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BEHAVIOR OF HOLOMORPHIC FUNCTIONS
IN COMPLEX TANGENTIAL DIRECTIONS

IN A DOMAIN OF FINITE TYPE IN en

Abstract

SANDRINE GRELLIER

Let S2 be a domain in C" . It is known that a holomorphic function
on 52 behaves better in complex tangential directions . When I2 is
of finite type, the best possible improvement is quantified at each
point by the distance te the boundary in the complex tangential
directions (see the papers en the geometry of finite type domains
of Catlin, Nagel-Stein and Wainger for precise definition) . We
show that this improvement is characteristic : for a holomorphic
function, a regularity in complex tangential directions implies the
corresponding regúlarity in all directions . We give a pointwise
inequality in both directions between the gradients and the com-
plex tangential gradients . We characterize Besov, Sobolev and
Lipschitz spaces of holomorphic functions defined en I2 by the
behavior of complex tangential derivatives .

0 . Introduction and Results

Let 9 be a bounded C°°-domain in C' . It is well known that a holo-
morphic function on 9 behaves twice as well in complex tangential di-
rections : this result follows from the existence of a polydisc whose size,
in the complex tangential directions, is proportional to the square root
of the distance to the boundary ag (see [G&S] and [Kr1] for example) .
It is also well known that the converse is true when 9 satisfies (see [H],
[R&S]):

(P) the tangent space is geüerated by the Lie brackets of real and
imaginary parts of complex tangent vectors .
When 9 is of finite type (see [K] and [B&G]), the improvement of

the behavior of holomorphic functions in complex tangential directions is
better . It follows from the existence of a polydisc whose size is larger in
complex tangential directions and depends on the fiatness of the bound-
ary. In this case, there is also some kind of converse results : a regularity
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in complex tangential directions implies a corresponding regularity in
all directions . In [Kr2] and [P], some converse results follow from real
variable methods on 852, using the Campbell Haussdorfi Formula for in-
stance, while results in this direction may be considered as a special case
of the deep theory of [H] and [R&S].

Our method, which is elementary, is dif erent from theirs and follows
from the first proof of Stein on Lipschitz estimates (see [G&S]) . We give
pointwise estimates between gradients and tangential gradients of holo-
morphic functions in both directions applying Cauchy Formula on the
polydiscs inside 52 . These estimates generalize to domains of finite type
the results of [G1] which deal with domains satisfying the (P) property.

Let us define the following .

Write 52 = {r < 0}, where r is a C°° function satisfying

drv~ 0ona52={r=0} .

Define the complex tangential gradient of order k of u, {7k u}, as follows .
It is the vector {Li,ju ; I, J E {l, . .,n}k } where

_ar _a

	

_ar _a
azi azi

	

azi azi

and LI,j = Lii,7,Aik .jk when I = (i1, � , ik), J = (ji, . ., jk)-

Denote by 6(.) the distante to the boundary of 52 . Assume that 52 is of
finite type m E N1 . Following [NSW] or [C], we use a function -r( .) =
r( ., c6( .)) giving the size of the biggest ball inside 52 in the complex
tangential directions . This function satisfies c61 / 2 ( .) < r( .) < C6(.)11- .

Roughly speaking, we are going to show that, for a holomorphic func-
tion g defined on 52, a size estimate on {bl7ig} ilnplies the same size
estimate on {rkOTg} and also that the converse is true . The first part
of our work is to majorize rk pTgl by the mean-value of Ig1 on a polydisc
adapted to the geometry of 52 . It is what we call the direct estimates .
Such an estimate is implicit in some works but is not explicitely written
(see [B], [C&K] and [Kr3]) . The main part of our work is to show
the converse : 5k jOk g) is majorized by the mean-value of rk 1Vk gi, disre-
garding some remaining terms . It is what we call the converse estimates .
Compared with the usual mean-value property of holomorphic functions,
these pointwise estimates show that Vk g behaves at least as a complete
gradient of order k/m and at most as a complete gradient of order k/2
(using the property that c6( .) 1 /2 < T( .) <
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Using these pointwise inequalities, we characterize Besov, Sobolev and
Lipschitz spaces of holomorphic functions on 52 by the behavior of com-
plex tangential derivatives .

Let us notice that, when n > 2, we should distinguish each complex
tangential direction in order to obtain the optimal result ; then, we would
be able to measure the exact improvement of the behavior of holomorphic
functions in each direction . But up to now, we do not know in which
amount of generality one can construct apropriate polydiscs .
We use the following mean-value operator

MeanQ(z)(u)= 1 f ju(«dV«)
IQ(z)i Q(z)

zE52nu,

where U is a neighborhood of 852, Q(z) is the biholomorphic image of a
polydisc R(z) centered at z, whose size is c5(z) in the complex normal
direction and -r(z) in the complex tangential directions ; c will be chosen
so that, in particular, Q(z) C 52 .

Now, let us state our results . We begin with the direct estimates .

Theorem A.
Let 52 be a C°°-domain offinite type m in C' . Let k, l E N, p > 0 . For

each zo E 852, there exist a neighborhood V(zo) and a constant C such
that, for every holomorphic function g in 52 and every z E V(zo) x152

Also, we obtain converse estimates which allow us to estimate a com-
plete gradient by a tangential one, disregarding some remaining terms .

Theorem B .
Let 52 be a C°°-domaiñ of finite type m in C" . Let k E NJ and p > 0 .

For each zo E 852, there exist a neighborhood V(zo) and a constant C
such that :
for each e > 0, there exists a constant C(e) such that, for every holo-

morphic function g in 52 and every z E V(zo) f152

b(z)kp IDkg(z)IP G CMeanQ(z) (C(E)Tkp IVTg1 P + Restk(E)P)

( 1) T(z)
k,

I ?Tg(z)I
P
< CMeanQ(z)(Igip) .

( 2 ) 6(z) ap
T(z)

kp 1 71Vk g(z)IP < CMeanQ(z)
t

51PE Io'gIP
j=1



(qkj(E)(z)
C(E)ój+l (z) ,rr (z)+CE5j(z)Tr(z)

<
{ C(E)-rk (z) when mj + r - k < 0.

Remark. The main terms in the previous two estimates are homoge-
neous in the following sense: each derivative of order r in the complex
tangential directions appears with a factor Tr and each one in the other
directions with a factor 8r . In the remaining term Restk (e), each deriva-
tive appears with a smaller factor .
By the mean-value property and Theorem A, we can majorize Restk (e)

by a small constant times MeanQ(z) (IgI P ) . However, for technical rea-
sons, we will need this complicated form of Restk (e) (in order to be able
to apply Hardy inequalities for example) .

Before giving the applications of the previous theorems, let us give the
following result .

Auxiliary Theorem .
Let 9 be a bounded C°°-domain of finite type m in C'° . There exists a

compact set K C Sé such that, for every p > 0, every k E N and q, t E R
with q + ,t-1L > -1 and t > 0,

IgIP6 9 -r tdV and ~~ IokgIPp+pkTtdV

are equivalent, modulo an error of fK IgIPdV, forg holomorphic in 52 .
In the same way, for every k E fN and every q, t E R with q + �,, > 0

and t > 0,

sup{Igla°T'} and sup{ID kg1b9+pkT t}
9

	

S2

are equivalent, modulo an error of SUPK 191, for g holomorphic in 9 .

As in [G1], we shall deduce from the estimates of Theorem A and B
a characterization of Besov, Sobolev, and Lipschitz spaces in terms of
complex tangential derivatives .

The first theorem is an LP-application of the previous estimates and
will allow us to obtain a characterization of Besov and Sobolev spaces in
terms of complex tangential derivatives .

254 S . GRGLLIER

where

Restk(e) _ o
k,j(e) IoToj91

1<r+j<k(m-1)

and
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Theorem C.
Let 9 be a bounded C°°-domain of fcnite type m in C' .

	

There exists
a compact set K C 9 such that, for every p > 0 q, t E R and k, l, r E Nl
withq+pr+ �-->-1,q+pl+~ >-1 andt>0

are equivalent, modulo an error of fK lglPdV, for g holomorphic in 9.

A second theorem may be considerad as an L°°-application of Theo-
rems A and B and will allow us to obtain a characterization of Lipschitz
spaces in terms of complex tangential derivatives .

Theorem D.

S2
I 7T,7I9I P ac+PI Tkp+'dV

1717kTg I Pp+PI,rkp+'dV
sz

f I7rgI P 6q+PrTt dV

and

Let 9 be a bounded C°°-domain of fcnite typc in C' .

	

There exists a
compact set K C 2 such that, for every q, t E R, every k, l, r E N with
q+l+~>0,t>0andq+r+ �L >0,

sup {IoTV`gI
ba+I,Tk+c} ,

sup { I
7I

~T.9I bq+c
Tk+r }

	

and

sup {IVrglbq+rrt}

are equivalent, modulo an error of SUPK 191, for ,g holomorphic in 9.

We use the following notations .
- 7-L(S2) is the set of holomorphic functions on S2 .
- For -y > -1 and s E NI, BP,ti is the Besov space of order s and weight

-y defined by

BP 7 = {g E x(Q) ;
J

	

I V'gl
P PdV < oo} .

- For a > 0, A,(S2) is the usual Lipschitz space on 9 (sea [Kr1]) .
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- For s >_ 0 and p > 1, W' ,P(Q) is the Sobolev space defined as in [Gr]
to be the space of functions u satisfying

l u(z) - u(O l
P

dV()

	

«) <
oILo

.
S2x9

	

Iz - (12n+3P

	

z dV

As usual, this definition is extended to negative value of s by duality.
We recall (cf [D]) that,
A«(9) n 7-c (2) =

_
~g

E 7-í(Q) ; SUp {bk-o
IVkgl} < oo for every integer k > a) .

Then, we obtain the following corollary.

Corollary A.
Let, 9 be a bounded C°°-domain of finite type in en . Let, p > 0, ,y > -1,

a > 0. Then, for every g holomorphic in 9,

( 1 )

	

g E Bp,~,

	

J. IOz9l
Pp-Ps TkPdV < oo

for k integer, k > m(s - -Y + 1 )

p

(2)

	

g E A,, (9) e-> sup {7-a IDTgI} < o0

for k integer, k > ma > 0.

It is known that, for s >_ 0, the Sobolev space Ws,P(Q) n 7í(Q)
is equal to BPk, P(k_s) (9) when p >

	

1 and k is an integer such that
p(k - s) > -1 (see [Bo&Si], appendix) ; when s < O,Ws,P(Q) n h(9)
is equal to Bó _sP(Q) (see [L]) . This gives, with the previous corollary,
a characterization of W3,P(Q) n 7í(Q) in terms of complex tangential
derivatives .
As in the case when 52 satisfies the (P) property (see [G1]), we can

characterize the holomorphic functions g such that Vkg E Ws ,P(SZ) in
terms of a Besov property.

Theorem E.
Let 9 be a bounded C°°-domain of fanite type and s > 0 .

	

There ex-
ist a compact set K C 9 and a constante C > 0 such that, for every
holomorphic function ,g in 9,

~~ lo I oi,g lPbP(1-s_k/)TkPdV <- C ( IIVkgiI Ws ,v(S2) + Jx ~9¡PdV)

for l integer, p(l - s) > -1
.

A similar theorem is available for Lipschitz spaces .
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Theorem F.
Let 9 be a bounded C°°-domain of finite type and a > 0.

	

There e.x-
ist a compact set K C 9 and a constant C > 0 such thatt, for every
holomorphic function g in 9,

sup { 1171,7Tg1 b(t_a-k/m),rkl
< C (II ,7TgIIA a (P) + sup{i.gl})

for l integer, l > a .

These two results give the key to the following corollary .

Corollary B.
Let S2 be a bounded C°°-domain of finite type m E NI, let k E fN and

s >_ 0. Let g be a holomorphic function on 9 such that VTg E Ws.p(9)

(resp. Aa (Q)) ; then g is in Ws+k/m,r(q) (resp . Aa+k/,(S2)) .

As a reciproca) result, we can prove that, for a holomorphic function
g and for s _> 0, g E W3+k12,p(p) (resp . g E A,,+k/2(Q)) implies that
oTg E Ws'r(S2) (resp . oTg E Aa(Q)), which is the best result of this
kind one can hope . For this result, we use the fact that (cf [Bo & Si]),
for every s >_ 0, every integer k such that p(k - s) > -1 and every
function u defined on 9 satisfying

11 ,7kUIP ap(k-S)dV G oo

then u E Ws,r(Q) .

When k = 1, Corollary B can be deduced from the work of Rostchild-
Stein (see [R&S]) or from the work of Krantz for Lipschitz spaces (see
[Kr2]) .
Remarks . - The finite type hypothesis is not necessary to obtain

direct estimates . As in [B], we can define a new function-r�, for each
m >_ 2, without any assumption on the type of S2, which allows us to
define a new pseudo-metric on the level lines of 9 with the help of -r�L .
Then, the direct estimates are true with this new function f'or all m > 2 .

- A counterexample . The conditions on the orders of derivatives k, l, r
in Theorems C and D are sharp .

For example, when 9 = {z E C2 ; IZI1 2 + Iz21' G 1} which is of finite
type 4, let us define

g(z) = x2109(1 - ZI)



on 52 . Then it is easy to verify that g E A1 /4(Q) n H(Q) (because
b z 1/a

Ipg(z)I < C8(z) -3/4 ) although ILg(z)I is not bounded by
The proofs of Theorems A and B will use the following new system of

coordinates .

g(() = r(z)+Re((1)+

1 . Special Coordinates and Polydiscs

Let S2 be as before . Let zo E 99 ; as dr(zo) =~ 0, we may assume that
áz, 0 in a neighborhood V(zo) of zo . The following Lernma is a version
of a result of Catlin (see [C], and also [F&S]) .

Lemma 1 .1 . For each z E V(zo) n 9, there exists a biholomorphic
mapping Dz from Cn to itself such that the function g(() = r o ~z (~) is
of the form

J,KE101^-1
IJI ,IKI>IflJI+IKI<-

where (' = «2, . ., (n) and also

gives that

S . GRLLLIGR

aj,K(z)(''C'K+o 0('I m+1 + I(11 I(I)

i
<D-(O = I z1 + do(z)(1 + E dL(z)(~ ~~ z2 + (2, - ~ zn + (n

~G~=1

where do( .), dL(.) ; ILI = 1, . ., m depend smoothly on z and do( .) =,A 0 in
V(zo) .

Remark . This lemma allows us to estirnate g and its derivatives : it

~(~ (0) = 0 for J E NN'- ' with 1<I JI< m,
1
(0) = 2,

alJi+ lK I

a(,,as,K
(0) = aJ,K(z) for J,K E N~-1 , IJI, IKI ? 1 ; IJI + IKI <_ m.

Proof.. We are going to apply the same argument as in [C] to construct
the function (D z by induction on m.

For each z E V(zo), we set

1

	

8r

	

-' ( (1

	

n

	

ar
(() =

	

z1 +
C

	

z1
(z)~

	

2
-E az . (z)(i

	

, z2 + (2, --, zn + (n
=2
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then P2 (() = r -V«) = Re((1) + (9(1(12) .
Assume, now, that we have constructed a function V-1 : O' , On

such that o = r o (Dt-1 satisfies

Pi«) = r(z) + Re«,) +
J,KE101^-1

IJI,IK¡>1 ;IJI+IKI<i

If we define V = 0-1 o 0 1 where

aJ,K(z)('J('K+0 (lo ,
+ 1(111(1) .

2 aLPl

	

,L,al-,L
LEN-1

then Pl+1 = r o (D' satisfies the analog of (*) with l replaced by l + 1 .
Thus, if we set <Pz = ~DT", we have finished the: proof of the lemrna .
Now we are able to define the polydisc around z, as in [C] .
We set Al(z) = max fajK(z)1 ; jJJ + ¡K¡ = l} ; therl, as 9 is of finite

type m, there exists l E {2, . ., m} such that Al (z) =,A 0 for z E 09 and
furthermore, for z in a sufficiently small neighborhood V(zo) . Then,

1/1 l
7- (z, 6) = min

	

( A (z))

	

,

	

l = 2, . ., m } is well defined .

	

Let us define
now

	

)))

Q6 (z) = q>z (R6 (z» = Dz ({( E Cn ;

	

1(11 C 6,

	

1('j :~ -r (z, 6)}) .

One can verify that the properties satisfied by -r(z,b) and Q6 (z) when
n = 2 are still available in the general case .
We give some of them .
1 - There exist some constante c, C > 0 such that, for every z E V(zo)

and every 0 < 5 < 1, we have

c6 1 / 2 < -r(z, 6) < C51/m .

2 - For every 6 sufficiently small and every z E Q,5 (z'), -r (z,
T(z', 6) .

3 - There exists a constarit C > 0 such that, if z E Q6(z') then
Q6 (z) C Qc6(z ' ) and Q5 (z) C Qc6(z).

4- If 6' < 6" then (6,)1/2T(z,6") < r(z,6') < (6� )1/mT(z,6") .
We conclude that, obviously, there exists a constant c such that , for

each z E V(zo), Q,6(z)(z) C 9. We will write Q(z) = Qc6(z)(z) and
R(z) = &6(z)(z) .
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5 - In addition, for every ( E Q(z), T«) -T(z)

(where -r(z) stands for -r(z, c5(z))) .
6 - By definition of -r( .), for each z E V(zo), there exist J, K E N'''-1

with IJI, ¡K¡ >_ 1, jJJ + ¡K¡ < m such that laJ,K(z)1T(z)l jl+IKI = 5(z)

while for every (J, K), we have 1aJ,K(z)1T(z)IJI+IKI < 5(z) . So, for each
z E V(zo), the following holds :

(aJK(z)1T(z)I JI+IKI - b(z)

	

with constants independent of z .
IJI+IKI< ,n
IJI,IKI> ,

Remark . In the work of Nagel, Stein and Wainger (see [NSW]), there
is an equivalent definition of the funetion T which is intrisic . Explicitely,
these authors construct an intrisic funetion A(z, t) for any z in 9 near
8SZ and any t, > 0 sufficiently small such that A(z, T(z, S)) - 5.

2 . Direct Estimates : proof of Theorem A

We are going to prove Theorem A. Namely

Theorem A.
Let SZ be a C°°-domain of finite type m in C' . Let k, l E N, p,> 0 . For

each zo E &SZ, there exist a neighborhood V(zo) and a constant C such
that, for every holomorphic funetion g in 9 and every z E V(zo) fl 9

(1)

	

T(z)k, ¡Vkg(z)1r

	

CMeanQ(z)(1 91r) .

(2 ) b(z) lP
T(z)

kP DIDT9(z)IP CMeanQ( x ) bIP

	

lVigi
r

j--1

To simplify, we are going to prove this theorerrl in C2 . Given z E V(zo)
and g holomorphic in 9, we set f«) = g o (D z () . Then f is holomorphic
in Q, = ~z 1 (S2) . We denote by L' = a 2 áC~ - ~ aS2 a holomorphic
tangent vector field .

In order to prove Theorem A, we are going to apply Cauchy Formula
to f .

For every j, r E N1 and every p > 0
g.i+T

r
C

á~iá2
((1)

	

< 5(z)2+aiT(z)2+PT

	

~f(S)~rdVJ
.

	

(C)
1c, 1<cb(z) ; 1C21<T(i)

We see that the domain of integration is R(z) . In order to conclude,
it is sufficient to remark, before chahging again the system of coordi-
nates, that L'kf(0) is almost equal to ( 2 k a (0). In fact, we have the
following lemma .
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Lemma 2.1 . Let k E N* . For everg C°°-function u, we have

1

L/ku(0)k
aku

	

( aj+rv,
(0) -

	

2)

	

a(z
(0)

+ 1<mj+r<k-I

	

a~la~2 (O)

where the C are uniform .

Proof.. We can show by induction en k E IN that there exist some
constants cj,,, 1 < j -I- r < k, such that

L'k =
1<j+r <k Ek,j, "

am,i+ni [J

	

aj+r
Cj'r aC~iaC21 i ~a

j aS2r
,

S I

where Ek,j ,r denotes the set of couples (mi, ni), i = 1, . ., k, which are in
lexicographical order and satisfy E¡I mi = k-j5 ~-.k l ni = k - r with
mi + ni > 1 . Furthermore, there exists at least one ii

r
nteger io E {I, . ., k}

such that (mi., ni.) = (0 ) 1) or (1, 0) . So

k ami +ni

	

aj+T 7I,
L~ku(~)

	

(jj a~Mia~2i (0)) a

	

a

	

(o) .
I<j-Fr<k Gk,;,r =i

	

Si S2

Since p is a C°°-function, each coefficient of this sum is uniformly boun-
ded . So, it suffices to show that the coefficient of

-1-u
(0) is equal to

zero except when mi + r < k - 1 . By assumption, we have aa (0) = 0
for 1 < n <_ m . So, the only non-zero coefficients come from a subset
of Ek,j, which is equal to the set of couples (m i , ni ) such that, either
mi > 0 or mi = 0 and ni > m.

Let us denote by J the number of mi which are equal to zero . We have
ml = m2 = . . . = mi = 0 . By ássumption, k - j = J:k j+I mi > k - J
and k - r = J:i I ni + j

:kj+l ni > mJ.
So, k - r > mJ > mj . The result follows .

Then, the first part of Theorem A follows from Lemma 2.1 and from
Cauchy Formula. To prove the second part, it is sufficient to apply the
previous estimate to the derivatives of g and to use the following easy
Lmma which is left to the reader .
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Lemma 2.2 . For everg l E INI, k E N* and, u E C°° (S2), we Nave

where the 0 are uniform on 9 .

We are going to prove Theorem B . More precisely, we are going to
prove the following .

Theorem B .

	

'
Let 52 be a C°°-domain of finite type m in W . Let k E N a,nd p > 0 .

For each zo E ag, there exist a neighborhood V(zo) and, a constant C
such that:

for each E > 0, there exists a constante C(E) such thatt, for everg holo-
morphic function g in 9 and everg z E V(zo) n 9

where

IplpTul < I pTplul + C ~

	

YI

	

Ip7,pjul
0<r<k-1

IpTp`nI < IplpTul +

	

Ipl'piul
O<r<k-1

3. Converse Estimates : proof of Theorem B

b(Z)k, Ipkg(z)IP < C MeanQ(x) I C(E)TkP Ipi,.glP + Restk(E)P)

Restk(E)

	

(g_

	

,j(E ) I p L' pj gl
1<r+j<k(m-1)

and
C(E)bj+ 1 (z)Tr(z)+CEbj(z)-rr(z) if 63. (z)Tr(z) < C7-k(Z)

(9~j (E) (z) =

	

C(E)b' (z),fr+1(z) if
cTk(z) < bj (z)Tr(z) < CTk-1(z)

C(E)Tk(z) otherwise .

Let us first give a result by Ahem and Bruna . We give the following
definition .

Definition .

	

Let 9 be an open set in fin .

	

Let K = (k,, ., kj be
a multi-index of integers . A function F E C'(Q) is called (AB)K if
5SC=Oforj=lton.ton .

To simplify, we will assume that K is fixed in the following and we
will write (AB) instead of (AB)K .

For every ~ E C, r > 0, we denote by D(~, r) the disc {z E C ; 1z-(1 <_
r} . Then, we have the following lemma (see [A&B]) .
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Lemma 3 .1 . For every L, M E Nn, 0 < p < oo, there exists a con-
stantC such that, for every (AB) function F in S2, every ~ = (,t) E
9 and every r = (ri, . ., rn) E (]0, +oo[)n with D«r, rr) x . . x D(Cn, rn) C
9, we have

aI LI+IMIF

	

p

	

C
L

	

M
(~)

	

<

	

n

	

p(Li+Mj)+2 f

	

I FI p_

	

~¡

	

dV
llj-l.rj

	

IJ(~i~T'i)x ..xD(C..~Tn)

Let us go back to the proof of Theorem B. As in thc; preceding para-
graph, we will give the proof of this theorem in C2 .
A particular case.
First, we are: going to give the main ideas of the proof by considering

the case of gradients of order 1, that is k = 1 . For z E V(zll), we
set f(~) = g(`1'z«)) . NVe denote by L'

	

a -ác~ a

	

1- <9Cz 7~~

	

í3~z a corra ~kx
tangential vector field in (1'z I (S2) .

As ~ (0) = 2 ,

	

~(0) = 0,

	

11 is locally a, transversa vector field

and it sufñces to estirnate (s

	

)
p
-n(0)

p
in tercos of I L'fIp in order to

estimate (1(-1.) ) P IVg(z)I P in tercos of IV7 ,gI r . By the Taylor expansion
of g given in Lemma 1 .1, we llave, ora R(z),

L'f(~) = Ff«) + rest =
1-Fs< �,,

1, ..>,

where Ff is ara (AB) function, since f is holornorplric, wlrich satisfies in

,r(z)p(7+k)

	

qj+kFf
(0)

0(zDS2

lal,,(z)(2

	

r (2 3

	

+ re stt,

p
CMOY IZ (= ) (I FfI'') .

As E Ial, ..(z)IT(z)`+s - b(z) by property 6, the simplest method should
be to estirnate

Ial,(z)IIT(z)p(1+
.s-i)

	

aj- (0)

~

p

for each l, s, in terrrrs of the mean-value of I Ff 1 7' in order to estirnate

_

	

p

	

áf
(0)

p

7- (Z)
h(z)

)

	

á~r

in terms of the mean-value of I L'fIP, disregarding a rest .
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Each al,, (z)~(0) appears, up to a constant, as a component of a
a~+ s- lrderivative of Ff: a (0) but in general, there are some other com-

ponents in this derivative, otherwise it would be finished by the mean-
value property (*) . So, we have to write aC(0) as the sum of

al, 9 (z) 2~-(0) and a rest, using an induction method . Let us look at this
method when m = 3 . We have

So, we obtain an estimate on

and on

2

d2

.

(0) = al,l(z)

	

(0) and

	

2f

(0)
-

a1,2 (z)X1(0) .

terne a2,1 (z)~(0) . We have

P

jal,l (z) IPT (z) P

	

(0)

N

a1,2(z)I'T(z)2n

	

1
(0)

in tercos of the mean-value of I Ff Jr on R(z) . It remains to consider the

a2~S
(0) = a2,1 (Z)

	

( 0 ) + al,l (z) á

	

~S2 (0)
.

But now, we can assurne that ¡al,l (z) 1 T2 (z) is very small comparad with
6(z), otherwise we can use the preceding estimate . This allows to sea

a 2F"that the corresponding term in aS

	

(0) is a rest . We will not go into
ale details as this will be done in the general case .
The general case (in C2) .
Now, we are going to consider the general case . As before ; for z E

V(zo), we set f(~) = g (-Dz(S)) and we will give an estimate on f instead
of g . We will show later that it is sufñcient to estimate a (0) in order to
have an estimate on 7kg(z) (as á~ is locally a transversa vector field) .
The proof of Theorerrl B will be given in theee steps. The first step is
devoted to show that L 'k

f is the sum of an (AB)-function and a rest .
The sc;cond stop is dc;voted to give an estirnlzte

k
of

	

(0) in tercos of

Fkf. This gives an estimate of a

	

(0) in tercos of L'k
f disrc;garding a

rest . The third and last step is devoted to estimate this rest .
First step : We are going to generaliza Lernma 2.1 and to show that we

can write locally the field L'k as the sum of a field with (AB)-coefficients
and a rest . We need the following definition.

Definition. 0 is 0'(5j-rk) if 0 is bounded by Cinf{1,PTk } .
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Lemma 3.2 . For- cach ( E R(z) and k E N and C1)er'y C'-,function,

Fkf «) =

Rkf(~) =

	

E

	

(9' (6j7r+1-k)

1<j+r<k

	

(g(1 a(2

Moreover, for every ( E R(z), we have

(3.2)

	

Fk .f (S) _

	

P) arjj

r ~ .
(~)

i<j+r<k (~SI(M

Lik =

Llkf (S) = Fkf«) +Rk f«)

la¿,3(z)(z-1 2 3 I

	

á_

	

1 _8

	

f(0
u~l

	

2 aU

-k-I-j-r<r¢j

1 k
A(k) = 0 for every r < k and Aokk -

(-2)

	

,

and when j :,A 0, there exist some contants &) such that

A~k)
=

c~k)

	

(1)

(k-7)

2

1<j+r<k Ekj,+

-1 i+s<-,
i>np,s>i

are integers such that E1<p<j ng = k - r.

l I

(l

	

nfj)!
al,,(z)~2-r,¡iG

:

where the firstt sum is on ale the possibilities of choice of the n,3 u)hich

Proof.. Let L' =

	

- áe á be the corre lex tan ential vectoraCI aC2

	

UC2 óSi

	

p

	

g
field . As in the proof of Lernrna 2.1, there exist sorne constarlts c.j,r,
1 < j + r < k, such that

r
~i-1 Ó(1 L `

	

(2(9(' (Xl

	

~2

where Ek, j , r denotes the set of couples (mi, ni), i = 1, . ., k, which are in
lexicographical order and satisfy Ek 1 m i = k - j, _k 1 ni = k - r with
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mi + ni > 1 . Furthermore, there exists at least one integer io E {1, . ., k}
such that (mi., ni.) = (0, 1) or (1, 0) .
We know that since o is a C°°-function, each coefficient of this sum is

uniforrilly bounded on V(zo) . Using Lemma 1 .1, we also know that, for
every ( E R(z) and every 1 < n < m - 1

7L

	

_
T ~(()=E(l

ln)I al
.,(z)(2-nZ25+0,(bT~-n)

i >n
m
a2~(() =O(T) and

	

5
.1 (() = 2 + 0(-r) .

In particular, as

	

ial,,,(z)I-r(z)'+s - b(z) by property 6,
anL,

	

< Cmin {b-r-n , -r} on R(z), for n = 1, . ., m .
c9(2 -

Let us share the summation on Ek j r into two parts :

Ek,j,r = Ek,j,, U E"k,j,r.

where Ek .j ,, is the set of couples (mi, ni) such that either mi or ni is
equal to 0, ni < m - 1, and mi E {0, 1} .

The sum on Ek j r gives a sum of terms like

k-j j anA

&j+7,

j
x

	

n~

	

j

	

r with ~ no = k - r,
(

	

(1 ~

	

= 1

	

a(2~

	

a(e(2

	

-1

which can be written

1 (k- .9)

	

11

	

I-s
CZ)

	

l

	

n

	

~al, (z)(2
-nH

(2

	

+

withj:1<,<, no = k - r. This gives
k

	

ami+rL : L \

	

aj+r f
.

Cj,r
(~ a(~¡ a(2 i ) a

	

aj, r
E',j .r

	

a-1

	

(1

	

(2

1<j-~-r<k
k+j-r<-j

+oviTr-k+ 1 )

[A~k) + 01(bj7'r-k+1)1

	

aJ+r

	

-
'9(-17 a(2'

aj+r

a(ia(2

= Fkf +

	

E

	

ov,j,rr-k+1) aj+rf

1<<j+r<k a
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It remains to show that each term comirlg frorn E'k ,j, ,. is also
O'(bjTr-k+l) and, in fact, as each coefficient is bounded, it suffices to
show this estimate only when SjTr-k+1 < C.

So, let (M, N) _ (mi, ni)i-1, . :,k fixed in E'k,j,r . Let J be the number
of mi which are eqúal to 0 . Then, J >_ j since Ei mi = k - j > k - J . If
J = 0 then j = 0 and all the mi's are equal to 1, but k - r > 1 because
otherwise (M, N) would be in Ek~j,r . In this case, C'(SjTr-k+1) = C(1),

so we can conclude .
Now, let J >_ 1 . We have ml = . . . = mJ = 0 . We can assurne that

(m + 1)j > k - r, otherwise 0'(5jTr-k+1) = C(1) on E",j,r since

when j > 1,

	

5jTr-k+l > CT,j+r-k+1 > CT1-j > C,

and when j = 0,

	

,,r-k+1 > C since r < k on El ,o,,. .

So, let us assume that (m+ 1)j > k-r . Then, there exists at least one
ni _< m for sople i <_ J . Let us denote by K the number of ni <_ rn for
i <_ J ; so n i , . . ., nK < m. Then, the corresponding coefficient is bounded
in absolute value by

which is clearly bounded by

~,K

	

oniPC

	

~f
'9(2

; ,
i-1

C6KT-rK,ni < CbK-r(J-K)(m+l )-r

	

ln ;

since EK1 ni <_ r_

	

1 ni-(m+1) (J -K) . So, as 7-' -< 5,thiscoefficient
is bounded by C6J-r(J-K)-£i ,n ; .

Now, as J >_ j and ~

	

1 ni < k-r, we obtairl_

	

thc good estimate when
J>j,orJ-K>1,orwhenE l ni<k-r-1 .

It remains to consider the case when K = J = j and Ei=1 ni = k - r
and we can ever assume that ni = m for at least one i <_ j, since
(M, N) ¢ Ek ,r . Let us remind that I á

	

= C(T) and denote by L thej
number of ni < m - 1 . Then, by assumption, j - L = J - L >_ 1 and
the corresponding coefficient is bounded by

CbLT-E',n;+(.,-L) < 6LTm(j - L)+r-k+(j-L )

since E

	

l ni = k - r - m(j - L) . So, we obtairl that this coefficient is
bounded by C6iTr-k+j-L < Cbj-rT-k+1 .

This gives the lemma .
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Second step : Now, we want to estimate

	

a

	

(0) in tercos of F kf . We
are going to use Lemma 3.2 and in particular, the peculiar forra of the
function F kf which is (AB) because f is holomorphic .
We recall that, by property 6 of the function T, we have, for each

z E V(zo),

1al,s (z)1-r(z)'+8 = 6(z)

	

with constants independent of z .

We deduce that, if (E,,s) +e<- is a sequence of reals in ]0,1[, which will
be chosen later on, there exists at least one of the coupes (l, s) ; l + s <
m, l, s >_ 1 such that lat, s (z)I-r(z) l+ s >_ El,6(z) . So, it suffices to estirnate

jat,s(z)I'T(z)(`+s-1)k ~(0) when lal,(z)IT(z)'+s > Et,6(z) in order to
k k

obtain an estirnate on (6(=)

	

ack)

	

(0) .
We observe that

a(m-r)kFkf

	

k

	

akf

(qz(m-1)k (0 ) = ar,M-1(z)
~,i

(0)

and we deduce, by the (AB)-functions' properties, that, when jal,m_1(z)1
,r ( z)m > E1,m-r6(z) ,

(E1)Pk

	

b(z)

	

Pk
1 2~f (0)

P
< C MeanR(z) (1Fkf 1p).

Now, if jal,m _r(z)l-r(z)m < E1,m_16(z), we llave to fiad another couple
(L, S) such that JaL,s(z)JT(z)L+s >_ EL,s6(z) and for which a correct
estimate holds .
We introduce the following total order relation : let l, s, L, S be four

integers such that l, s, L, S _> 1 and L+ S < m, l + s _< m; we write that
(l, s)<(L, S) if s > S or else, if l < L and s = S .

In the following lernma, we choose a sequence (E,,s) +s< �, so that, if the
couple (L, S) is tlre first one (in the order <) for which ja[,s (z) l T (z)

L+s>

EL s6 (z), then, ~al,s(z)j'PT(z)(L+s-r)kP a(0)I
P
can be bounded by the

mean-valué of IL'kf,P, disregarding a rest .

Lemma 3.3 . For every e > 0, every p > 0 and every k E Nl, there
exists a sequence (El,s)

	

ofreals in 10, 1[ such that, if we assume that

¡al,s (z)1T(z)'
+3 < Ej 36(z) for every (l, s)Z(L, S) with

L,S>1,L+S<mixed,
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then, there exists a constant C, independent of E, sach that

IaL,s (z) I
pk,r(z)(L+S-1)Pk

	

~kk
(0)

P
< C Mean]? (Z) (IFkf IP) +

+C

C

ó

(z)

	

Pk
~ a~k (0)

P

< C MeanR(Z) (C(E) I Fk .f I P) +

0<j<k
1<r+j<k(m-1)

Remark. In particular, if in addition IaL,s(z)IT(z)L+S > EL,S6(z),
t11en, there exists a constant C(E) such that

0<j<k
1<r+j<k(m-1)

aj
+r p

mln{EPELS(bjTr-k)P1TPk

	

f
} ~
- (0) .
a(ia(2 ~

aj+r P

~ a(i a(2 ~

where C(E) is chosen so that C(E)

	

for aiky L, S > 1, L + S < rn .
- E L S

	

-

	

-

Proof oflernma 3.3 : Using formula (3.2) of Lerrlrna 3 .2, we first observe
that the term (aL,s(z))ka(0) appears in a 2~+~~k(;-k1)(0) . If we can
estimate the other terms appearing in this expression, we can next use
the fact that, as Fkf is an (AB)(o,k(m-1))- function, we have for every
p>0

P
'r(z)Pk(S+L-1)

	

ak(s+L- 1)Fk
f

(0)

	

< CMean"(z) (IFkf ( p )kS k([.-1)
asz a(z

ak(S+L-1)1;kSo, let us compute a2~ a

	

(0). We recall that, by Formula 3.2 of
Lemma 3.2, we have

aj+rF
Fk f«) -

	

A(k)

	

.1
«)

aC3 aS21<j+r<k
k+j-r<mj

( ) - C(k)

	

1

	

(k-
~ ) ,

	

11

	

1-np

	

sk

	

A,íj,r

	

~,r y- (2)

	

1

	

,

	

(1 - np)1
al

' s(z)C2
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where the first sum is ore all the possibilities of choice of the np which
are integers such that El<p<j np = k - r.

k(S+L-1) k
So, we can see that

	

(0) is the surn, up to constant coeffi-
cients, of the following terms

where

	

sp = kS and kL-E1<p<j 1,9 +i > 1, 0 < j < k . We will
denote such a term by

where r = U - E lp .

by

aSz
aC2cL-1)

a(7+kL-Elp)f
alp,sp(z

	

7

	

(kL-Elp) (~)~
p=1

	

) a~1as2

a' -l-r
f

.

(0)
6~~r(z) a(ia~z

So, where (1,q, sp) = (L, S) for each /0, we obtain (a[, s(z))ka

	

(0) .

For the extra tercos, among all the (lp, sp)'s different frorri (L, S), there
exists at least oree of them for which (lp, sp)Z(L, S) : either all the sp's
are not equal to S, so oree of them is necessarly strictly bigger than S by
conditions E sp = kS and j < k ; otherwise, all the sp's are equal to S
and so, j is equal to k and necessarly there exists lp < L since r_ lo < kL
and (lp, sp) 9~ (L, S) for at least oree ,0 .

For such a (lp,sp), by assumption, 1alp,p(z)lT(z)lp+yp < Elp,spb(z)
while for every (1,3, so), I alp,sp (z )IT (z)lp+Qp < b(z) . So, since clearly
k,'W1 <- C,

lb.i,r(z)lT(z)k(L+S-1) 2=(0) is bounded by CT(z)k

	

a'=L(0) and
aS, aSz

	

a~, ac2

C

C~1.9+r
C

	

Elp,9p

	

b(z)jT(z)r-k

	

j

	

. (0)
(lp ..p)<(L S)

	

a~1aC2

Now, for E > 0 fixed, it sufñces to choose a sequence (El,,s ) i+ ..<- of reals>>
in ]0,1[ such that, for every (L, S), L, S > 1, L + S < m

k _1
EL,s > E

	

El,s .

(l,s)<(L,s)
This can be done easily. From these, -,ve deduce that the extra terms
give a contribution bounded by

p

o<;< .
<.+;<k(m-1)

mirl {EPELks(ajTr
k)p Tpkl a'+ rf

as; a(2

We deduce from the preceding lemma the following corollary .
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Corollary 3.4 . For every E > 0, every p > 0 and e71e7 -y k E Nl, there
exists a constante C(E) such thatt

b(z)vk

	

kf(0) ~
n
< Mean,"tz l (C(E)T(z)rk (IL'k

f IT' + IRk
fI T' ) I +

0<j<k
1<r+j<k(m-1)

Proof.. We have observed that, if ¡a l,,-, (z)l-r(z)- > el,,; _lb(z), then

(El,n~-1)Tik ~
b(z)

	

Pk

	

(9kk
(0) p <C Mean"(z)(I Fk .f 1 p )

1 (g(1

and by definition, there exists no (l, s), l + s <_ m, l, s ->_ 1 such that
(l, s)<(1, m-1) . So, in this case, we find Corollary 3.4 with E = 0 ; otfi-;r-
wise, we apply Lerrlnla 3.3 to tlle first couple (L, S), L+S <_ m, L, S >_ 1
for the order < such that lai,,s(z)IT(z) I+S >_ Ej;,sb(z) . This gives the
result .

Third step : Theorem B will follow from corollary 3.4 as soon as we
have given a bourld to the rernaining terms

Mean Rtzl (C(E)I Rkf 1P) +

0<j<k
1<r+j<k(--1)

which are majorized by

(*) = Mean/?(Z)
0<j<k

1<r+j<k(--1)

where we recall that elle Ck,j (E) are defined by

~~+r P
mln{CE P (5jT T ) P ,C(E)T2Pk } f (0) .

a(i a(2

<C Mean lt (z ) (IL1k .f 1 p + I Rkf1T')

mlrl{CEP(b3 Tr)P,C(E)T2pk}

	

.f

	

( 0)
(~(1 (~(2

k

	

f
.UI.Í+r

Cr,j (E)

	

(9(j(9(2

C(E)bj+ l (z)T''(z)+CEbj(z)Tr(z) if bj(z)Tr(z) < cTk(z)

(e) (z) -

	

C(E)b'T (z)T,+1 (z) if Crk(z) < bj(z)Tr(z) < CTk-1(z)
C(E)Tk (z) otherwise .
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Observe that, since bj7-r-k+l > ,rrróf+r.-k+l we have

~k'j
(e) (z)

	

{
C(E)b

	

'(z)TT(z)+CEbj(z)T"'(z)
C(E)T

k

(z) when m.i + r - k < 0.

We are going to estimate each derivative -2Cz by L', with the help of
Lemma 3.2 . Explicitely, we have, on R(z),

r ar

	

aj+s
r = L"+

	

E

	

O'(b(z)iT(z)q-r)

	

,
~1

	

~~~

	

I<j+s<.

	

N a(2
s<r_1

and we can assurne that ~ , 0 on R(z) . This allows us to obtain an

estimatc-", on e;ach derivative

	

in terrns of L 2S;

	

and of deriva-, ~

	

,
tives cithc-;r of order strictly less than j + r, or of order with respect to
S2 strictly less than r .

Applying successively this estimate and using the fact that Or,j (E) >_

Or,, . ., (E) when r < r' and j < j', we obtain that

(*) < C Mean )? (z)
(

1 <r+j<k(rn-1)

So, after a, chango of coordinates,

Okr7 (E)

	

Ln. ra~j-,

..tl

,

~ p ) .

b(z) ,k I Mz
«q(Z)1

p < MeanQ(z) (C(E)T(z) Pk IVTgIP +Restk (E) p) ,

1

where Mk is the vector field Mz =
\ z~

(z))

	

which ls ttansverse
at z .
Now, we need the following lemma .

Lemma 3.5 . Let r, j E N .

	

There exisis a constante C such that, for
every holomorphic function g in 9, every z E V(zo) n 9, we nave

I17r7igl (z) < CMeanQ(z) (IDÍ,7jgl + Rest r (Vig)) ,

where Restr u,

	

~r(bsTe-r+~) IDe Wu1 .

Proof:: We will just give the main ideas of the proof in C2 .
It is sufñcient to prove the result for j = 0. For general j, we write the

inequality for Vi g instead of g. As before, we set f = go (D z and we will
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give an estímate on L'f(0) in order to obtain a,n estirnate on 7',,g(z) .
By lemma 3.2, we have

5(z)

1L' rf(0)1 :~ 1Fr.f(0)1 + 1Rrf(0)1 <
<C MeanRlzl (¡Frf1 +

IRrf1) <_

<C MeanRlzl (¡L'rf 1 +
IRrfl) .

So, the lemma follows, estimating R'f as bef'ore .

Now, in order to conclude for Theorem B, it is enough to remark that
there exists a constant C such that, for z E V(zo)

lo kg(z)l <_ C (IMz.g(z)j +

	

joTV'g(z)1 +

	

E

	

loj .g(z)1
i++=k

	

1 <j<k-1
r>i

J++=k
r>i

	

I<,~Jc-I

4. Lr-results

By Lemrna 3.5, we are able to estímate each JVT,,D 3 g(z)j by its mean-
value on Q(z), disregarding a rest . This allows us to see that

17TV',g(z)I + b(z)k

	

1 o'g(z)1 < CMeanQ(z)(Resrk(E)) . "

We will assume now that 9 is bounded . So, the estirrlates of Tllcorems
A and B are uniformly valid on S2 n U, where U is a neighborhood of (9Q
sufiiciently small so that thc: projection on r99 and thc; function r(.) are
well defined on S2 n U.

In the following, K will denote a compact in 9 containing the: corn-
plement of 9 n U and ho will denote the real sup{h(z) ; z E 12 n U} .

First of all, wc ; are going to give some tools necessary f'or the proof of
Theorem C .

4.1 A Whitney Lemma.
Recall that there exists a constant C such that, if z' E Qa (z) then

Q6(z') C Qcb(z) . We denote by Q' the C-uple of Q.

Lemma 4.1 .

	

There exists a set ofpoints zk E S2nU, k E N1, satisfying
the following properties :

- the,familg {Q(zk) ; k E NI} covers S2 n U .
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- each Q' ' (zk) (C-uple of Q'(zk)) is contained in 9 n W (where W is
a neighborhood of 09 containing U) .

- there exists an integer N, which depends only on 9, such that no
pointt in 9 nW belongs to more than N T(zk), k E N .

We choose V a neighborhood of ag containing U and strictly included
in W such that all of the Q'(zk) are contained in 9 n V. A fortiori, no
point of 9 n V belongs to more than Nof the sets Q'(zk), k E N.

Proof. Let us consider the sets Qk = {z E en ; C-k <_ b(z) <_ C-k+1}
for k E {ko, . ., +oo}, with ko = - logC bo + 1 (choosn such that 9 n U =
U' Qk, C is tiie preceding constant > 1k

	

) .

Q, (z) contairis a ball around z of fixed radius E' > 0, independently
of z . It follows that we, can choose a set of points z(k) E Qk such tiiat

Qk e U.jQX-k(z~ k) ) and z~ kl

	

R~c-k-1
(zik)) when l jA .j.

Moreover, wc-; can choose c sufficiently small such that, for each
.7 , R.C-k -F 2 (z~

k)
) C S2k, where

S2k = {z E en ; C -k-2 < b(z) < C-k+3 } .

Then, it is usual to sec; that no point in Qk belongs to more than N' of
the Q,C-k+2, where N' is independent of k (see [C&W] or Lemma 3.3
in [C] f'or instance) .
We repeat this construction for each k E {ko, . .,+oo} . It is clear that

the family we obtain covers 9 n U. NOw, let z E Uj,kQ,C-k+2(z~k~) . It
is obvious that there exists a unique k E {ko, . ., +oo} such that z E Qk .
Then, z E Uk_2<.j<k+2 Ii and so, we conclude that z (loes not belong
to more than N of the Q,C-k+2 . At last, since «z(k» - C-k, tlae sets
constructed are equivalent to the Q(z (kl ) and thc; lenarna is therefore
proved .

4 .2 Continuity of the Mean-value Operator MeanQ .

Lemma 4.2 . For- every a, ,0, -y E IR, every 0 < r/ < 1, the mean-
value operator MeanQ is bounded from L1 (9 n V, be, (b + rj) ,9TMV) to
Ll(9 n U, P(5 + rl)pTMV) . Moreover the norm is independent of 77 .

Proof. As b(.) - b,(z), b( .) + rt = b(z) + rl independently of 77 and
T(., b(.)) - T(z, b(z)) on Q(z), it is sufficient to prove the continuity from
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L 1 (SZ n V, dV) to L1 (S2 n U, dV) . This follows easily from the precedirrg
Whitney Lemma and from Jensen's Inequality.

LU (MeanQ(Z) (u»dV(z) <

< Efac=k> IQ(Z)1IQ(Z)1 fe
(=)~u«)IdV(C)dV (z)<

1<CE
fa(zk) IQ,(xk)I .fa'(-k)

~u(C)IdV(S)dV(z)<

< CEf

	

~u(C)IdV(C) <
k Q~~zkl

< Cf

	

IuidV. a
S2nV

4.3 Hardy Inequalities.
Let us derrote; by á the norrrral derivative which is given by the field

v = Re N whereN is the complex normal vector field N = ,j- 1_- 1 57i azi .
We have chosen U so that tlrc; funetion .FS : 09 --> Sl n U; 0 _< .s < so,
given by

.~~(z) =exp
(sw)

(z), for z E 99,

gives a diffeorrrorphism from dQ x [0, so[ onto S2 n U.

	

Moreover, s -
dist(-1~4 (z), (99) .

	

So, for every z E 9 n U, there exist s E]O, so[ and
z' E (99 such that z = .)' S (z') . We will use the following notation .

(Iul')*(z) =Iui'(z) if p > 1=

=sup {Iu (Ft(z,)) I P 7
tE[s,so[} if0<p<1andz= .FS(z~)E9nU=

=Oif0<p<1andz19nU.

Then, we will use the following Hardy type Inequality .

Proposition 4.3 . Let, k E N, p > 0. For every a, /i, y E R with
y > 0, a+ 1 > -1 anda + /3 + - > -1, there erists a constantt C such
that, for every function u E C-(Q) and every rt > 0, we have

*

f
b«(ó+rt)Q-r1̂ luiPdV < C

~f

	

b-+kp(a+11)0,7
(~ avk P) dV +

S2

	

S2nU

+

	

> ~' sup 1737ZIP/

0<j<k K
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Tlie proof of this proposition will be given with the help oftwo lemmas .
First, we consider the case p > 1 .

Lemma 4.4 . Let p > 1, 1 E R and w be any positive function satisfy-
ing

we obtain

1
w(s) < C (-) w(t) for every s, t with 0 < s < t, ;

then, for every a, ,l E R with a+l > -1 and a+/0+l > -1, there exists
a constant C such that, for any positive, mesuraóle function u deined
on R+, we have

fw U(s)Ps'(1 + s)pw(s)ds <_ C J
w

(su(s))
Ps'(1 + s)Qw(s)ds,

o

	

n

where U(s) = J.,° u(t)dt for s > 0 .

Proof.. We begin with the case w = 1 and .l = 0 . Without loss of
generality, we can assume that fo (su(s))Psa(I+s)0ds < oo . Integrating
by parts the term

(*) _ lw
(f,00

u(t)dt) P sa(1 + s)Qds,
0

(*) =p ~ ~J~u(t)dt)P -1 u(s)
(,/' .Y

t'(1 + tt)f dt~ ds+
0 Y

	

0

+ flini LC .ls~u(t)dt1

P

(~'Yt"(1+t)Rdt)Jo <

<_ C (f~
(1.00

u(t)dtI P-1U(S)S,+'(1 +s)Ads +
os

a

+Ám° [ (f00
u(t)dt~

P
SQ+1 (1 + s)0

J
) , < (1) + (2)

s

	

o

since . /~~ t"(1 + t)pdt - (sc'+ l (1 + s)p) for every s > 0, as it can be seen
easily.
By Hcilder's Inequality

(1) < C

	

~~~~ u(t)dt~ p s"(1 + s)l3ds
\

1
1-1/P

o s
00

	

1/P
(s71,(S))1's~(1 + s)'3ds)

	

,
0
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and, for every s > 0

U(s)P <
U0 00 (tu(t))Pta(1

+ t)pdt
)
(so" (1 + s)A) -I ;

assumption on w in order to obtain

so, (2) _<
J
w(tu(t))Pta (1 + t)pdt.

0

This allows to conclude when w = 1 . For general w, it suffices to use the

P
u(t)dt l

	

sa(1 + s)pw(s)ds <
o

	

/s
P

< . o

	

. .s

	

tl

	

u(t)dt

	

sa+l (1 + s)~jds,-
l,

	

f

.,Cw~t))I /P

and to conclude by the preceding result .
When 0 < p < 1, there is no such inequality for general u . But, we

can prove the following lemma . .

Lemma 4.5 . Let 0 < p < 1, l E R and w be any positive function
satisfying

t
w(s) < C ( t ) w(t) for every s, t with 0 < s < t;

then, for every ce, ,0 E R with a + l > -l and a + 0 + l > -1, there
exists a constant C such thát, for any decreasing positive function u on
R+, we have

0
l
w

U(s)Psa (1 + s)pw(s)ds <_ Cf(su(s))Psa (1 + s)I9w(s)ds,
0

where U(s) = f°° u(t)dt for s > 0.

Proof.. We set (**) = fo (f.°° u(t)dt)P sa(1+s)Ow(s)ds ; then we, write

2-7

(**) <_

	

7 57 u(2k)P2kp

	

sa(1 + s)'3w(s)ds <

00 00

<C E Eu(2k )
P
(~J~Iw( 2j )

r2 ~
1 sa+l(1+s)Ods,

7=-o° k=7



278

by assurnption ore w .
So, we have

0o

	

k
(**) :5C

	

u(2k) P2kp E w(2')(2')-+r(1 + 2j)0 <

k--oo j--00
00

	

k
2j<C E u(2k)p2kpw(2k)

	

CZk)
(2j)a+ r (1+2j)A <

k=-oo

	

j=-00
00

<C E u(2k)P2kpw(2k)(2k ) n+r (1 +2k)p <
k=-oo

<C ~~ u(s)Ps c +p(1 + S)pw(s)ds .
0

Now, we are able to prove Proposition 4.3 .
First, let us observe-; that, by hornogencity, wc-; can replace (1 + s) by

(r7+ s) in the preceding lemmas (without changing the constant in the
inequality) . Then, by properties 2 and 4 of thc; function T, we sec: that
there exists a constant C sueh that, for every z E (952, wc; llave;

s r/~
,r( .:s(z), s) < C (D

	

T(.F,(z),t) for 0 < s < t < so .

(This is because T(J:5 (z), s) <_

	

(t)
r/m

T(,rr (z), t) by property 4, and
T(.);q(z),t) -T(Yt(z),t) by property 2, since .2,y (z) E Q(.F,,(z)) .) So, the
preceding lemrrias are valid with

for every z E (952, with a, constant indeperrdent of z .
Thus, we apply the preceding lemmas successively to the function

u
. . .

.Sk dskU(sr) = f

	

f

oo
[
dk

	

(J1:"- (z»
~
1

	

dsdSk . . .ds2

where we recall that

S . Gitrt,t,ie;ii

T7_

	

(.~S (z), s) if s < so
w(S)

{ s7/"' otherwise,

s

Wk (j~~ (z»

	

Sur)

{ ~ dsk

	

(z»

	

8 < r < 8()

if0<p<1and0<s<so J=
~dk

=
dk(_Fs(z))

~
ifp>1and0<s<so=

=OifS>so .
(At each step, the function is decreasing where 0 < p < 1) . We conclude
by integration over 09 .
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4.4 Auxiliary Lemmas.
We have introduced in Proposition 4.3 the *-operator . We will riced

(for 0 < p < 1) a sort of continuity of this operator in p-normas for a
certain class of functions . We begin with the sirrrpler result which gives
the continuity for (AB)-functions .

Lemma 4 .6 . Let, 0 < p < 1, y >_ 0, a,

	

R with a +

	

_> 0
and a + /0 + ñ > 0 .

	

There exists a constante C such thatt, for e7rery
(AB)-function F in 2 and every q > 0, we have

L S"(rj+b) 0T1 (1Fw)*dV <_ C
CJ

	

P(,q +b)l3 ,-Y1FIMV) .
S2nU

	

"nv

Proof.. The proof is similar to the one given in [St] or in [B&S] for
harmonic functions .
We cover 9 n U as in Lernrna 4.1 by the farnily {Q(zi) ; i E I} and wc-;

denote by Xi the: characteristic function of Q(zi ) ; i E I . Then

But, (XilFIP)* is supported in the set

which is of measure less than C 1Q(zi)1 .
On E¡ , we llave

ba(rt+ b) t'T'̂(XilFI'')* dV.

Ei, = {z E 2; 3s > 0 such that z - svz E Q(zi)}

b(z)a(r1 + b(z))l'T7(z, b(z)) < C (b(zi)'(rt + b(zij) 3 1r^ (z ;., b(zi))) .

This last assertion follows from the fact that, by assumption en the :
indices, the function x -+ x'Y+a (71 + x)p is increaSing for :r, >_ 0 (as
a+ ~ >- 0 and a+/d+ ~,~ >- 0) and from property 2 and 4 of the function
T which imply that, for every z E Ei, we have

r/72

7- (z, 5(z» <-C
G(z)

6(Z)
+ s)

	

7- (Z, b(z) + s) <

I / rrt
<C

Cb(b(
+
s/

	

T(z - 8VZ , b(z) + s)

since z - sv z E Qb(z)+.,(z) <

<C
(

b(z)
) 1/a

77
.

(zi, bzi) .b(zi)
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So, we have

SO,

(xilFIP)* <_ sup {IFIP} .
Q(zi)

Then, applying the (AB)-functions' properties, we obtain

sup {IFIP} :5

	

C

	

.
f

	

IFIPdV.
Q(zi)

	

IQl(zi) I

	

"(zi)

.

	

P(77 +
6)0T7

(IFIP)*dV <
52nU

C b(Zi)a(77+b(zi)),T"(zi)IQ(zi)I

	

IFIPdV <_
IQ, (zi)I

	

.fQ,(zi)

Now, let us give a more difhcult lerrlma .

< C

	

P(ri+ b) 19r'1IFIMV. a
. S2nv

Lemma 4 .7 . Let 0 < p < 1, t > 0, a�0 E R and k E N such that
a+ l > 0, a+Q+ t+kP >_ 0 and a+Q+ nL > -1, a+ > -i;
then there exists a constant C such that, for every 77 > 0 an,d every g
holomorphic in 9, we nave

ba (17+b) lIr l+kp (IVk gIP )*dV<_C( .J p(rt+b)fT l+kpIVk,g¡PdV+
. S2nU

	

S2nW

+

	

ba+kp ( ,g + 6)P7-t
IOkg¡ PdV +

.IOnW

ba (rt + b) Il T t-FkP (IoTg1P)*dV <
S2nU

K Igi~'dV) .

Remark . In addition, we can choose the constant in front of the
second terco on the right hand side of the inequality as small as e and
bo .

Proof.. As in the preceding proof, we cover gnU by the family {Q(zi),
i E I} and we denote by Xi the characteristic function of Q(zi), i E I .
Then,

<

	

ba(1l
+ (S) ,l,rt+kP (iii1oTslP ) *dV

a
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But, as before, (XijVk'gIP )* has a support contained in the set

Ei = {z E S2 ; 3s > 0 such that z - svz E Q(zi)}

which satisfies, in particular, for every z E Ei,
5(Z)a(17+ 6(x)),37-1+kp(Z, 6(7)) G C (6(zi)a(17 + 6(Zi))a7-

1+kp(7i' 6(zi)))

(by assumption on the indices) .
SO,

(*) _ L

	

6a (,q + 6),371+kp(I 77-91,3)*dV <
S2nU

G CE 6(zi)a ( 1%+ 6(x;»,371+kp
(7i

6lzi))IQ(7i)1 Sllp {Iok,g ip} .
i

	

Q(zi)

Now, on Q(zi), each componerit of Ok,g is equal, after a chango ; of coor-
dínate z = <D, (~), to the surri of an (AB)-function and a rest . Lct Fk.f
be the vector of diese (AB)-functions. We have, f'or f = g o `I'z:

sup {Iok'91p} <_ sl1p {IFkf1 ,'+ In kf1p} <
Q(zi)

	

12(x;)

1

< I~'(7i)I
~a(z-)IFkflpdv+sup) {IR k flp} <_

< ,1
J

17k
1gI pdv+_

	

, 1

	

¡Rest k gl!'dv+
IQ (zi)1

	

R'(zi)

	

IQ (7i)1, Q'(z :)
+ sup { I Restk91p }

Q(zi)

where IRestkyl

	

rr=ó 1:1<á+r<k
01(6i7-r+1-k) ID Vi .9I . Now, we, just

have to estirriate the rest . By the; direct estimates, we ; have;

i +l-k
)

C ~

67-IRestk 9l	CMeanR

	

(

	

7-,.

	

Io'91
r=0(" 1.<r<k

and since for z E Q(zi), Q(z) C Q'(zi), we obtain

Slip { IRest kg 1p } <C Sup
Q(zi)

	

Q'(zi)

GC sup
,=

<
C /IP

1Q'/(zi)1 JR"(zi) j=o

C ovj,rr+1-k)\ P

O(6i)k

	

)'
Ioj91p ~

<

53PIo' .91p dV,7-kp
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So, by Lernura 4.1

**) _ Eh(zi),,(11+6(z2))aT(zz,6(zi))t+k,IR(zz)I SUp fiRestkgl p } <
i

	

R(z;)
k

< C1:

	

Ip'gIpaa+jr'(rt + h)f3TtdV
j=()

	

52nW

<_ C

	

(IVkglP)
*b«+kr (rl+8) Q-rtdV

	

by Hardy Inequality <_<JS2nW
<_ Cl

	

IpkgIpp+kr(rl + 8)aT tdV +

	

IgI rdV

	

by Lemma 4.6 .
2nW

	

K

The other term of the rest is estimated in the sarne way.

4.5 Proof of the Lr-result of the Auxiliary Theorem .
We rccall what we arre going to prove the; following result .

Auxiliary Theorem .
Let, 12 be a bounded C°"-domain offinite type m in C" . There erists a

compact, set, KC 9 such that, for every p > 0, every k E Nl and q, t E R
withq+ �L >-1 andt>0,

4.6

f IgIr'P-r tdV and

	

IpkgIn
p+nkr'dV

sz

	

sz
are equivalent, modulo an error of .'K Igl rdV, for g holornorphic in 9.

First, it is easy to see that, by the mean-value property of holornorphic
functions and the continuity of the mean-valué operator (Lemma 4.2),
we llave

Ipk glpóq+kp,rW < C~~ IgIPbq-r tdV +

	

IgIPdV)~ .
. S2

	

S2

	

K

The converse follows from Hardy Inequality (proposition 4.3) and Lemma

/. IgI rf'T tdV <C (

	

h`)+41Tt (,Ip .yglr')* dV +~. IgIPdV
)

<_
. 12

	

12nU

	

KK

<C
(J

h'2+3r>Ttlp.Sgl'V+
.

	

Igl'dV
2

	

f
K

,

if s is sufficiently large, when p < 1, in order to be ablc to apply the aux-
iliary Lernrna 4.6 . This gives the result if we can take .s = k, otherwise,
s > k and the preceding estimate gives the result .
Now, we are able tq prove Theorem C witlr the help of Theorems A

and B and all the pre(Tding results . Narnely
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Theorem C .
Let 9 be a bounded C°°-domain of finite type m in W.

	

There exists
a compact set K C 2 such that, for every p > 0 q, t E R and k, l, r E fN
with q + pr + �L > -1, q + pl + pk+t > -1 and t > 0

sZ

are equivalente, modulo an error of fK Igl rdV, for g holomorphic in S2 .

4.6 First part of the proof of Theorem C : Direct Estimates .
We are going to prove in this paragraph that, when q+pl+(t,+kp)/m >

-1 and q + pr + t,/m > -1

Ipt7Tglrh9+pdTt+kpdV < C(Iorglpbq+T'rTtdV + L IgjT'dV) .
S2

	

S2

	

K

We begin with the case l = 0 . The general case; follows easily from the
Auxiliary Theorem and Lemrna 2.2 .
By Hardy Inerluality (proposition 4.3), we have

(*) =

	

I71,g Irb9 Tt+krdV <
sz
< C

C.~

	

((IV.Vk'g1p)*óq+spTt+krdV +

	

IgjrdV~
S2nU

	

. K

k-1 .s

+

	

f

	

(IorVjglp)* b9+spT t+krdV +

	

I gIrdV

	

,
r=Oj=1 Onu

	

K

	

)

by, Lemma 2.2 . We choose s sufficiently large when p < 1 in order to be;
able to apply the auxiliary Lernma 4.7 . So, by lerrlrna 4.7

(*) < C (f

	

IVTpsglrb9+sp,T,t+krdV +
S2nW

IoTot9ip b9+ptTkr+tdV
Sl

ptpTq
p b9+ptTkr+tdV and

sZ

I7rglr b9+prTtdV

C ~~

	

(IoTosglr)*
bq+sp,Tl+krdV+

S2nU

k-1 s

+

	

IVTV'g lpbq+sp,t+krdV+
r=0 j=1

	

S2nw

G

1

	

Ivr+jglpb9+(r+s)p,t+(k-r)rdV +f IgI pdV ) .
=1 S2nw

	

K
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Then, we apply the first part of Theorenl A and the L1 -continuity of the
mean-value operator (Lemma 4.2) in order to obtain

(*) <- C (f

	

Iosglpbq+sprtdV+
S2nw

k-1 s

+y:

Then applying Auxiliary Theorem and the fact that b( .) < Cbo on QnW,
we obtain that

r=o
II

	

Iojglpbq
+sp,rt+ (k-r)pdV+

-1 JS2nw

+
1:"
1

	

1Vr+jg lpbq+(r+ .s)p,t+(k-r)pdV -{- L IglpdV
r=0 j=1

	

S2nw

	

K

f. IV
,
.glpb`tTt+kpdV <C ~~ IDsgIpbq+`PT tdV + ~' IgI''dV) _<

. S2

	

S2

	

. K

< < C
(19

I Vrsl pbq+rprtdV+ ~' I sI pdV
)

.
KK

4.7 Second part: Converse Estimates .
We are going to prove now that, when q + pl + (t + kp)/m > -1 and

q+pr+t,/m > -1

N7r~JIpbq+pr.rtdV _< C
(19

ID l v7, gl pb`)+T>> .rt+kPdV +

	

IgIpdV) .
flc

We assume that l = 0 and r = k. The, general case, follows easily by
the Auxiliary Theorern . To sinlplify, we will assume also that p > 1 .
When p < 1, the proof follows the same lines except tliat we have to
apply sufficiently the Hardy Inequality in order to be able to apply the
auxiliary lemmas .
The proof will be given in two parts .
Firstt partí: an a priori estimate .

Lemma 4.8 .

	

Let p > 1, k E Nl, q, t E R with t >_ 0 and q + (pk +
t)/m > -l, then there exists a ronstantt C such that, for every rt > 0
and every g holomorphic in 9 satisfying g E C-(íí), vwe have

~S2Iok9lpbpk(7l+b)1TtdV<C CL I7T9Ip(n+Ó) q,r.t+kp
dV+JK

IgIpdV~ .
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Proof..

For each e > 0, every q > 0, we have

f

~Vkgl,b,k(r7 + b)1TtdV < C (L I7k glr(rl + b)gTt+kPdV+

+

	

Restk(E)r(n

+ b)q-rtdV+	

IgI

rdVl

n

nU/IK

by

the converse estimates of Theorem B

.

So, it suffices to estirnate the

remaining

terin

.

(*)

- Ignu	

+

b)9-rtdV

.
S2nU

First,

we observe that Ck,~ (e) is always bounded by (Ce +C(e)bj~~,)b~T,

.

and

is bounded by CTk when j + (r - k)/m < 0

.

So wc, obtain

(*)

_< (G,(s)bl/'n+Ce)	

YI

	

IV'0r"gj,(7j+b)`'Tt+TT~b.TT~dV+
s~nU

0<j<k

j+

r'nk >O

+

C(E) /I	

~

	

j7'7~,gjr(r)

+ b)`TTt+kPdV

.
Jonu

o<j<k

j+

rmk <0

Then,

we can apply Hardy Inequality to each term in order to obtain

(*)

< (C(E)b0/m + CE) J	

IvkvTsIP(17

+ b)qT`+rpbkPdv+

52n1J

which

gives with Theorem A

j+

rrnk <0

S2nU

0<j<k

j+

rmk <0

IDk7Tg1,(77

+ b)`TTt+krb(k-

.T)"dV

(*)

< (C(E)b,im + Ce) J	

Ivkglp(17+

b)1T'bk''dv+

S1nlJ

+

C(E)	

1:

	

1okglP(T7

+ b)`TT,+(k-r)rb(k-j)T'dV _<

S2nU

o<j<k

:~

(C(E)bj/' + Ce) L	

U
I7kg1T(ri

+ b),T`bk'dV

as

mj + r - k + 1	

_<

0 in the second term (so that b-jTk

:

''-1	

<_
,r-mj+k-r-1

< c)

.
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So, the result of the lemma follows by choosing e and 6c) sufficiently
small (reducing -9 n U if necessary) .

Second partí : use of the a priori estimate
We denote by 9, = {z E en;

	

r(z) < -e} for each e > 0 . We apply
the preceding lemma in Q E , to g holomorphic in 9 arld C-(W) for every
e > 0 . Then there exists a constant C independent of E arld 17 such that

f̂ jOk gj P6Ék(rt+6E)q rÉdV<C(~I0`g1 r (rl+6E) q E+kPdV+1IgIPdV~ .
,LE

	

-

S2E	KK

Therl, f'or 71 = e, we obtain, as 6 - 6E + e, for every e > 0

^

	

VkglP6É k 6qTÉdV < C (f I7kg)P5I'TÉ+kPdV +
, LE

	

~E

lgi PdV) .

So, it suffices now to let e --~ 0 in order to conclude by the monotone
convergence Theorem as S E -> 6 and rE -> T in increasing, t, + kp _> 0,
t>0andpk>0 .

5 . L°°-results : proof of the second part of the
Auxiliary Theorem and proof of Theorem D

As the proofs follow the same line of the proof of the first part of
the Auxiliary Theorerrl and of Theorem C respectively and are simpler,
we will just give, for the reader's convenierlce, , the analog of the Hardy
Inequality which is thc; following lemma .

Lemma 5.1 . Let, cz E R and 0 >_ 0 . There exists a constante C such
thatt, for every function u E C'(Q), we have, .for every 71, > 0

slip {0,(6-To)IUI } <

9 n U .

< C
(slip

{Ova+lTO) I
Óu I } + s~ 1711~ if

	

{2, . .,776} .

slip {6 1`0 ,(Vv3)JUI } <

<
C

( Qslip {(9,(6n+l .r/j) 1
971 I,} +

SK1171,1'

	

if (1 E {2, . ., 776} .

Proof- As u E Cw(SZ), it is sufficient to prove the preceding result on



Then

HOLOMoiiPmc FUNCTIONS IN I'INITE TYPE DOMAINS

	

287

Without loss of generality, we can assurrie that M = supo { C'(b`k+ I T

á- I } < oo . Then, we have

6° d
lu(

	

fo
)1 _

	

dsu«
- svC)ds + u« - bovC) <_

f6 °
<M

J0
6°

	

ds

	

60
< M

	

b

	

+1

	

+MC

	

ds+sup luj
lo

	

((0 + s)

	

T (~ - sv~,b(O + S)

	

K

Let us estimate

_ 6°

	

ds
*

	

a+I (i

As ~ - sv( E

	

we have, by the second property of T, that

since rnax2<l<� , - r-2<l<_,n .
But,

6° Al(~)"/I

Jo

	

d
W0 + s)«+l+R/1s <

ds
+slip jul

0' ((b(() + S)-+IT"(~ - SVC, b«) + S))

TK - Svc,b(0 + s) - T(~,b(0 + S) .

f6°

	

ds

(*) ~ Jo

	

(S(S) +.S)0,+rTA(C, b(O + S)
<

6°

	

Al «) 0 / 1
2<l<n~ (6(0 + S)«+l+,~j/t ds <

6°

	

Al (~)lill
<C max

	

ds
2<1<m f (b(0 -i- S)a+l+i~/L '

So,

C'(6aT13 ) - 1 if - Q/tx ~ {2, . ., m}
(

	

) -

	

[(9'(5 - T13»1'] -1

	

for every ¡r. > 0,

CA,(C)1'llb(C)-("+<31I) if cx + 0/l > 0,

C if a + ,0/l < 0,

log

if - li/cr E {2, . ., m} .
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6 . Theorems E and F

We; are going to give the proof of Theorern E . The proof of Tlieorem
F follows the sarne line .

Theorem E.
Let S2 be a bounded C°°-domain of finite type and s > 0.

	

There ex-
ist a compact set K C 9 and a constant C > 0 such thatt, for every
holomorphic function g in 9,

~~ I
p17r ..iPbP(t-.q-kl

	

)TkPdV < C (
Ilo~'911ws,n(Q)

+ .~K

l9iPdV I

for l integer, p(l - s) > -1 .

Proof.. Let g be a holomorphic function in 9 and s _> 0 . First, let us
remark that when s is an integer, the result of Theorern E follows easily
frorrr thc results of The;orem C since, for l E IN with p(l - s) > -1

I
.
[V'S,7,,gip5-kr'/m7-kPdV and

	

1v t v¡1.9l r~h r'(1-
.s-kln~)Tkr)dV

. S2

	

S2

are equivalent, modulo an error of .fx IgIPdV ; and

J
Iv3 vrgIPó-kPlmTkPdV < Ilvrgllw

This allows to conclude . The same remark allows the proof to be, redueed
to thc case s E](), 1[.

So, it suffices to estimate f9 wvk.glr'áp( r-,5-k/m)TkPdV .

	

The idea
of the proof is the one used in [Bo&Si] : it is to apply the f'ollowing
irrequality .

For every b > 0

bP
1,3

	

¡vuiPdV <_ C (

	

iul"dV +621,

	

lAulPdV l
(o,a)

	

a(o,zó)

	

~(o,sa)

wlrere; C is independent of h .
Let us denote by {Bj , j E J} a covering of Whitney's type, where the

I3.,'s are isotropic balls whose radius is proportionnal to thc; distante to
the boundary bj . Let j E J and ( E B (Bí is the ball with the same
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center as Bj but whose radius is twice) . Let us apply the preceding
inequality to the function z --> ?k--"y(z) - 17,1,g(0 .

J

	

ID (Oi,g) ¡pdV <_ C

	

¡0~9(z) - V1,9(~)¡pdV(z) +
Bj

	

(fB í

So, integrating in the ( variable over B,(zj ,bj ) and observing that, on
this set, we have Iz - SI < cbj, ó( .) - 5j , 7-( ., «.» - T(zj, aj), we, obtain

* j =

	

IV
(V,.g)

Ipbp(1- .s
-k~TkpdV <

.

	

f3j

We have to estirnate

< C
(~B.xB . I

V

1'I
~z

~I
VTg(C)~'' dV(z)dV«)+- ~

	

2n+ps

(since ó-k1,,rk < C) . So, surnrning on j , w(', obtaln

<_ C

	

.S2 xs2

IDr , . Iz z)
~I
o7

	

«)Ip dV(z)dV(~) +(j2-+p"

+ +~ IA (01,9) Ix'Sp(2-s-klnL)TkpdV +

	

1 .9IpdV) <_

S2

	

L
< C

(11 7k gIl
pW.,p(Q) + J

	

l~ (Or9) ~''h''(z .s-k/, .1,)Tkr'dV +
-

	

st

+
J

	

I .g 1pdv) .
lt

But, by the harmonicity of g, we have 0 (Dk,g) = [0, 71,] g1 so,

lo (oTg) I <_ C

	

Vr7,ojg1
1<j<2

O<r<k-1

1<j<2
()<, <k-

++ a;p f

	

~o (ohg) IYdV

+

	

10 (7T.g) I
pbp(2-s-klrn),rkpdv

.
j

I7 'L' N7j g 1 pbp(2- s -k/rn) 7-kpdV.
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But, this tc;rrn is less tlra,n j'Io (N7hg)I
r,br,(a_.s-klrra)T(k+1)7>dV+IK I gIP'dV

by Thcorcrrr C . So, wc; obtain an a priori estirnate and we conclude as in
the preceding paragraph : we apply this inequality in 9, to g holornorphic
in 12 . Wc-; obtain

VOi,gl
r 8É(r- Y-tc/nz)T

E rdV <C IIDh.qIIw9 .p(szE ) + J' IgIPdV
sz E	x

<C Vi'g1Iws,r(n)+ f ~gl rdV,
K

and we; conclude; by Fatou's Lemma.

Now, it suffices to apply the results of Theorern C Hand D to obtain the
results of Corollar;y B .
Acknowledgements . 1 would like to tho-ank rny advisor Aline Bonarni

f'or helpfizl discussions and suggestions about this work .
These results llave been announced in a prcvious papel called
"Comportement des forrctions lrolomorplres dans les directions com-

plexes tangentes d'un ouvert de C' de typc fini" (sce [G2]) .
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