk}\left({ }_{R}(M / N)\right)+r, \operatorname{socrk}\left({ }_{R} M\right)-\operatorname{crk}\left({ }_{R}(M / N)\right) \leq$ $\operatorname{crk}\left({ }_{s} M\right)$. Using 1.4 and the observation that $\operatorname{crk}\left(M / a_{2} N\right) \geq \operatorname{crk}(M / N)$ we now conclude that

$$
\operatorname{crk}\left({ }_{R} M\right) \leq \sum_{i=1}^{n}\left(\operatorname{crk}(M)-\operatorname{crk}\left(M /\left(a_{i} N\right)\right)\right) \leq n \cdot \operatorname{crk}\left(s_{S} M\right)
$$

References

1. J. Bit-David and J. C. Robson, "Title book?" Lecture Notes in Mathematics 825, Springer-Verlag, Berlin, New York, pp. 1-5.
2. P. Grzeszczuck and E. R. Puczylowski, On Goldie and dual Goldie dimensions, J. Pure and Appl. Alg. 31 (1984), 47-54.
3. A. Hanna and A. Shamscddin, Duality in the category of modules. Applications, Algebra Berichte 49 (1984).
4. B. Lemanoire, Dimension de Krull et codéviation. Application au théoreme d'Eakin, Communications in Algebra 6 (1978), 1647-1665.
5. A. Shamsuddin, Finite normalizing extensions, Jour. Alg. 151 (1992), 218220.
6. K. Varadarajan, Dual Goldie dimension, Comm. Alg. 7 (1979), 565-610.
