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BEHAVIOR OF HOLOMORPHIC FUNCTIONS
IN COMPLEX TANGENTIAL DIRECTIONS
IN A DOMAIN OF FINITE TYPE IN ¢

SANDRINE GRELLIER

Abstract

Let £ be a domain in €™, It is known that a holomorphic function
on £ behaves better in complex tangential directions. When Q is
of finite type, the best possible improvement is quantified at each
point by the distance to the boundary in the complex tangential
directions (see the papers on the geometry of finite type domains
of Catlin, Nagel-Stein and Wainger for precise definition). We
show that this improvement is characteristic: for a holomorphic
function, a regularity in complex tangential directions implies the
corresponding regularity in all directions. We give a pointwise
inequality in both directions between the gradients and the com-
plex tangential gradients. We characterize Besov, Sobolev and
Lipschitz spaces of holomorphic functions defined on £ by the
behavior of complex tangential derivatives.

0. Introdu_ction and Results

Let £ be a bounded C™-domain in C™. Tt is well known that a holo-
morphic function on §! behaves twice as well in complex tangential di-
rections: this result follows from the existence of a polydisc whose size,
in the complex tangential directions, is proportional to the square root
of the distance to the boundary 0% (see [G&S] and [Kr1]| for example).
It is also well known that the converse is true when (1 satisfies (see [H],
(R&S])): :

(P) the tangent space is generated by the Lie brackets of real and
imaginary parts of complex tangent vectors.

When Q is of finite type (see (K] and [B&G]), the improvement of
the behavior of holomorphic functions in complex tangential directions is
better. It follows from the existence of a polydisc whose size is larger in
complex tangential directions and depends on the flatness of the bound-
ary. In this case, there is also some kind of converse results: a regularity
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in complex tangential directions implies a corresponding regularity in
all directions. In [Kr2] and [P], some converse resulis follow from real
variable methods on 812, using the Campbell Haussdorff Formula for in-
stance, while resuits in this direction may be considered as a special case
of the deep theory of [H] and [R&S].

Qur method, which is clementary, is different from theirs and follows
from the first proof of Stein on Lipschitz estimates (see [G &8]). We give
pointwise estimates between gradients and tangential gradients of holo-
morphic functions in both directions applying Cauchy Formula on the
polydiscs inside §2. These estimates generalize to domains of finite type
the results of [G1] which deal with domains satisfying the (P} property.

Let us define the following.

Write 2 = {r < 0}, where 7 is a £ function satisfying

dr # Qon 8%t = {r =0}

Define the complex tangential gradient of order & of u, {VEu}, as follows.
It is the vector {L;,Ju; ILJe{l, ., n}k} where

ar &8 ar @8 o
Lz.j—a—aa—%*a}&;. i,7€{l,.,n}

and Lg’_} = Lihji“'Lik,}'k when I = (i],,,,ik),J = (jl‘..,jk).

Denote by 8(.) the distance to the boundary of 2. Assume that Q is of
finite type m € N. Following [NSW] or [C], we use a function 7(.) =
7{.,c6(.)) giving the sizc of the biggest ball inside I in the complex
tangential directions. This function satisfies c62/2(.) € 7(.) < C&( /™.

Roughly speaking, we are going to show that, for a holomorphic fune-
tion g defined on §2, a sizc cstimate on {§'V'g} implies the same size
estimate on {7*V%g} and also that the converse is true. The first part
of our work is to majorize Tk|fo~g| by the mean-value of |g| on a polydisc
adapted to the geometry of €1 It is what we call the direct estimates,
Such an cstimate is implicit in sorme works but is not explicitely written
(see [B], [C&K] and [Kr3]}). The main part of our work is to show
the converse: §%|V¥g| is majorized by the mean-value of 75|V%.g|, disre-
garding some remaining terms. It is what we call the converse estirmates.
Compared with the nsual mean-value property of holomorphic functions,
these pointwise estimates show that V&g behaves at least as a complete
gradient of order k/m and at most as a complete gradient of order &/2
(using the property that ¢8{.}'/2 < 7{.) < C8{}1/™).
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Using these pointwise inequalities, we characterize Besov, Sobolev and
Lipschitz spaces of holomorphic functions on §2 by the behavier of com-
plex tangential derivatives.

Let us notice that, when n > 2, we should distinguish each complex
tangential direction in order to obtain the optimal resuit; then, we would
be able to measure the exact improvement of the behavior of holomorphic
functions in each direction. But up to now, we do not know in which
amount of generality one can construct apropriate polydises.

We use the following mean-value operator
1

Mean®# (y) = 0w o [u{C)] dV () zeQNy,

where U/ is a neighborhood of 881, Q(z) is the biholomorphic image of a
polydisc R{z} centered at 2, whose size is £6(z) in the complex normal
direction and T{z} in the complex tangential dircctions; ¢ will be chosen
so that, in particular, Q(z) C Q.

Now, let us state our results. We begin with the direct estimates.

Theorem A.

Let 2 bz o C™-domain of finite type m in C*. Letk, 1 e N, p> 0. For
each zn € 051, there exist a neighborhood V(zg) and o constant C such
that, for every holotrorphic function g in 2 and every z € V{zg) N Q

(1) 7(2)*?|Vhg(2)|” < C Mean®=(Jg).

. Tl
(2) 8(2)Pr(2)}7 |V Vig(z)|” < C Mean ) [ 673 |Vig)” | .

3=1

Also, we obtain converse estimates which allow us to cstimate a com-
plete gradient by a tangential one, disregarding some remaining terms.

Theorem B.

Let © be a C™-domain ofﬁﬁz’te typem inC*. LetkheN andp > 0.
For each 2o € 30, there exist a neighborhood V{(zg) and o constant C
such that:

Jor each € > 0, there exists a constant C{e) such that, for every holo-
morphic function g in Q and every 2 € V{(z) N

§(2)7 |v*g(2))” < C Mean®® (C(E)Tkp [VEg|” + Rest"(e)”)
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where

Rest®(e) = z 05 () |V Vig]

1<+ <h{m—1)

and . . :
C{e) ()17 (2) + Ceb {2} (2)

OF (e)(2) < {

ri(E)z) < Cleyr*{(z) whenmj+r—k < 0.

Remark. The main terms in the previous two estimates are homoge-
neous in the following sense: each derivative of order r in the complex
tangential directions appears with a factor 77 and each one in the other
directions with a factor §7. In the remaining term Rest*(e}, cach deriva-
tive appears with a smaller factor,

By the mean-value property and Thecrem A, we can majorize Rest®(e)
by a small constant times Mean%(*}{|g|?). However, for technical rea-
sons, we will need this complicated form of Rest*(e) (in order to be able
to apply Hardy inequalities for example).

Before giving the applications of the previcus theorems, let us give the
following result. :

Auxiliary Theorem:.

Let Y be a bounded C°° -domain of finiie type m in C". There exists a
compact set KX C ) such that, for every p > 0, everyk € N and g, £t € R
with g+ £ > —1 and t > 0,

/|g|”6q'r‘dv end / |vEg|” 59+Pert gy
0 o

are equivalent, madulo an error of [, |giPdV, for g holomorphic in Q2.
In the same way, for every k € N and every q,t € R withg+ £ >0
andt >0,
sup{(g|697'} and sup{|V*g|§91P*rt)
Q o

are equivalent, module an error of supy |g|, for g holomerphic in §1.

As in [G1], we shall deduce from the estirnates of Theorem A and B
a characterization of Besov, Sobolev, and Lipschitz spaces in terms of
complex tangential derivatives. _

The first theorem is an LP-application of the previous estimates and
will allow us to obtain a characterization of Besov and Sobolev spaces in
terms of complex tangential derivatives.
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Theorem C.

Let 2 be o bounded C°°-domain of finite type m in C". There erisis
a compact set K C §t such that, for everyp> 0 gt € R and k,I,r € N
withg+pr+L£>—1,¢g+pl + % >—1landt>0

/ |VEVg|” 8747 et dy

; ;

/ |V V59| 697 Pt aY and
2

/ (V7 glF 67PT 7t qV
9]

arc equivalent, modulo an error of [, |g|PdV, for g holomorphic in Q.

A second theorem may be considered as an L™-application of Theo-
rems A and B and will allow us to obtain a characterization of Lipschitz
spaces in terms of complex tangential derivatives.

Theorem D.

Let 1 be e bounded C*°-domain of finite type in C". There crists a
compact set K C §2 such that, for every q,t € R, cvery k,{,r € N with
g+I+EL>0,t>0andg+r+ £ >0,

sup {]v;v!gl 6q+£1_.fc+!} ,
o

sup {| V! Vhg| 6775 4Y ond
)

sup {|V7g| 697!}
)

are equivalent, modulo an error of supg |gl, for g holomorphic in L.

We use the following notations.
- H{} is the set of holomorphic functions on §2.

-Forv> —1and s € N, Bf, is the Besov space of order s and weight
~ defined by

By=1{a¢€ H(Q);/Q |V°9|P 67dV < o0}

- For & > 0, A, () is the usual Lipschitz space on {2 (see [Krl1]).
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-For s > 0Dand p > 1, W*P({}) is the Sobolev space defined as in [Gr}
to be the space of functions u satisfying

|ulz) — w(GF
/-/Slxﬂ Iz_ 12n+3p dv(z)dV(C)<OO

As usual, this definition is extended to negative value of s by duality.
We recall (cf (D]} that,
A NH(Y) =

= {g € H{); sup {é'k_“ |ng|} < oo for every integer k > a} .
0
Then, we obtain the following corollary.

Corallary A.

Let Q be a bounded C°°-domnain of finite type tn C", Letp > 0, v > ~1,
a > (. Then, for every g holomorphic in Q,

(1) geB @/ |Thg|" 67 PRV < oo

1
for k integer, k > m(s — i)
7

(2) gehA() e sup {r*67= |VEg|} < 0

for k integer, k > ma > 0.

It is known that, for s > 0, the Sobolev space W*P({2) N H(Q)
is equal to Bz,p(k_s} (f1} when p > 1 and % is an integer such that
plk — 5} > —1 (see [Bo&Si], appendix); when s < 0,W*P({2) N H(Q)
is equal to Bf _ (€} (see [L]). This gives, with the previous corollary,
a characterization of W=P({Q) N H(Q) in terms of complex tangential
derivatives. '

As in the case when ) satisfies the {P) property (see [G1]}, we can
characterize the holomorphic functions g such that Vf}.g € WP(Q)) in
terms of a Besov property.

Theorem E.

Let £ be o bounded C™°-domain of finile type and 5 > 0. There ex-
ist a compact set X C O and e constant C > 0 such that, for every
holomorphic function g in 0,

f’vivkg|i’6;0(i—s k/fra) kpdV(C(HV q||w.,p )_;./K|g|?’d1/)
for t integer, p{l — s) > —1.

A similar theorem is available for Lipschitz spaces.
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Theorem F.

Let £ be a bounded C®-domain of finite type and o > 0. There cz-
ist a compact set KX C & and a constent C' > O such thael, for cvery
holomorphic funciion g in 82,

Ik fl—a—kfm)_k &
sgp{w VT9|6 T } SC(||VT.(?“,\0(Q)+5§;}{I9|}>

for 1 integer, { > .
These two results give the key to the following corollary.

Corollary B.

Let £ be g bounded C°°-domain of finite type m € N, let k € N and
s> 0. Let g be a holomorphic function on Q such that Vig ¢ WoP(Q2)
(resp. Ao(R)); then g is in WHEMP(Q) (resp. Apyr/m{0})-

As a reciprocal result, we can prove that, for a holomorphic function
g and for 5 > 0, g € WH*/22() (resp. g € A,yx/2(Q)) implies that
Vg € WoP(Q) (resp. Vg € A,{Q)), which is the best result of this
kind one can hope. For this result, we use the fact that (cf [Bo & 8i),
for every s > 0, every integer k such that p(k — 5} > —1 and every
function u defined on O satisfying

/ |Vku|p =314V <« o0
Q

then u € W*P(),

When k = 1, Corollary B c¢an be deduced from the work of Rostchild-
Stein {see [R&S]) or from the work of Krantz for Lipschitz spaces (see
[Kr2]).

Remarks. - The finite type hypothesis is not necessary to obtain
direct estimates. As in [B], we can define a new function r, for cach
m > 2, without any assumption on the type of £, which allows us to
define a2 new pseudo-metric on the level lines of € with the help of 7.
Then, the direct estimates are true with this new function for all m > 2.

- A counterexample. The conditions on the orders of derivatives £,{,r
in Theorems C and D are sharp.

For example, when @ = {z € C%|2|? + |22|" < 1} which is of finite
type 4, let us define

g{z) = 22 log{l — 21}
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on . Then it is easy to verify that g € Ay{f2) N H(Q) (because
/4
|Vg(2)| < C8(z)~3/*) although |Lg{2)| is not bounded by ﬂf(l:—}-—
The proofs of Theorems A and B will use the following new system of
coordinates. :

1. Special Coordinates and Polydiscs

Let £ be as before. Let zo € 8¢ as dr{zo) # 0, we may assume that
g—; # 0 in a neighborhood V{zp) of z9. The following Lemma is a version
of a result of Catlin {scc [C], and also [F&S8]).

Lemma 1.1. For cach 2 € V{z) N 9§, there exisis a biholomorphic
mapping P, from C™ to iiself such that the funciion p(€) = r o ®,(() is
of the form

0O =r@+Re(C)+ > anxdd T O (IO + 1)

JHcmn—1
1ALIEIZ L)+ K]S m

where ' = (2, ..,(n) and also

(I)z(g} = 21+ du(z)CI + Z d;’(z)gf"*, 2z + C?] &+ Cﬂ
|Ll=1

where do(.}, di{.); |L] = 1,..,m depend smoothly on z and dp{.) # 0 in
‘7(29).

Remark. This lemma allows us to estimate g and its derivatives: it
gives that

6J9 . 89 .
—_— = - . < < ve _t
57 @ =0fr JENT with 1S T S, 5(0) = 5,
FE{E P » |
P {0) = asi(z) for JJ K e N"71 I |K| > 1; {J] 4+ |K] < m.

Proof: We are going to apply the samc argumcnt as in [C] to construct
the function ¢, by induction on m.

For each 2z € V{zg), we set

i=2

-1 "
20~ |+ (5] | $-2 50 ,mcz,..,znm)
- 5
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then 02(¢) = r 0 8({) = Re(¢1) + O(IK]*}.
Assume, now, that we have constructed a function &1 - C* ¢
such that g; = r o ® ! satisfes
{x} _
—K f
alQ) = () +Re(G)+ >0 anxl@) T 10 (I + 1l -

JKEgmnr—1
LKL Kt

If we define &' = ®~! 0 ¢! where

2 8%

EF(U)C’L,C:}W,G‘

475:(() =|&-
PEo=d,
Lemn 1
then piy1 = 7 o O satisfies the analog of () with I replaced by I + 1.
Thus, if we set &, = ™, we have finished the proof of the lemma. B
Now we arc able to define the polydisc around z, as in [C].
We set Ai(z) = max {|ayx(2)];|J| + | K| = {}; then, as §2 is of finite
type m, there exists [ € {2,..,m} such that Aj{z) # 0 for z € 5Q and
furthermore, for z in a sufficiently small neighborhood V{z). Then,

1/t
7{z,8) = min{(ﬁ%‘}) , = 2,..,m} is well defined. Let us define

0o

Qs(z) = @ (Rs(2)) = 2. ({C € €™ |Gl <8, K] S 7{2,6)}).

One can verify that the properties satisfied by 7(z,4} and Qs{z} when
n = 2 are still available in the general case.

We give some of them.

1 - There exist some constants ¢, C > 0§ such that, for every z € V{2p)
and every 0 < 6 < 1, we have

8'/? < 1(2,8) < C8'/™.

2 - For cvery & Rufﬁcmntly small and every 2 € Qs(z"), 7{2,8) =~
(', é). :

3 - There cxists a constant € > 0 such that, if 2 € Q4(2") then
@s(z) C Qes(Z’) and Qs(2') C Qeslz).

172 N\ Hfm
4-1f§ < 6 then (_g_) (2,8 < 7(2,8) < (g_) {(z,6").

We conclude that, obviously, there exists a constant ¢ such that , for
each z € V{z), ch(z)(z) C . We will write ({2} = Q4(.y(2) and
R{2} = Res(xy{2)-
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b - In addition, for every { € (}{z), 7{{) = 7(z}

(where 7(z) stands for 7{z, c6{z))).

6 - By definition of 7{.}, for cach z € V{zg), there exist J, K € N~~!
with |J], | K] > 1, |J] + | K| € m such that |aj g (2)jr{2)/HE] = §(2),
while for every (J, K), we have |as x (2)|7(2)//1H1¥] < §(z). So, for each
2 € V{zg), the following holds:

Z Eaj,K(Z}lr(z)”H'Kl ~ §{z) with constants independent of z.

1A KEm
(BN 2

Remark. Inthe work of Nagel, Stein and Wainger (see [NSW]), there
is an equivalent definition of the function  which is intrisic. Explicitely,
these authors construct an intrisic function A{z,t) for any 2 in §2 near
85 and any t > 0 sufficiently small such that A{z,7(z,8)) >~ &

2. Direct Estimates: proof of Theorem A
We are poing to prove Theorern A. Namely

Theorem A.

- Let §1 be a C™-domain of finite type m in C". Letk,l €N, p> 0. For
each zg € 851, there exist a neighborhood V{zg) and a constant C such
that, for cuery holomorphic function g tn Q0 and every z € V{zg) N

(1) 7(*|V5e(2)|" < C Mean ) (igl").

!
(2)  8(2)"Pr(2)*7 |VIVEG(2)|" < C Mean®) | 673" Vg7 |
Jj=1

To simplify, we are going to prove this theorem in C?. Given z € V{zp)
and ¢ holomorpkhic in , we set f{¢) = go®.{¢). Then f is holomorphic
in Q, = ®7(). We denote by L' = 3%%8—(21 - gfl—gg—; a holormocrphic
tangent vector field.

In order to prove Theorem A, we are going to apply Cauchy Formula
to f.

For ¢very 7,7 € N and every p > 0

. P
gi+r

3 f S 24 C 24 r‘/
8o SPPIT(2P i 1<en(ayilal<r(a)

We see that the domain of integration is R(2}. In order to conciude,
it is sufficient to remark, before changing again the system of coordi-

nates, that L'® £{0) is almost equal to (%);c %g({}). In fact, we have the
following lemma.

(0) OV (().
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Lemma 2.1. Let k € N*. For every C™-function u, we have

1k ak
P = (2) GOF ¥ 0(3@8@”)

T<mj+r<k=1

where the O are uniform.

Proof: We can show by induction on k& € N that there exist some
constants ¢;r, 1 < 74 7 < k, such that

g™ +"“g Hotr
- 5 S (5t o

1<j+r<k Ee ;v

where Ey ;- denotes the set of couples {rmy, ny), ¢ = 1, ., k, which are in
lexicographical order and satisfy Zle my = k-7, Zle n; = k—r with
m; + n; > 1. Furthermore, there exists at least one integer ig € {1, .., k}
such that (my,,7i,) = (0,1) or (1,0). So

N B mitn.
LR = >, > e (H scacy )) ag;acz{

1<jbrsk By jr

Since g is a C*-function, each coefficient of this surn is uniformly boun-

ded. So, it suffices to show that the coefficient of é’ciacr((}) is cqual to

zero except when mj + r < k — 1. By assumption, we have 3—%5(0) =0
for 1 < n < m. So, the only non-zero coefficients come from a subset
of By ;, which is equal to the set of couples (m;,n;) such that, either
m; > 0orm; =0and n; > m.

Let us denote by J the number of m; which are equal to zero. We have
my =my = ..=my =0 DBy assumption, k-7 = Zf:JH m > k—J
and k—r =320 ni+ Doy, mi > m.

So, k — r > mJ > my. The result follows. W

Then, the first part of Theorem A follows from Lemma 2.1 and from
Cauchy Formula. To prove the second part, it is sufficient to apply the
previous estimate to the derivatives of g and to use the following easy
lemma which is left to the reader.
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Lemma 2.2. For everyl € N, k € N* and u € C™(}), we have

|V'Vhul < |VEViul+ O > |VEVR| |

15t
osrek-1

V] < |9 Eu] + O VEViu
Fi

1eisl,

ggr<k—1

where the O are uniform on Q.

3. Converse Estimates: proof of Theorem B

We are going to prove Theorem B. More precisely, we are going to
prove the following.

Theorem B.

Let Q be a C™-domain of finite type m i C*. Let k e N and p > 0.
For each zg € 911, there exist a neighborhood V{zy) and a constant C
such that: .

for each € > 0, therc exists o constani C(g) such that, for every holo-
maorphic function g in @ and every 2 € V{29) N

6(z)*» |V"g(z)|p < C Mean®®) (C(e)rk" [Vf}.g|p + Restk{s)?’)

where

Restk(S) = ( Z Q’f’j (e) [v;,ngl)
1<r 45 <h{m—-1)
and
CLe)63+1(2) 77 (2)+Ceb? (2)77(2) if 6 (2)77(2) < % (2)
Ok, ()(2) = § COP(HT(2) if or(a) < #(2)77(2) < O (e)
Cle)t*(2) otherwise.

Let us first give a result by Ahern and Bruna. We give the following
definition.

Definition. Let §2 be an open set in C*. Let K = (ky,.., k) be
a multi-index of integers. A function F € (1) is called (AB)g if
%=(]farj=1ton. |

To simplify, we will assume that X is fixed in the following and we
will write (AB) instead of (AB)x.

For every ¢ € C, r > 0, we dencte by D({,r) thedisc {z € C; |z— (| £
r}. Then, we have the following lemma (see [A&B]).
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Lemma 3.1. For every L, M € N™, 0 < p < o0, there exists a con-
stant C such that, for every (AB} function F in (1, every { = ({1, .., {n) €
Q and every v = (r1,..,7n) € (J0, +00[)" with D(¢1,71) X .. X D{(n,70) C
Q, we have

SILI+IM| p
actacm

o

< : FPdv.
| A ~[-*3'(Cn,r|)><--X-’-)(Cn.rn) -

Let us go back to the proof of Theoremn B. Ag in the preceding para-
graph, we will give the proof of this theorem in C2.
A particular case.

First, we are going to give the main ideas of t-h(: proof by considering

the case of gradients of order 1, that is £ = 1. For z € V{(z), we
set f(¢) = g(P.(¢)). We denote by L' = OC; {,’él — %% A complex

to.nbential vector field in & l(Q)

As % (0) X 35; Q) =0, # is locally a transverse vector ficld
and it sufh(‘es to estimate ( ) | (O)| in torms of [L f|P in order to

estimate (;%}) [Vg{z}|” in terms of |Vpg|?. By the Taylor expansion
of g given in Lemma 1.1, we have, on R{z),

s B
? 8¢,

18f

- 5‘19?( ) +rest,

L'f(Q) = FF(Q) + rest = Z lar(2)E

(R
i,

NI.I'\
3

where Ff is an {AB) hinction, since f is holomorphic, which satisfies n
particular

) (a0 [T EL o] oty p ).
5(53@

As Y |ar(2)|7(2)!T* =~ 8(2)} by property 6, the simplest method should
be to estimate

()P (2P0 | 5L

for each [, 5, inn terms of the mean-value of |Ff|P in order to estimate

Colli

8{1

in terms of the mean-value of |L/ f|?, disregarding a rest.

)
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Each a; NE LA 5¢;(0) appears, up to a constant, as a component of a

derivative of Ff: a—:l—acf— 0) but in general, there are some other com-

ponents in this derivative, otherwise it would be finished by the mean-

value property (*). So, we have to write ?—C;%L(O) as the sum of

a1, (2) 2L ¢ (0} and a rest, using an induction method. Let us look at this
method when m = 3. We have

OFf af °F
% —(0) = )3C (0} and 652 (O) =q g(z) (O)
So, we obtain an estimate on
8 P
e @)Priar |5 o
and on
e ataprer | 2o

in terms of the mean-value of |Ff}¥ on R{z). It remains to consider the

term ag,l(z)%(()). We have
PFf 5% F
S 0) = a2 () + ana (250

But now, we can assumc that |a; ; (z)[ 72(z) is very small compared with
&(z), otherwise we can use the preceding estimate. This allows to see

that the corresponding term in %&(0) is a rest. We will not go into
all details as this will be done in the general case.

The general case {in C?).

Now, we are going to consider the general case. As before, for z €
V{m), we set f(¢) = g{P.(()) and we will give an estimate on f instead
of ¢. We will show later that it is sufficient to estimate —{ (0) in order to
have an estimate on V*g(z) (as 2 3 is loeally a transvcrq{, vector field).
The proof of Theorem B will be given in three steps. The first step is
devoted to show that L'* f is the sum of an {AB}-function and a rest.

ke
The second step is devoted to give an cstimate of g—cé(o) in terms of
t

k

F*f. This gives an estimate of ?}—C{:(O} in terms of L'* f disregarding a
1

rest. The third and last step is devoted to estimate this rest.

First siep: We are going to generalize Lemma 2.1 and to show that we
can write locally the ficld L% a5 the sum of a field with {AB)-coefficients
and a rest. We need the following definition.

Definition. ¢ is O’ (6/7%) if ¢ is bounded by Cinf{1,6/7%}.
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Lemma 3.2. For each ¢ € R(2) and & € N ond every C®-function,

L*F(Q) = FFRQ) + RFF(Q)

where
k
50 = cg )0 1o,
FRfQ) = Hgmeaf,s(z)cg &5 e | f©
and

rio= Y o Sl

1<i+r<k C‘?{}(?
Moreover, for every { € R(2), we have
aj+r -
(3.2) PR = 3 aRZ g

hT 3
1254 rgk 8C1 a¢
kdi—r<m;

where £
L
A(k) =0 for every r < k and Agkg B (m§) ,

and when § # 0, there exist some contants CJE"? such that

) _ o B 2 1 iz
A¥ = ¢! 2 Il > T (267G

=1 asm,
. {ang s>l

—_—

where the first sum is on all the possibilities of choice of the ng which
are integers such that 3 g ;ng =k — 1.

v a4 &
Proof: Let L' = 8<1 i B_C%f’ic be the complex tangential vector
field. As in the proof of Lemmma 2.1, there exist somc constants ¢; -,

1 <j+r <k, such that

dna +u 8 T4

I )
L= Z Z Cyr (H acm ac )(,k,{ag;

1<547<k Ex ;.-

where Eg ;- denotes the set of couples (my, n:), ¢ = 1, .., &, which are in
lexicographical order and satisfy Z:’;l my=k—7, Ele 1, = kK—r with
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m; +n; > 1. Furthermore, there exists at least one integer 45 € {1,..,k}
such that (mq,, 14, = {0,1) or {1,0).

We know that since g is a C®-function, cach coefficient of this sum is
uniformly bounded on V{z). Using Lemma 1.1, we also know that, for
every { € R(z) andevary 1<n<m-1

5‘C“(O Z:(z ‘“s(z)f "GO

8m
272(¢) =0(r) and o (0 = 5+ 0.
&5
In particular, as 3 |a¢,3(z)|7(z)‘+3 o §{z) by property 6,
&g

< Cmin {6777, 7} on R{2), forn=1,..,m

o
Let us sharc the summation on Ej ;- into two parts:
Erjr=Ep; , UE" ;.
where E;;'J-,f. is the set of couples {my,n,) such that either m; or n; is
equal to 0, ny < m — 1, and my; € {0,1}.
The sum on E'}; ;- Bives a sum of terms like

. fe— 3 ™ it 3 .
(%) 1;[(8 ﬂf) 6. rwihh;nf;:k—n

Ca A1 acs

which can be written
1\ =) i S—
(5) (| ¥ gomgpeed™a@ |+

83 +7
8¢l 8¢

—I—O"(é‘j‘rr_k-l-l)

with 37, cg<; g = k — r. This gives

=+n,g aj-{-rf
Z Z Cir (Hacm,acn‘) 8{{3(} =

\F ‘;:;

- (k) f(§F gkl
T (AR o) 2 ag,ag?

1< j4r Sk
kri—r<mj

& f
=F*f+ O 7R ——
]SIHZTSIC SCfSCQ
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It rcmains to show that each term coming from E"LJ-', is also
(8777751} and, in fact, as each coefficient is bounded, it suffices to
show this estimate only when 87 S ol

So, let (M, N} = {mi,n;)iz1, & fixed in E’L‘j_r. Let J be the number
of m; which are equal to 0. Then, J > jsince ) mi=k—j> k- J If
J =0 then 7 = 0 and all the m,’s are equal to 1, but & — r > 1 because
otherwise (M, N) would be in E}, ;.. In this case, O'(5777~%*!} = O(1),
so we ¢can conclude.

Now, let J > 1. We have rn; = ... = my = (. We can assume that
(m + 1)j > k — 7, otherwise O'(§777~¥+1} = O(1) on E'} , , since

when j > 1, &7 5+l 5 gpmatr—kil 5 o175 ¢

- _ . /
and when j =0, 77 **' > Csincer < kon E'y g,

So, let us assume that {m+1)j > k—r. Then, there exists at least one
n; < m for some i < J. Let us denote by K the number of n, < m for
1 < Jisona, ..., ng € m. Then, the corresponding coefficient is bounded
in absolute value by _
fis

g

i=1

C

which is clearly bounded by

Céx,r—z{‘:,n,- < céKT(J—K)(m+1)—E;":,m

since Z:il n; < Z:;I n;— (m+1)(J—K}. So, as 7™ < §, this coefficient
is bounded by C§4 7/ K)-Tlm

Now, as J > 7 and Z.:J=1 n; € k—r, we obtain the good estimate when
J>»j, o0 J— K > 1, or when Z:;;ﬂiik—?‘—l-

It remains to consider the case when X = J = j and ):'3:1 n,=k-—r
and we can ever assume that n, = m for at least one { < 7, since
(M,N) ¢ E, . Lot us remind that |§,§| — O(r) and denote by L the
number of n; € m — 1. Then; by assumption, j - L =J - L > 1 and
the corresponding coefficient is bounded by

Csbr Tismitli-L) < §LymU—Lytr—k+(i=1)

since Zf;l n; =k —7—m{j — L). So, we obtain that this coefficient is
bounded by C8I 77— il < Cfipr—k+1
This gives the lemma. B



268 5. GRELLIER

Second step: Now, we want to estimate lg—;é((})‘ in terms of F&f. We
are going to use Lemmma 3.2 and in particula;, the peculiar form of the
function F*# which is (AB) because f is holomorphic.

We recall that, by property 6 of the function r, we have, for each
z€ Vizo),

Z lags(2)|7(2)'T® ~ 6(z)  with constants independent of z.

I+stm
tazl

We deduce that, if (g, 3):+ <~ s a sequence of reals in |0, 1], which will

be chosen later on, there exmm at least one of the couples (¢, 8);1+ s <
m, {,5 > 1such that las . (2)|7(2)!* > €,,6{2). So, it suffices to (.snmate
ke
lag s (z)|*r(z)+s -1k ‘%’E;[[(O)‘ when |a; ,(2}|7(2)'** > € ,6(2) in order to
1
kyae
obtain an estimate on (%) g—cé(ﬂ)l.
1

We obscrve that

3(m-1 ka
Tl)kf([)) af ,._1(2)
0Gs

and we deduce, by the {AB)-functions’ properties, that, when |a) - (2)|
T(2)™ > £1,m-16(2) ,

i (89"

Now, if |ag m—1(2)]7(2)™ < £;,m—16(2), we have to find another couple
(L,S) such that }az, s(z)[7(2)**% > e, 58(2) and for which a correct
estimate holds.

k
afw)

P

k
o°f < C Mean "B (|FeF ).

5O

We introduce the following total order relation: let !, s, L, 8 be four
integers such that {,5, L, 5> land L+ 8§ < m, I+ 5 < m; we write that
(l,s)<(L,S)if s> Sarelse, ift<Land s= 5.

In the following lemma, we choose a sequence (€;,5) resgm s0 that, if the
I4a1
couple (L, 8) is the first one (in the order <) for which |ay, s(z)|7(z)*T5>
P
e1,58(2), then, |ay, s(2)[PPr(2)(+S-Dkr | 22 (g)
*1

k : .
mean-value of |L'" f|P, disregarding a rest.

can be bounded by the

Lemma 3.3. For every ¢ > 0, every p > 0 and cvery k € N, there
exists a sequence (€1¢) 1a21 of reals in |0, 1] such that, if we assume that
t4adm -

lag (2)|T(2)* < gy ,8(2) for every (1, $)(L, 8) with
L.S>1,L+5<m fized,
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then, there exists a constant C, independent of €, such that

. . )
. s(e)Per(a S0 120 < € Mean™ (1FEFP)+
1
) 8j+rf P
; PPk ei r—kyp L.pk
+C O;k min {5 5,1_5(6 A L } 3({3{5 (0}.

12r+igk(m—1}

Remark. In particular, if in addition |ag, s(2)|T(2)**% > ¢, 56(2),
then, there exists a constant C{e) such that

5 rk ak P
(8) |20 < c et cienr )+
+ Z min {CeP (877 %)?, C(e)r"*} 8_J+i p(o)
' adog|

1pr Ski{im—1}
. . . i
where C(e) is chosen so that C{e) > % forany LLS> 1, L+85<m.
L.s

Proof of lemima 3.3: Using formula (3.2) of Lemma 3.2, we first observe
& k(S L1} ok
that the term (a;,,g(z))kg_cé(()} appears in 27_7;3?:(%7;)[(0). If we can
1 2 2
estimate the other terms appearing in this expression, we can next vse

the fact that, as F*f is an (AB)(ox(m—1))- function, we have for every
p>0

P

k(S — ko
AL < C Mean ™ (|F* f|Py.

— kS

).'pk(s-!- L—1)
ag," gyt

(0)

7{z

(S L 1) 50 .
So, let us compute —Fg_igc_ +ac,::§_k”(0). We recall that, by Formula 3.2 of
2 2

Lemma 3.2, we have

keim w O f
FERQ) = . Z Aj,,—f,dacg(o

ki jurgmj
with
1\ i —ng=—s
AR=cRy(3) | T gomes ™G

2 A=1 lyadm, (t - n’s)l

Iznﬁ,sgl
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where the first sum is on all the possibilities of choice of the ng which
are integers such that 3\ cpe,mg =k — 1.

(E+EL-1) pk
So, we can see that S—FSTF,L,(O) is the surn, up to constant coeffi-

cients, of the following terms

f_[ Hli+kL-Slg) ¢
aig,5512) | ——r—=7 (O
p=1 8ciacs o)
denote such a term by

3f<z)8¢%2<>

where v = kL — 3 la.
. L3

So, when (lg, sz} = (L, 5) for each f, we obtain (a;ﬁg(z))kg—c}c((}).
For the extra terins, among all the {{, sp)’s diffcrent from (L, S}, there
exists at least one of them for which {ig, sg)}<(L, S): either all the sg's
are not equal to S, so one of them is necessarly strictly bigger than § by
conditions ) sg = kS and j < k; otherwise, all the sg's are equal to S
and so, j is equal to k and necessarly there exists Ig < L since 3 lg < kL
and (Ig, s5) # (L, S) for at least one 8.

For such a (lg, sg), by assumption, |ay, ., {(z}|7(2)}!#7*" < &1y 4, 6(2)
while for every (lg,sa), lai,,s5(2)|7(2)# 1 < §(2). So, since clearly

l6;,-(2)] < C,

L4851 : k|87
|b; (2|7 {2yt }‘acfacf (0)| is bounded by C1(z) @;;;(0} and
by
. — {f} +rf
Cl 32 et | 8PTGO )‘
(Lp,55)2(L,S) - 2

Now, for € > 0 fixed, it suffices to choose a sequence (g ;) g of reals
a2l
in |0, 1] such that, for every {(L,S9), L,S 21, L+ 5<m

1
ke
€52, Z €15

(YL, 5)
This can be done easily. From these, we deduce that the exira terms
give a contribution bounded by

C Z min {e”egffs(éjr".'k)p, Tpk}

pgscr
1<ty Ehim—1)

aj-i—rf P

- 1.
acoc;|

We deduce from the preceding lemma the following corollary.



HOLOMORPHIC FUNCTIONS IN FINITE TYPL DOMAINS 271

Corollary 3.4. For everye > 0, cvery p > 0 and every k € N, there
exists a constant C(s) such that

sy | 2L aF o)I Mcanﬁ()(C(e)T(z)pk (|L”‘ {”’+|R“f|3”))
+r ¥

min C"’&”"pC ripk i 0

+ MZ“ {CeP(6777), Cle) }<3C2()

VErpith{m—1)

Proof: We have observed that, if |ay m—1{2}|7{2}™ > £ s _18{2), then

oner ()

?

o~ f Rz (| e
LC Mean™ M (|FEfI7) £

ock o)

< Mean,mz)ﬂffkflp + |ka|p)

and by definition, there exists no {{,s), I+ s < m, 5= 1 such that
(1, s)Y<{1,m—1). So, in this case, we find Corollary 3.4 with € = 0; other-
wise, we apply Lemta 3.3 to the first couple (L, 8), L+ S <m, L,5 > 1
for the order < such that far, s(2)|7(2)**% > £, 56(z). This gives the
result,

Third step: Theorem B will follow from corollary 3.4 as soon as we
have given a bound to the rernaining torms

Mearn™) (C(e)|RF fI°) +

ity P
+ z mm{CEp((S}'rr)P Cle) z?k} _.._3 (0)
agj<e a¢lacs
rSrrigk(m=1)
which are majorized by
g+ |
(x) = MeanR(?) S 0k e)|— ,
ok , 3¢ ags

1Sr 4 Ehim=1)
where we recall that the OF ;{€) are defined by

C(EE ™+ ()77 (2)+ b (2)7"(2) i B ()7 (2) < er™(2)
OF (e)(2) = { Cle)d ()77 (2) if ¢r¥(2) < 67(2)77(2) € CT*71(2)
C(g)7*(2) otherwise.
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Observe that, since 67778+ > ¢mit =541 we have

C(e} ) {z) + Ceb¥(2)77(z2
oF e)(s) < { COPT @+ CeB ()
J Cle)r*(z) when mj +r — k < (.
We are going to estimate each derivative 3—'22 hy L/, with the help of
Lemma 3.2, Explicitely, we have, on R({z),

89)7‘ v " ) ] - Gt
= =L" + O(b6(z)° T - )
(3@ G Z CEF ™) g e

e -1

and we can assume that gc% # 0 on Ii(z). This allows us to obtain an
PYEET in terms of | L oc; and of deriva
tives either of order strictly less than 7 + r, or of order with respect to
(o strictly less than r.

cstimate on cach derivative

Applying successively this estimate and using the fact that OF ; {e) >
O w{e) whenr £ r and 7 < j', we obtain that

¥

L”’Q{;ﬁ

(+) < C Mean'™#) | Z Oiz (£) Y
y

Portiskim—1}

So, after a change of coordinates,

5(z)pk|Mfg(z)I7’ < Mean®?) (C(E)T(Z)”kﬁ?f\g[" + Restk(s)p) \

-1 .
where Mg is the vector ficld M, = ((,?T’\(z)) ?32_; which is transverse
at z.

Now, we need the following lemma.

Lemma 3.5. Let v, 5 € N. There exists a constant C such thai, for
every holomeorphic function g in Q, every z € V(zo) NEY, we have

|V7- Vg (2) < C Mean®) (|V5.V7g| + Rest™(Vig)),
where Rest™(u) = 35 copycr OGN |VEV ]

Proof: We will just give the main ideas of the proof in C2.

It is sufficient. to prove the result for 7 = 0. For peneral j, we write the
inequality for V7g instead of g. As before, we set f = go ®, and we will
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give an estimate on L’ f{0) in order to obtain an cstimate on Vi.g(z).
By lemima 3.2, we have

IL7FO)] <IFTF(O)+ [RTF(0)] <
<C Mean™ (| F f| + |RTf|} <
<C Mreanﬂ(z)(IL’rﬂ + |R7 f[).

So, the lemma follows, estimating R" f as beforc. &

Now, in order to conclude for Theorem B, it is enough to remark that
there exists a constant C such that, for z € V{zp)

VEg(2) < C | IMEg(z) + D (VeWglz)l+ > [Vig(2)]
ilr=k 1€i<k—1
Fel e
By Lemina 3.5, we arc able to estimate each |V5.V7g({z)| by its mean-
value on ¢Xz), disregarding a rest. This allows us to see that

8(z)* D" |9 VIglz)| + 6(2)F Y IV7g(2)] <C Mean¥) (Rest*(e)). @
th]’c 1<rk-1
We will assume now that €2 is bounded. So, the estimates of Theorems
A and B are uniformly valid on N, where U is a neighborhood of 52
sufficiently small so that the projection on @82 and the function 7.} are
well defined on QN Y.

In the following, K will denote a compact in 2 containing the cormn-
plement of 2NU and &y will denote the real sup{{z); z € @ NU}.

4, LP-results

First of all, we are going to give some tools necessary for the proof of
Theorem C.

4,1 A Whitney Lemma.

Recall that there exists a constant C such that, if 2’ € Qs(z) then
QRs(2") C Qrs(2). We denote by Q' the C-uple of Q.

Lemma 4.1. There exists a sct of points 2z € QNU, k e N, salisfying
the following properiies:
- the family {Q(z), & € N} covers QN U
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- each Q" (zx) (C-uple of Q'(2:)) is contained in QNW {(where W is
a neighborhood of 81 containing U ).

- there cxzists an imtcger N, which depends only on {1, such thot no
point in QMW belongs to more than N @' (z),k € N.

We choose V' a neighborhood of €1 containing U and strictly included
in W such that all of the Q'{z:) are contained in QNV. A fortior}, no
point of NV belongs to more than N of the sets Q'(zx), k € N.

Proof: Let us consider the sets Qx = {z € C*; C~F < §(2) < C~F+1}
for k € {ko,.., +oo}, with ko = —loge 6o + 1 {chosen such that QNU =
U:ﬁ";’m 1, C is the preceding constant > 1).

(3. {2) contains a ball around 2z of fixed radius ¢’ > 0, independently
of z. It follows that wo can choose a set of points zs-k} € §2,. such that

Qe C U;Qec-+ () and 2 ¢ Qug-x1 (z1V) when 1 £ 5.

Moreover, we can choose c sufficiently small such that, for each
, k JE—
1 Qcc—k-ﬂ(zi )) C 1., where

De={zeC"C*2<8(z) <O},

Then, it is usual to see that no point in Qg belongs to more than N’ of
the @.o-«+2, where N’ is independent of & {see [C&W)] or Lemma 3.3
in [C] for instance).

We repeat this construction for each k € {ky, .., +00}. It is clear that
the family we obtain covers R N U. Now, lot z € Uj,kQ(_.C—k+2(Z){-k)). It
is obvious that there cxists a unique k € {ko, .., +oo} such that z € ;.
Then, z € Uk—25jgk+2ﬁj and so, we conclude that 2 does not belong
to more than N of the QQ.o-r+2. At last, since 6(z§k)) ~ C~% the sets
congtructed are cquivalent to the Q(zjk)) and the lemma is therefore
proved. @

4.2 Continuity of the Mean-value Operator Mean®.

Lemma 4.2. For every o, 3,7 € R, cvery 80 < n < 1, the meon-
velue operator Mean® is bounded from LYQ NV, 66 + p)Pr7dV) to
LYQNU, 88 + n)PrYdV). Moreover the norm is independent of 7.

Proof: As 8{.} ~ &(z), 8{.) + 7 ~ {2} + n independently of  and
T(, 600} 2 7{z,8{(2)) on {(z), it is sufficient 1o prove the continuity from
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LYONV,dV) to LY N, dV). This follows easily from the preceding
Whitney Lemma and from Jensen's Inequality.

/nmu (MeanQ(‘.}(u))dV(z) <

1
= ;‘/Q(zk) Q{2 /Q(z} [u{()eV((dV (z) <

1
: CZ/Q(z.,; T Jop oy MOV OV ()<

k

<cy [ wolavio <
Q)

<¢c | |uav. m
[31a1"4

4.3 Hardy Inequalities.

Let us denote by % the normal derivative which is given by the fcid
v = Re N where N is the complex normal vector field N = Z?:l é?-—L 6’—1
_ £ ZJ
We have chosen U so that the function ¥, : 92 — QnNU; 0 < 5 < s,
given by

a
F.(z) = exp (55) (z), for z € 99,

gives a diffeomorphism from 892 x [0, sp[ onte @ N U. Moreover, s ~
dist(F.(z),00). So, for every z € QN U, there exist s €]0,sp[ and
2’ € 80 such that z = F,{(2'). We will use the following notation.
()" (2) =lulP(z}ifp= 1=
=sup {ju (F(z')7;
tc(s,sel} f0<p<landz=F.(2)eQnlU =
=0if0<p<land 2N

Then, we will use the following Hardy type Inequality.

Proposition 4.3. Let k e N, p > 0. For every o, 3, v € R wnth
v2 0, a4+ % > ~landa+ G+ ;":; > —1, there exists o constant C such
that, for every function u € C°%°(Q) aend every n > 0, we have

Py *
) dv +

k
/ 556+ P |ulPdV < C (/ satkr(s 4 )Br (‘ a_:
Y] ani Ov

+ z sup [ V7 ul?

0<i<k
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The proof of this proposition will be given with the help of two lemmas.
First, we consider the case p > 1.

Lemma 4.4, Letp> 1,1 € R and w be any positive funclion satisfy-
ing
s e
wis) < C (E) w(t} for every s,t with 3 < s <ty

then, for every o, B € Rwitha+! > -1 and o+ 3+1 > —1, there exists
a constent C such that, for any positive, mesurable function u defined
on RY, we have

/ U(s)Ps*(1 + 8)Pw(s)ds < C‘f (su{))"s*(1 + s)Pw(s)ds,
0 0
where U(s) = [ u(t)dt for s > 0.

Proof: We begin with the case w = 1 and I = 0. Without loss of

generality, we can assume that [ (su(s))?s*(1+5)?ds < co. Integrating
by parts the term

oo o0 k4
(%) :/ (f u(t)dt) s7(1 + 5)2ds,
0 s
we obtain

() =p fo (f” u(t)dt) ") ([ﬂ (1 + x)%) ds+
+ Jim K[m u(t)dt)p (]; (L + t)ﬁdt)]: <
<C ([om (/sm u(t)dt)p_l u(s)s*H (1 + 5)Pds +

+ }i_{r;o [(/yw u(t)dt)p s+ s)ﬁ}:> L <1 +(2)

since f, t*(1+ £)Pdt ~ (s*T1{1 + 5)7) for every s > 0, as it can be seen
easily.
By Hdlder's Inequality

(n<c er (]m u(t)dt)p s*(1+ S)Bds> e

o0 Ve
(/ {su(s))"s™(1 + s)Bds) ,
{

¥
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and, for every s > 0

U{s)P < (fom(tu(t))pt“(l + z)ﬁdt) (s°H1(1 + s)ﬁ)_l;
s0, (2) € /m(tu(t))pt“(l +t)Pdt.
]

This allows to conclude when w = 1. For general w, it suffices to use the
assumption on « in order to obtain

(%) = /ﬂm (lwu(t)dt)ps“(i + 8)Pw(s)ds <
< /:D (/sm (f-t{—f—)y/p u(t)dt)ps““(l + 8)%ds,

and to conclude by the preceding result. B
When 0 < p < 1, there is no such inequality for general u. But, we
can prove the following lemma.

Lemma 4.5. Let 0 < p < 1,1 € R and w be any positive funciion
satisfying

!
w(s <C G) w(t) for every s,t with 1 < s <4,

then, for ecvery o, 3 € R witho+{ > -1 and o+ 8+ 1 > —1, there
exists & constant C such that, for ary decreasmr; postitve funetion u on
R, we have

/m U{s)"s*(1 + s}Pw{s)ds < Cfm(m(s))ps"(l + sYPwis)ds,
0 0

where U{s) = [ u(t)dt for s > 0.

Proof: We set (x+} = ]Om (f.‘m u(i)dt)p s*(1+s)0wls)ds; then we write

27
(s Y Zu{zkm’“? L s sPuts)ds <

j=—c0 k=j

PL

<C Z Zu(2k)”(2 )iw(?)f 1.s"“”(l + 5)8ds,

j=—ook=j
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by assumption on w.
So, we have

o k
(o) SC Y u(29P2 D w(@)(2) (14 2)°

k=—o0 J=—oo

0i i
<C u{2%)P2kP (k) Z ( ) (27)>t1(1 + 29)9 <

k=—00 i=—c

<C i w(2F)P2Pw(2%) (2571 (14 257 <

k=—00

<C /00 w(s)Ps*TP(1 + s)Puw(s)ds. M
o

Now, we are able to prove Proposition 4.3

First, let us observe that, hy homogeneity, we can replace (14 8) by
(n + s) in the preceding lemmas {without changing the constant in the
inequality}. Then, by properties 2 and 4 of the function T, we see that
there exists a constant C such that, for every z € 3, we have

sy Lm
1'(.?"}(2),3)§C(;) T(Felz),t) for 0 < s <1t < 5.

(This is because T(Fy(z),s) < (& )Um (Fi(2),t) by property 4, and
T{Fo(2), 1) = 7{F {2}, t) by property 2, sincc Fi(2) € Q(F.(z))}.) So, the
pre(:eding lemmas are valid with

{ T7(Fs(2),8) if s < s

w(s) = :
1™ otherwise,
for every z € 382, with a constant independent. of z.
Thus, we apply the preceding lemmas successively to the function

k
()

oo [ [

where we recall that

Hd & ()

} dsds...dss

* (Fz))l;s<r< sn}

=sup p

fo<p<cland 0 < g < gy =
dk

— |5 (@)
=0 if § > sq.

(At each step, the function is decreasing when 0 < p < 1), We conclude
by integration over 553, W

ifprland<s<sp=
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4.4 Auxiliary Lemmas.

We have introduced in Proposition 4.3 the x-operator. We will need
{for 0 < p < 1) a sort of continuity of this operator in p-norms for a
certain class of functions. We begin with the simpler result which gives
the continuity for (AB)-functions.

Lemma 4.6. Let 0 < p< 1, v 2 0, o, € R with o+ = > 0
and o + B+ L > 0. There cxists a constant C such that, for cuery
(AB}-function F in §I and every 77 > 0, we have

f 8% (n+ STV (|FIPYdV < € ([ 5% (n+ 5)ﬁr*|F|f*dv) .
Qmiy SNV

Proof: The proof is similar to the one given in [St] or in [B&S] for
harmonic functions.

We cover @MU as in Lemma 4.1 by the family {(Hz,), i € I} and we
denote by x; the characteristic function of {z); 4 € 1. Then

(x) = / 8 (n+ 8P T (IFPY Y < f 8 (n+ 871 (xl Iy dv.
Fiyiathi H

But, {x;|F|"}* is supported in the set
E, = {2z € ;35 > 0 such that 2z — sv, € Q{z)}

which is of measure less than C|Q(2)].
Gn E;, we have

§(2)° (1 + 8(2))17(2,8(2)) £ C (8(z:)* (n + 8(2.)) 7 (2, 8(20))) -

This last assertion follows from the fact that, by assuraption on the
indices, the function 2 — z°F % (n + z)? is increasing for z > 0 (as
a+ L >0and a+ 8+ L > 0) and from property 2 and 4 of the hinction
7 which imply that, for every z € F;, we have

z 1/m
1{2,8{z)) <C (rﬁ(igﬁ) 7(z,8(2) +5) <

6(5} Yim .

< . ML — 5

< (5(2) - 3) 7z ~ sv,, 8(2) + 5)
since z — s € Qgay4s{2) €

sc (2™ a0
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So, we have
(x| FIPY" < sup {{F"}.

T

Then, applying the (AB)-functions’ properties, we obtain

sup {|F|?} £

C
———— F|Pav.
Qfz:) 17 ()] Joyia) d

So

¥

(+) = / 8 (n+ 8TV (|[FPPY dV <
Fieinld)

6(2:)° (m + 8(2:))P 77 (2:)1Q(23)] p
<02 @) il S

<C 8 {n+ O IFPAV. W
Ny

Now, let us give a more difficult lemma.

Lemma 4.7. Let0 < p < 1,t >0, o,0 € B and k € N such that
o + i 20,a+,@+%2 >Qanda+ 0+ L > -1, a+ 2> -1
then there etists a constant C such thoi, for every n > 0 and cvery g
holomorphic in §, we have

X (8Pt (|VE gy V< c( f
{

8% (n+-8)PriHEr| VR g|PdV +
[ lali) Halt

+ [ s o) igpay + / Igi"’dv)-
J MW 4K

Remark. In addition, we can choose the constant in front of the
second term on the right hand side of the inequality as small as ¢ and
&g.

Proof: As in the preceding proof, we cover NU by the family {Q{2;),
¢ € I} and we denote by x; the characteristic function of Q{z;), i € I
Then,

(v) = ]ﬂ Pl 8 (gl v <
1

<y f 8(n + )PP (3| P glPy V.
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But, as before, {x.|VE 7g/7)* has a support contained in the set
E; = {2 € 35 > 0 such that z — sv, € Q(z,)}

which satisfies, in particular, for every z € E;,
8(2)* (0 + 8(2))P 7% (2, 8(2)) < O (8(20)™ (m + 6(2))*T % (1, 6(z:)))
{(by assumption on the indices).

So,

()= [ s gy ay <

antf
< CZ 8(2)™ (0 + 6(2)) 7% (2, 8(2:))1Q()] sup {IV59/7}.

Now, on Q{z;), cach component of VEg is cqual, after a change of coor-
dinate z = ¢, (¢}, to the sum of an (AB) function and a rest. Lot FXf
be the vector of these (AB)-functions. We have, for f = go @,

sup {IvhgP) < sup {|[FEfI" + |REfIP} <
Q= ft{z;

1 k k

; F*fPdV + sup {|R*f["} <
IR (z:)] R{z!) A H{z:) { }

1

|VEglPdV + |Rest®gPdV+

L 1
TNz oz 16 ()] oz

+ sup {|Rest*y|"}
Q2:)

k— ; _ N . .
where | Restfgl < 557, T iprak O T )| V5.97g|. Now, we just
have to estimate the rest. By the direct estimates, we have

k-1 .-
il O (511K .

|Rest®g| € C Mean® L Z (LE;—-—-—)) Vg ],
r=01<ibr<k

and since for z € Q(z;), Q(z) C (’'{z), we obtain

r

k : 7l
OF &7 ~+1-k ¥ )
sup {|Rrstk{}|”} <C qup Z(M) [Vigl" b <

( l) ("’ ) 7=0
k j j) .
<c o {35 (22 1w <
Q(z:) =0 T
k . .
C 63}" Vial®
gl

|Q; (Z )| L7 =4) =0 kP
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So, by Lemma 4.1
(r0) = 38020 + 6(20))P 7 (2, 6(2:)) 1 QUa)] sup {|Rest*olP} <
i Q{zi})

<CS [ wsnin s+ tstav <

F=0

<C j (IV*g|Py6°1%P(5 4+ §)2 744V by Hardy Incquality <
N

< |VEg|PEaTRP(n 4 6P 1AV + f lg|’dV by Lerama 4.6 .
aQnw K

The other term of the rest is estimated in the same way. M

4.5 Proof of the LP-result of the Auxiliary Theoren.
We reeall what we are going o prove the following result.

Auxiliary Theorem.

Lei §t be a bounded C°° -domain of finite type m in C*. There exisis a
comnpaet set K € 0 such thai, for ecvery p > 0, every ke N and g, t € B
miiaq+—> —landt >Q,

/ |g|P677*dV and / |T*g)” 61t P5rtqy
Q 2
are equivalent, modulo an error of fK 9|78V, for g helomorphic in Q2.

First, it 1s easy to see that, by the mean-value property of holomorphic
iun{tmm and the continuify of the mean-value opcratm (Lemma 4.2},
we have

/ [V*gPsrtkrrtay < c( / gP89rtdv + f |g|?*dv>'.
Fies 8] K

The converse follows from Hardy Inequality {proposition 4.3) and Lemma
4.6

/ lgiP817tdv <C ( ] ST (TP dV + f [gP"dv) <
£2 ants
SC( q+sp .‘.|vsq|3’)dV+/ lqipdv)

if 5 is sufficiently large, when p < 1, in order to be able to apply the aux-
iliary Lemma 4.6. This gives the result if we can take s = k&, otherwise,
8 > k and the preceding estimate gives the result. W

Now, we are able to prove Theorem C with the help of Theorems A
and B and all the preceding results. Namely
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Theorem C.

Let ) be a bounded C°°-domain of finite type m in C. There exists
a compact set K C §Y such that, foreveryp >0 gt c R and kI, r e N
withg+pr+ £ > -Lg+pl+ B > 1 ondt >0

f |v§.qulp gatel ko+i gy ,

Y]

/ |V Vhg|” 67# T4+ dV and
o)

/ [V gl 677 rtdV
Q
are equivalent, module an crror of fK lg|PdV, for ¢ holomorphic in L.

4.6 First part of the proof of Theorem C: Direct Estimates.

We arc going to prove in this paragraph that, when g4pl+{E+ kp) fm >
—landg+pr+it/m> -1

f |Vivhgpastricttkrgy < ¢ ( f IV g|P69 P+ aV + / |g[”dV) .
Q 4] K

We begin with the case [ = {§. The general case follows easily from the
Auxiliary Theorem and Lemma 2.2.
By Hardy Inequality {proposition 4.3}, we have

() = f |V glPsTr ey <
0
<C ( / ((|V°Vhg|P)" s9Feprithegy 4 / 1;;|rdv) <
Jany T

<C ( / (IV5Veglr)" s9tprithegy 4+
it

N

k—1
+ vr vj P *6q+sp t+kpdv+/ gﬂdv .
S5 [ (vEiar) s 1o

r=03=1
by Lemma 2.2. We choose s sufficiently large when p < 1 in order to be
able to apply the auxiliary Lemina 4.7. So, by lemima 4.7

()<C (/ |V5.ogpérterrtthegy 4
itial g

k-1 =

+3°3° ]ﬂ _\Vagrsrt Tty +

=0 3=1

k 5
+3. 0 /Q ITTHgpgr et gy /K gl dv

r=f j=1
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Then, we apply the first part of Theorem A and the L'-continiity of the
mean-value operator (Lemma 4.2) in order to obtain

() <C ( / |V°g[PaTerrtay +
QW

k-1 s

+> Z/ |Vig|parteppttk=rlrgy o

r=0 ;=1 anw

k s
N Urtig|pgatirtale it (k=negy 4 / g|PdV
SO AL <

r=0j=1

Then applying Auxiliary Theorern and the fact that 6(.) € Céy on QMW
we obtain that

/ |VEgPeIrithedy <C ( / [V g]P69 T rtdV + / I.r;lf‘dv) <
0 9] K

<< (/ |vrg|?’5q+ff*ffdv+j Iyl”dv). ]
18] K

4.7 Second part: Converse Estimates.

We are going to prove now that, when ¢+ pl + (¢t + kp)/m > —1 and
g+pr+it/fm>—1

f |V gPETT TR Y < C ( / |V Vhg|rsotrirttirgy 4 [ 1g|3‘dV).
9] 3] J K

We assume that { = 0 and 7 = k. The general case follows easily by
the Auxiliary Theorem. To simplify, we will assume also that p > 1.
When p < 1, the proof follows the same lines except that we have te
apply sufficiently the Hardy Inequality in order to be able to apply the
auxiliary lemmas.

The proof will be given in two parts.

First part: an a priori estimate.
Lemma 4.8. Letp > 1, ke N, gt € R with ¢t > 0 ond g+ {pk +

t)/m > —1, then there exists a constant C such that, for every n > 0
and every g holomorphic in Q satisfying g € C*°(02), we have

fnwkgfpapk(mé}%tdvsc (/ﬁ |VEGIP(n + 8)TrtHRPdY + ; lgl”dv) .
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Proof: For each € > 0, every 17 > 0, we have
/ |VEg[P 75 (n + 8)37'dV < C (/ |Vig{P(n + 877 H5PdV +
113 1¥]

+ Rest*{(e)P(n + 6)"7th+/ |g]pd‘f')
Qnu X

by the converse estimates of Theorem B. So, it suffices to estimate the
remaining term.

(x) = / Rest® () (n + 6)%rtdV.
riali
First, we observe that OF .(¢) is always bounded by (Ce+ C'(E)é{i,/m)éji 7"
and is bounded by C7F when j + (r — k}/m < 0. So we obtain

(x} < (C(E)r‘ié/m-&-Ce)/Q , > Vgl + 6t PAY +
(A

ogick
r—k

3+~

+ C(é) E IVJ v"glp(q 1 (S)‘;Tt-i—kpdVA
i
Qny

>0

Then, we can apply Hardy Inequality to each term in order to obtain

(%) < (Cle)6)™ + Ce) f ST VAR (n + 8)1rTP6 Ry +
ony 7

+Cle) fn U' Do IVEVRglP(n + syertiestdrgy
]

Gejsk
R
J1 e <D

which gives with Theorem A
(«) < (C(s)ééim + Cs)f [kl (n + 6)Tre*PdV +
ot/

+ C{e) /n , Z |t;5k_g|p(n+6)q7_¢+(k—r)p5{k-j)pdv <
. i

ugick

i+ -—-—~’",;" <0

< (Cle)si!™ + Ce) fn . [VEg|P(n + Y774 657V
il

as mi+r—k+1 < 0 in the sccond term (so that 63771 <
.r—mj-i-k—r—l < C)



286 5. GRELLIER

8o, the resnlt, of the lernma follows by choosing € and §; sufficiently
small (reducing Q@ N U if necessary). @

Second part: use of the a priori estimate

We denote by 2, = {z € C*;  r{z) < —¢} for each € > 0. We apply
the preceding lemma in £, to g holomarphic in © and C*(12.) for every
£ > 0. Then there exists a constant C independent of £ and 7 such that

[k apsrtaramiav <c ( [ 9har o+ sormtviray + ]K |g|PdV).
!E C

Then, for 3 = ¢, we obtain, as é ~ 6. + ¢, for every € > 0
/ [Vkg|PEPRS1 Y < C (f |V g|P897*PqV + / |g|PdV) .
€ 2 K

Se, it suffices now to let € — 0 in order to conclude by the monotone
convergence Theorem as §, — 8 and 7. — 7 in increasing, £+ kp = 0,
t>0and pk>0. 1

5. L*=-results: proof of the second part of the
Auxiliary Theorem and proof of Theorem D

As the proofs follow the same line of the proof of the first part of
the Auxiliary Theorem and of Theorem C respectively and are simpler,
we will just give, for the reader’'s convenicnee, the analog of the Hardy
Inequality which is the following lemma.

Lemma 5.1. Let o € R and 3 > 0. There exists a constant C such
that, for every funetion u € C°{Q), we have, for every 1 >0

sup {O'(6*r)|ul} <
) .
< (sup {O'(é““r’g) ‘g}fl} + sup|u|) if -8 é{2,..,m}.
Q v K o
sup {640 (6% ul} <
)

31;. o —f
. freatl 8 .
<C (b}l}p {O (6T P i_(?u l} + hlép |u|) if - € {2,..,m}.

Proof: As u € C™{f2), it is sufficient to prove the preceding result on
anuU.
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Without loss of generality, we can assume that M = supg {Of(50+1 )
24|11 < co. Then, we have

o g4
[{C} = / —u(( ~ svg)ds + u{C — Sovg)| <
h ds
M/ O ((8(C) + 8)* 1 7B(¢ — s1¢,8(C) + 8)) + sup [z] <

%o ds 6‘,
MC
<M | o m AT i , et

Let us estimate

=/ - ds
o (B + YT B — swe, B(C) + 8}
As { — su¢ € Qsey4+(C), we have, by the secorid property of 7, that
T(¢ — sve, 8(C) + 8) = TG 8(Q) +8).
Then
% ds
* < <
S N e
bo AP
/0 E‘(!‘(}Su (8() + s)a+1+ﬁ/id <
, %0 AP ds
264 8m Jo (8(0) + s)ye 1A

SINCE MaXy<i<m = Z?(!(m'

But,
CALQPIS(C) D i 4 81 > 0,
o A Cifa+p/l<0,
ds <
o (60 + )BT =Y g yBlg()~ et Jog (ﬁ*)
fa+ g/l =
So,

O'E )TN - Blad {2,.,m)
[0'(5=78)8%) ™" for cvery >0, if —fBlae {2,.,m}. @



288 S. GRELLIER

6. Theorems E and F

Weo are going to give the proof of Theorem E. The proof of Theorem
F follows the same line.

Theorem E.

Let © be a bounded C™°-domain of finite type and s > 0. There ex-
ist a compact set K C £ and a constant C > 0 such that, for cvery
holomarphic function g in 0,

19T grt=smm by < 6 ([Tl iy + [ loav)

for { integer, p(l — 8) > —1.

Proof: Let g be a holomorphic function in @ and s > 0. First, lot us
remark that when s is an integer, the result of Theorem E follows easily
from the results of Theorem C since, for { € N with p(f — s) > —1

/ |V V5976~ /™ 524V and / |V glrgr it kimhe gy
0 £ :
are equivalent, modulo an error of g|PdV; and
K
s — m,_k P
_/ﬂw VE g|PskPImrkrgy < |[v!;.g||w_,‘,,(m.

This allows to conctude. The same remark allows the proof to be reduced
to the case s €]0, 1f.

So, it suffices to estimate fgIVV!}_(}{%”“_"‘_k/”‘)'rkf’dV. The idea
of the proof is the one used in [Bo&Si]: it is to apply the following
inequality.

For every 6 > 0

5" / |Vul?dV < C ( f lu|FdV + 6% ] jﬁul"dV)
8(0,8) B(0,26) B{0,26)

where C is independent of 8.

Let us denote by {B;, 7 € J} a covering of Whitney's type, where the
B;’s are isotropic balls whose radius is proportionnal to the distance to
the boundary é;. Let j € J and ¢ € Bj (B} is the ball with the same
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center as B; but whose radins is twice). Let ns apply the preceding
inequality to the function z — Vig(2) — V5g(Q).

& / IV (Vi) IFdV < C ( / [Vig(z) — VEg(OIPdV(2) +
J 3

B, i

+ 632'?/3» |A (VEg) |”dv) :

So, integrating in the { variable over Bj(z;,4;) and obscrving that, on
this set, we have |2 — (] < eby, 6(.) ~ &5, (., 8()) ~ 7{z;,8;), wc obtain

(x); = / v (V’fg) |prll—s—kim)rkp gy <

BJ
< C / / |VEg(z) - Vgg(g)lpdV(z)dV(CH
N J Frixn '

|z - C|2n+ps

4 / IA (vf{c‘q) [7;6;;(2—3—.;:/1'7&)7_}(:3;6“/)
5
ki

{since §7%/™7% < ). So, summing on § , we obtain

D (s < f |V (Thg) pari=s—*im kv gy <
F £ _

' (Vhg(z) — VEg(O)IP
<¢ (/ /an VIO +

[o —~ CPees

+ + / A (Vhg) IpgP—s—kimickrgy 4 / |g|”dv> <
Y] JK

=¢ (“WF‘Q 1 ey + /Q A (Vhg) o7k lm kv gy 4

[ IyP’dV) .

But, by the harmonicity of g, we have A (V) = [A, V] g, so,

A (VEg)i<Cl D V5V
1€ <2
0drek—1
We have to estimate

Z / |v;'.ng|p6p(2—s —k i) Tkpdv.
{1

1252
ek
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But, this term is less than [|V (Vhg)|psr{t—s—h/m gy [ |gPdV
by Theorem C. So, we obtain an a priori estimate and we conclude as in
the preceding paragraph: we apply this inequality in 2, to g holomorphic
in (1. We obtain

/Q |VVhgl" g7k mrkedy <C Vil nin, + fj laPrav <
<C [ Vhalfyniey + [ laPav,

and we conclude by Fatou’s Lemma, B

Now, it suffices to apply the resuits of Theorem C and D to obtain the
results of Corollary B.

Aclknowledgements. I would like to thank my advisor Aline Bonami
for helpful disenssions and suggestions about this work.

These results have been announced in a previous paper called

" Comportement des fonctions holomorphes dans les directions com-
plexes tangentes d'un ouvert de €™ de type fni” {sce [G2]).
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