Publicacions Matemàtiques, Vol 36 (1992), 175-188.

ON STRONGLY NONLINEAR ELLIPTIC EQUATIONS WITH WEAK COERCITIVITY CONDITION

László Simon

Abstract .

We prove the existence and uniqueness of weak solutions of boundary value problems in an unbounded domain $\Omega \subset \mathbb{R}^n$ for strongly nonlinear 2m order elliptic differential equations.

In this paper it will be proved existence and uniqueness of solutions of boundary value problems for the equation

(0.1)
$$\sum_{|\alpha|=m} (-1)^m D^{\alpha} [f_{\alpha}(x, D^{\alpha}u)] + \sum_{|\alpha| \leq m-1} (-1)^{|\alpha|} D^{\alpha} [g_{\alpha}(x, u, \dots, D^{\beta}u, \dots)] = F \text{ in } \Omega$$

where Ω is an unbounded domain in \mathbb{R}^n , $\alpha = (\alpha_1, \ldots, \alpha_n)$, $|\alpha| = \sum_{j=1}^n \alpha_j$,

 $D_j = \frac{\partial}{\partial x_j}, \ D^{\alpha} = D_1^{\alpha_1} \dots D_n^{\alpha_n}, \ |\beta| \leq m.$

Function f_{α} satisfies the Carathéodory conditions such that $\zeta_{\alpha} \mapsto f_{\alpha}(x,\zeta_{\alpha})$ is strictly monotone increasing, $f_{\alpha}(x,0) = 0$ and f_{α} , g_{α} satisfy the "weak" coercitivity condition

(0.2)
$$\sum_{|\alpha|=m} f_{\alpha}(x,\zeta_{\alpha})\zeta_{\alpha} + \sum_{|\alpha| \leq m-1} g_{\alpha}(x,\zeta)\zeta_{\alpha} \geq c_0 \sum_{|\alpha|=m} |\zeta_{\alpha}|^{p}$$

with some constants p > 1, $c_0 > 0$. Functions g_{α} have some polynomial growth in $D^{\beta}u$, but on f_{α} no growth restriction is imposed in $D^{\alpha}u$.

Similar result has been proved in [1] for the equation

$$\sum_{|\alpha| \leq m} (-1)^{|\alpha|} D^{\alpha}[g_{\alpha}(D^{\alpha}u)] = F$$

in a bounded Ω if the condition

$$g_{\alpha}(\zeta_{\alpha})\zeta_{\alpha} \geqq c_0 |\zeta_{\alpha}|^p - c_1, \qquad |\alpha| \leqq m$$

is fulfilled with some constants p > 1, $c_j > 0$. The proof of the existence theorem is based on a method called by F.E. Browder "elliptic superregularization" (see [1] - [3]). Our results can be extended to equations of the form

$$\sum_{|\alpha|=m} (-1)^m D^{\alpha} [f_{\alpha}(x, u, \dots, D^{\beta}u, \dots] + \sum_{|\alpha| \leq m-1} (-1)^{|\alpha|} D^{\alpha} [g_{\alpha}(x, u, \dots, D^{\beta}u, \dots] = F$$

where $|\beta| \leq m$ (see [2] - [5]).

It is to be mentioned that [6] is connected with our result where D. Fortunato has considered equation Lu + f(x, u) = 0; by L is denoted a second order linear elliptic operator with weak coercitivity conditions in an unbounded domain. Similarly to our consideration, in [6] the solution u must satisfy the "asymptotic condition" $\int_{\Omega} |\text{grad } u|^2 dx < +\infty$.

1. The existence theorem

Let $\Omega \subset \mathbb{R}^n$ be an unbounded domain with bounded boundary $\partial\Omega$, having the uniform C^m -regularity property and $\Omega_r = \Omega \cap B_r$ where $B_r = \{x \in \mathbb{R}^n : |x| < r\}$ (see [7]). Denote by $W_p^m(\Omega)$ the usual Sobolev space of real valued functions u whose distributional derivatives belong to $L^p(\Omega)$. The norm on $W_p^m(\Omega)$ is

$$\|u\| = \left\{ \sum_{|\alpha| \le m} \int_{\Omega} |D^{\alpha}u|^p \, dx \right\}^{1/p}.$$

By $W_{p,\text{loc}}^{m}(\overline{\Omega})$ will be denoted the set of functions f such that $\varphi f \in W_{p}^{m}(\Omega)$ for all $\varphi \in C_{0}^{\infty}(\mathbb{R}^{n})$, i.e. for all infinitely differentiable functions φ with compact support.

Denote by $\tilde{W}_{p,0}^m(\Omega)$ the set of functions $u \in W_{p,\text{loc}}^m(\tilde{\Omega})$ satisfying the conditions: $D^{\alpha}u \in L^p(\Omega)$ if $|\alpha| = m$ and the trace of $D^{\beta}u$ on $\partial\Omega$ equals to 0 if $|\beta| \leq m - 1$. The norm in $\tilde{W}_{p,0}^m(\Omega)$ is defined by

$$\|u\|_{\bar{W}^m_{p,0}(\Omega)} = \left\{\sum_{|\alpha|=m} \int_{\Omega} |D^{\alpha}u|^p \, dx\right\}^{1/p}$$

It is not difficult to show that $\tilde{W}_{p,0}^{m}(\Omega)$ is a reflexive Banach space. Let V be a closed linear subspace of $\tilde{W}_{p,0}^{m}(\Omega)$.

Let N be the number of multiindices $\beta = (\beta_1, \ldots, \beta_n)$ satisfying $|\beta| \leq m$. Assume that

I. Functions $f_{\alpha} : \Omega \times \mathbb{R} \to \mathbb{R}(|\alpha| = m)$ satisfy the Carathéodory conditions, i.e. $f_{\alpha}(x, \zeta_{\alpha})$ is measurable in x for each fixed $\zeta_{\alpha} \in \mathbb{R}$ and it is continuous in ζ_{α} for almost all $x \in \Omega$.

II. $f_{\alpha}(x,\zeta_{\alpha})$ is strictly monotone increasing with respect to ζ_{α} , $f_{\alpha}(x,0) = 0$.

III. For any s > 0 there is a function $f_{\alpha,s}$ such that $f_{\alpha,s} \in L^1(\Omega_r)$ for each r > 0 and

$$|f_{\alpha}(x,\zeta_{\alpha}| \leq f_{\alpha,s}(x) \text{ if } |\zeta_{\alpha}| \leq s.$$

Further, there exist constants $c_1, c_2 > 0$ and a function $f_{\alpha}^* \in L^1(\Omega)$ such that for a.e. $x \in \Omega$

$$|f_{\alpha}(x,\zeta_{\alpha})| \leq f_{\alpha}^{*}(x) + c_{1}|\zeta_{\alpha}|^{p-1} \text{ if } |\zeta_{\alpha}| \leq c_{2}$$

with some p > 1.

IV. There exists a constant $c_3 > 0$ such that for all $\zeta_{\alpha} \in \mathbb{R}$, a.e. $x \in \Omega$

$$|f_{\alpha}(x,\zeta_{\alpha})| \geq c_3 |\zeta_{\alpha}|^{p-1}.$$

V. Functions $g_{\alpha} : \Omega \times \mathbb{R}^N \to \mathbb{R} (|\alpha| \leq m-1)$ satisfy the Carathéodory conditions.

VI. There exists a bounded domain $\Omega' \subset \Omega$ such that $g_{\alpha}(x,\zeta) = 0$ for all $\zeta \in \mathbb{R}^N$, a.e. $x \in \Omega \setminus \Omega'$; further,

$$\sum_{|\alpha| \leq m-1} g_{\alpha}(x,\zeta) \zeta_{\alpha} \geq 0.$$

VII. There exist constants $\rho_{|\alpha|}$, functions $\Phi_{\alpha} \in L^{p/\rho_{\alpha}}(\Omega')$ and a continuous function C_{α} such that

$$p-1 \leq
ho_{|lpha|} < p-1 + rac{(m-|lpha|)p}{n}, \qquad
ho_{|lpha|} \leq p$$

and for all $\zeta \in \mathbb{R}^N$, a.e. $x \in \Omega'$

$$|g_{\alpha}(x,\zeta)| \leq C_{\alpha}(\zeta') \left[\Phi_{\alpha}(x) + |\zeta''|^{\rho_{1\alpha 1}} \right]$$

where $\zeta = (\zeta', \zeta'')$ and ζ' consists of those ζ_{γ} for which $|\gamma| < m - n/p$.

Remark 1. Function f_{α} satisfies conditions I - IV e.g. in the following special case:

$$f_{\alpha}(x,\zeta_{\alpha}) = \chi_{\alpha}(x)\varphi_{\alpha}(\zeta_{\alpha}) + \Psi_{\alpha}(\zeta_{\alpha})$$

where $\chi_{\alpha} \in L^{1}(\Omega), \chi_{\alpha} \geq 0; \varphi_{\alpha}, \Psi_{\alpha}$ are continuous functions, φ_{α} is monotone increasing, Ψ_{α} is strictly monotone increasing, $\varphi_{\alpha}(0) = 0$, $\Psi_{\alpha}(0) = 0$ and

$$|c|\zeta_{\alpha}|^{p-1} \leq |\Psi_{\alpha}(\zeta_{\alpha})|(\zeta_{\alpha} \in \mathbb{R}), |\Psi_{\alpha}(\zeta_{\alpha})| \leq \tilde{c}|\zeta_{\alpha}|^{p-1} \text{ if } |\zeta_{\alpha}| < 1$$

by c, \tilde{c} are denoted positive constants.

Theorem 1. Assume that conditions I - VII are fulfilled. Then for any $G \in V^*$ (i.e. for linear continuous functional over V) with compact support there is $u \in V$ such that

(1.1)
$$f_{\alpha}(x, D^{\alpha}u)D^{\alpha}u \in L^{1}(\Omega),$$

(1.2)

$$|f_{\alpha}(x, D^{\alpha}u)| \leq f_{\alpha}^{(1)} + f_{\alpha}^{(2)} \text{ where } f_{\alpha}^{(1)} \in L^{1}(\Omega), \ f_{\alpha}^{(2)} \in L^{q}(\Omega), \ \frac{1}{p} + \frac{1}{q} = 1,$$

(1.3)
$$\sum_{|\alpha|=m} \int_{\Omega} f_{\alpha}(x, D^{\alpha}u) D^{\alpha}v \, dx + \sum_{|\alpha| \leq m-1} \int_{\Omega'} g_{\alpha}(x, u, \dots, D^{\beta}u, \dots) D^{\alpha}v \, dx = \langle G, v \rangle$$

for all $v \in C_0^{\infty}(\mathbb{R}^n)$ with $v|_{\Omega} \in V$.

This theorem will be a simple consequence of Theorem 2 formulated below.

Let V_r be the closure in $W_p^m(\Omega_r)$ of

$$\{\varphi|_{\Omega_r}: \varphi \in C_0^{\infty}(B_r) \cap V\}.$$

Then V_r is a closed linear subspace of $W_p^m(\Omega_r)$ and -extending function $u \in V_r$ as 0 to $\Omega \setminus \Omega_r$ - the extensions belong to V. Let $s > \max\{n, p\}$ then by Sobolev's imbedding theorem $W_s^{m+1}(\Omega_r)$ is continuously and also compactly imbedded into $W_p^m(\Omega_r)$ and $C_B^m(\Omega_r)$ (see e.g. [7]) where $C_B^m(\Omega_r)$ denotes the set of m times continuously differentiable functions

u with finite norm $||u|| = \sum_{|\alpha| \leq m} \sup_{\Omega_r} |D^{\alpha}u|$. Denote by $\overset{\circ}{W}_s^{m+1}(\Omega_r)$ the closure in $W_s^{m+1}(\Omega_r)$ of

$$\{\varphi|_{\Omega_r}:\varphi\in C_0^\infty(B_r)\}.$$

Then -extending $u \in \overset{\circ}{W}^{m+1}_{s}(\Omega_{r})$ as 0 to $\Omega \setminus \Omega_{r}$ - the extension belongs to $W^{m+1}_{s}(\Omega)$. Further, let

$$W_r = \overset{\circ}{W}^{m+1}_s(\Omega_r) \cap V_r$$

with the norm of $W_s^{m+1}(\Omega_r)$. Then W_r is a closed linear subspace of $W_s^{m+1}(\Omega_r)$. Functions $u \in W_r$ will be extended to $\Omega \setminus \Omega_r$ as 0.

For any $u, v \in W_r$ define

$$\begin{split} \langle S_r(u), v \rangle &= \sum_{|\alpha| \leq m+1} \int_{\Omega_r} |D^{\alpha} u|^{s-2} (D^{\alpha} u) (D^{\alpha} v) \, dx, \\ \langle T_r(u), v \rangle &= \sum_{|\alpha| \leq m} \int_{\Omega_r} f_{\alpha}(x, D^{\alpha} u) D^{\alpha} v \, dx, \\ \langle Q_r(u), v \rangle &= \sum_{|\alpha| \leq m-1} \int_{\Omega'} g_{\alpha}(x, u, \dots, D^{\beta} u, \dots) D^{\alpha} v \, dx. \end{split}$$

By Hölder's inequality, Sobolev's imbedding theorem, assumptions I, III, V, VII S_r , T_r , $Q_r : W_r \to W_r^*$ are bounded nonlinear operators i.e. they map bounded sets of W_r onto bounded sets of W_r^* .

Theorem 2. Assume that conditions I - VII are fulfilled, $G \subset V^*$ has compact support and $\lim_{l \to \infty} r_l = +\infty$. Then for sufficiently large l there exists at least one soluton $u_l \in W_{r_l}$ of

$$(1.4) \quad \frac{1}{l} \langle S_{r_l}(u_l), v \rangle + \langle T_{r_l}(u_l), v \rangle + \langle Q_{r_l}(u_l), v \rangle = \langle G, v \rangle \text{ for all } v \in W_{r_l}.$$

Further, there is a subsequence (u'_l) of (u_l) which is weakly converging in V to a function $u \in V$ satisfying (1.1) - (1.3). If (1.1) - (1.3) may have at most one solution then also (u_l) converges weakly to u.

Proof: Clearly, $\frac{1}{l}S_{r_l}$ is a pseudomonotone operator. Since W_{r_l} is compactly imbedded into $C_B^m(\Omega_{r_l})$ thus by use of assumptions I, III, V, VII

it is easy to show that also $(\frac{1}{l}S_{r_l} + T_{r_l} + Q_{r_l}) : W_{r_l} \to W_{r_l}^*$ is pseudomonotone. Assumptions II, IV, VI imply that for each $u \in W_{r_l}$ (1.5)

$$\left\langle \left(\frac{1}{l}S_{r_l} + T_{r_l} + Q_{r_l}\right)(u), u \right\rangle \ge \frac{1}{l} \|u\|_{W_{r_l}}^s + c_3 \sum_{|\alpha|=m} \int_{\Omega_{r_l}} |D^{\alpha}u|^p dx,$$

hence $\frac{1}{l}S_{r_l} + T_{r_l} + Q_{r_l}$ is coercive. So by the theory of pseudomonotone operators (see e.g. [8]) there is at least one solution $u_l \in W_{r_l}$ of (1.4).

Since G has compact support (contained in $\Omega_{\tilde{r}}$) thus (1.6)

$$\begin{aligned} |\langle G, u \rangle| &\leq ||G||_{V^{\bullet}} ||u||_{W_{p}^{m}(\Omega_{r})} \leq c ||G||_{V^{\bullet}} \left\{ \sum_{|\alpha|=m} \int_{\Omega_{r}} |D^{\alpha}u|^{p} dx \right\}^{1/p} \\ &\leq c ||G||_{V^{\bullet}} \left\{ \sum_{|\alpha|=m} \int_{\Omega_{r_{l}}} |D^{\alpha}u|^{p} dx \right\}^{1/p} \end{aligned}$$

for sufficiently large l. (The norm in $W_p^m(\Omega_{\hat{\tau}})$ is equivalent with $\{\sum_{|\alpha|=m} \int_{\Omega_{\hat{\tau}}} |D^{\alpha}u|^p dx\}^{1/p}$ for functions satisfying $D^{\beta}u|_{\Gamma} = 0$ if $|\beta| \leq m-1$.)

From (1.4) - (1.6), p > 1 it follows that

(1.7)
$$\frac{1}{l} \|u_l\|_{W_{r_l}}^s \text{ is bounded and}$$

(1.8)
$$||u_l||_V$$
 is bounded.

Equality (1.4), VI and (1.8) imply that

(1.9)
$$\sum_{|\alpha| \leq m} \int_{\Omega_{\tau_l}} f_{\alpha}(x, D^{\alpha}u_l) \, dx \text{ is bounded.}$$

By Hölder's inequality, for any fixed $j, v \in W_{r_j}$

$$\left|\frac{1}{l}\langle S_{r_l}(u_l), v\rangle\right| \leq \frac{1}{l} \|u_l\|_{W_{r_l}}^{s-1} \|v\|_{W_{r_l}} \text{ if } l \geq j$$

٠

and so by (1.7)

(1.10)
$$\lim_{l\to\infty}\frac{1}{l}\langle S_{r_l}(u_l),v\rangle=0.$$

From (1.8) it follows that there are a subsequence (u'_l) of (u_l) and $u \in V$ such that

$$(1.11) (u'_l) \longrightarrow u \text{ weakly in } V$$

and

(1.12)
$$(D^{\gamma}u'_l) \longrightarrow D^{\gamma}u$$
 a.e. in Ω for $|\gamma| \leq m-1$

because by compact imbedding theorems it may be supposed that for any fixed r > 0

(1.13)
$$(D^{\gamma}u'_l) \longrightarrow D^{\gamma}u \text{ in } L^p(\Omega_r), |\gamma| \leq m-1$$

and by VII

(1.14)
$$(D^{\gamma}u'_{l}) \longrightarrow D^{\gamma}u \text{ in } L^{q_{|\gamma|}}(\Omega'), |\gamma| \leq m-1$$

where $q_{|\gamma|}$ is defined by

$$\frac{1}{p/\rho_{|\gamma|}} + \frac{1}{q_{|\gamma|}} = 1.$$

Lemma 1. For all α and each fixed r > 0 the integrals

$$\int_{\Omega_r} |f_\alpha(x, D^\alpha u_l')| \, dx$$

are uniformly bounded and the functions $f_{\alpha}(x, D^{\alpha}u'_{l})$ are uniformly equiintegrable in Ω_{τ} .

Proof: From II it follows that for any ζ_{α} , $\tilde{\zeta}_{\alpha}$

$$f_{\alpha}(x,\zeta_{\alpha})\tilde{\zeta}_{\alpha} \leq f_{\alpha}(x,\zeta_{\alpha})\zeta_{\alpha} + f_{\alpha}(x,\tilde{\zeta}_{\alpha})\tilde{\zeta}_{\alpha}.$$

Applying this inequality to $\zeta_{\alpha} = \rho \operatorname{sgn} f_{\alpha}(x, \zeta_{\alpha})$ with arbitrary fixed number $\rho > 0$ we obtain

$$\rho[\operatorname{sgn} f_{\alpha}(x,\zeta_{\alpha})]f_{\alpha}(x,\zeta_{\alpha}) \leq f_{\alpha}(x,\zeta_{\alpha})\zeta_{\alpha} + f_{\alpha}(x,\tilde{\zeta}_{\alpha})\rho \operatorname{sgn} f_{\alpha}(x,\zeta_{\alpha})$$

where $|\tilde{\zeta}_{\alpha}| = \rho$. Thus by III we have

$$|f_{\alpha}(x,\zeta_{\alpha})| \leq \frac{f_{\alpha}(x,\zeta_{\alpha})\zeta_{\alpha}}{\rho} + f_{\alpha,\rho}(x).$$

Combining this estimation with (1.9) we obtain Lemma 1.

By using the methods of [1], [2], [9] we obtain

Lemma 2. There is a subsequence (u_{l_k}) of (u'_l) such that $(D^{\alpha}u_{l_k}) \longrightarrow D^{\alpha}u$ a.e. in Ω if $|\alpha| = m$.

(See [4, Lemma 4]).

Consider a fixed $v \in C_0^{\infty}(\mathbb{R}^n)$ such that $v|_{\Omega} \in V$ and apply (1.4) to this v and $l = l_k$. Then passing to the limit in (1.4), in virtue of I, V, (1.10) - (1.14), Lemma 1, Lemma 2, Vitali's theorem and Hölder's inequality we obtain (1.3). (1.1) is a consequence of (1.9), II and Fatou's lemma. Since by III

$$\begin{aligned} |f_{\alpha}(x,\zeta_{\alpha})| &\leq \sup_{|\zeta_{\alpha}| \leq c_{2}} |f_{\alpha}(x,\zeta_{\alpha})| + \frac{1}{c_{2}} [f_{\alpha}(x,\zeta_{\alpha})\zeta_{\alpha}| \leq \\ &\leq f_{\alpha}^{*}(x) + c_{1} |\zeta_{\alpha}|^{p-1} + \frac{1}{c_{2}} |f_{\alpha}(x,\zeta_{\alpha})\zeta_{\alpha}| \end{aligned}$$

thus (1.1) implies (1.2).

2. The uniqueness theorem

In addition to I - VII it will be assumed that the following conditions are fulfilled:

VIII. There is a constant c_4 such that for all $\zeta_{\alpha} \in \mathbb{R}$, $|\alpha| = m$, a.e. $x \in \Omega$

$$|f_{\alpha}(x,\zeta_{\alpha})| \leq c_4 |f_{\alpha}(x,-\zeta_{\alpha}|.$$

IX. For each $\zeta,\, \tilde{\zeta} \in \mathbb{R}^N,$ a.e. $x \in \Omega$

$$\sum_{\alpha|\leq m-1} [g_{\alpha}(x,\zeta) - g_{\alpha}(x,\tilde{\zeta})](\zeta_{\alpha} - \tilde{\zeta}_{\alpha}) \geq 0.$$

IX. For each $\zeta, \, \tilde{\zeta} \in \mathbb{R}^N$, a.e. $x \in \Omega$

$$\sum_{\alpha|\leq m-1} [g_{\alpha}(x,\zeta) - g_{\alpha}(x,\tilde{\zeta})](\zeta_{\alpha} - \tilde{\zeta}_{\alpha}) \geq 0.$$

X. Ω is a starlike domain in the following sense: there exist $x_0 \in \mathbb{R}^n$ and $\delta > 0$ such that $1 < \lambda < 1 + \delta$ implies $\overline{\Omega}_{\lambda} \subset \Omega$ where

$$\Omega_{\lambda} = \{ x_0 + \lambda (x - x_0) : x \in \Omega \}.$$

XI. There exist numbers $\varepsilon_1, \varepsilon_2, c_5 > 0$ and a function $k \in L^q(\Omega)$ such that for all $\zeta \in \mathbb{R}^N$, a.e. $x, x' \in \Omega$

$$|f_{\alpha}(x,\zeta_{\alpha})| \leq c_{5}|f_{\alpha}(x',\zeta_{\alpha})| + k(x)$$

if $|x - x'| \leq \varepsilon_1$ or if $x' = x_0 + \frac{1}{\lambda}(x - x_0)$ where $0 < \lambda - 1 < \varepsilon_2$, x_0 is defined in X.

Theorem 3. If conditions I - XI are fulfilled then problem (1.1) - (1.3) has a unique solution $u \in V$.

Remark 2. Functions f_{α} satisfy the conditions of Theorem 3 e.g. in the following special case:

$$f_{\alpha}(x,\zeta_{\alpha}) = h_{\alpha}^{(1)}(\zeta_{\alpha})\chi_{\alpha}(x) + h_{\alpha}^{(2)}(\zeta_{\alpha})$$

where $h_{\alpha}^{(j)}$ are continuous, (for j = 2 strictly) monotone increasing functions, $h_{\alpha}^{(j)}(0) = 0$. Further, with suitable positive constants $c_1^* - c_3^*$ we have

$$\begin{aligned} |h_{\alpha}^{(j)}(-\zeta_{\alpha})| &\leq c_1^* |h_{\alpha}^{(j)}(\zeta_{\alpha})|, \ c_2^* |\zeta_{\alpha}|^{p-1} \leq |h_{\alpha}^{(2)}(\zeta_{\alpha})|; \\ \text{for } |\zeta_{\alpha}| < 1 - |h_{\alpha}^{(2)}(\zeta_{\alpha})| \leq c_3^* |\zeta_{\alpha}|^{p-1}. \end{aligned}$$

 $\chi_{\alpha} \equiv 0$ or $\chi_{\alpha} > 0, \chi_{\alpha} \in L^{1}(\Omega)$ and with some positive constants $\varepsilon_{1}, \varepsilon_{2}, c_{5}$

 $\chi_{\alpha}(x) \leq c_5\chi_{\alpha}(x')$ if $|x - x'| < \varepsilon_1$ or $x' = x_0 + \frac{1}{\lambda}(x - x_0)$ where $0 < \lambda - 1 < \varepsilon_2$. χ_{α} satisfies the above conditions e.g. if $x_0 = 0$, χ_{α} is continuous, positive and out of some $B_a - \chi_{\alpha}(x) = \chi_{\alpha}^1(|x|)$ where χ_{α}^1 is monotone decreasing and its derivative is bounded.

In the proof of Theorem 3 we need

Lemma 3. For each ζ_{α} , $\tilde{\zeta}_{\alpha}$, a.e. $x \in \Omega$

$$|f_{lpha}(x,\zeta_{lpha})ar{\zeta}_{lpha}| \leq c_4 [f_{lpha}(x,\zeta_{lpha})\zeta_{lpha} + f_{lpha}(x,ar{\zeta}_{lpha})\zeta_{lpha}].$$

Proof: Define $\tilde{\zeta}'_{\alpha} = |\tilde{\zeta}_{\alpha}|(\operatorname{sgn} \zeta_{\alpha})$ then II implies

$$f_{lpha}(x,\zeta_{lpha})ar{\zeta}'_{lpha}+f_{lpha}(x,ar{\zeta}'_{lpha})\zeta_{lpha} \leqq f_{lpha}(x,\zeta_{lpha})\zeta_{lpha}+f_{lpha}(x,ar{\zeta}'_{lpha})ar{\zeta}'_{lpha}$$

whence by $f_{\alpha}(x,\zeta_{\alpha})\zeta_{\alpha} \geq 0, \ f_{\alpha}(x,\tilde{\zeta}'_{\alpha})\tilde{\zeta}'_{\alpha} \geq 0$

$$f_{\alpha}(x,\zeta_{\alpha})\tilde{\zeta}'_{\alpha} \leq f_{\alpha}(x,\zeta_{\alpha})\zeta_{\alpha} + f_{\alpha}(x,\tilde{\zeta}'_{\alpha})\tilde{\zeta}'_{\alpha}.$$

Thus in virtue of $f_{\alpha}(x,\zeta_{\alpha})\zeta_{\alpha} \geq 0$, VIII we have

$$\begin{aligned} |f_{\alpha}(x,\zeta_{\alpha})\tilde{\zeta}_{\alpha}| &= f_{\alpha}(x,\zeta_{\alpha})\tilde{\zeta}_{\alpha}' \leq \\ &\leq f_{\alpha}(x,\zeta_{\alpha})\zeta_{\alpha} + f_{\alpha}(x,\tilde{\zeta}_{\alpha}')\tilde{\zeta}_{\alpha}' \leq f_{\alpha}(x,\zeta_{\alpha})\zeta_{\alpha} + c_{4}f_{\alpha}(x,\tilde{\zeta}_{\alpha})\tilde{\zeta}_{\alpha}. \ \blacksquare \end{aligned}$$

The Proof of Theorem 3: Assume that u = u' and u = u'' satisfy (1.1) - (1.3). We shall show that (1.3) is fulfilled with v = u', v = u''. This will imply u' = u'' a.e. since then

$$\sum_{|\alpha|=m} \int_{\Omega} [f_{\alpha}(x, D^{\alpha}u') - f_{\alpha}(x, D^{\alpha}u'')] (D^{\alpha}u' - D^{\alpha}u'') dx + \sum_{|\alpha| \leq m-1} \int_{\Omega'} [g_{\alpha}(x, u', \dots, D^{\beta}u', \dots) - g_{\alpha}(x, u'', \dots, D^{\beta}u'', \dots)] (D^{\alpha}u' - D^{\alpha}u'') dx = 0$$

and so by II, IX $D^{\alpha}u' = D^{\alpha}u''$ a.e. in Ω if $|\alpha| = m$ which implies u' = u'' a.e. as $u', u'' \in \tilde{W}_{\mu,0}^{m}(\Omega)$.

Let λ_j be a sequence of numbers such that $\lim(\lambda_j) = 1$ and $1 - \delta < \lambda_j < 1$, j = 1, 2, ... Define functions v_j in \mathbb{R}^n by

(2.1)
$$v_j(x) = \begin{cases} u'\left(x_0 + \frac{1}{\lambda_j}(x - x_0)\right) & \text{if } x \in \Omega_{\lambda_j} \\ 0 & \text{otherwise} \end{cases}$$

and consider the convolution $v_j * \eta_{\varepsilon}$ where ε is a positive number and $\eta_{\varepsilon} \in C_0^{\infty}(\mathbb{R}^n)$ is such that $\eta_{\varepsilon} \geq 0$, $\eta_{\varepsilon}(x) = 0$ for $|x| > \varepsilon$ and $\int \eta_{\varepsilon} dx = 1$. Then $v_j * \eta_{\varepsilon} \in C^{\infty}(\mathbb{R}^n)$ and by Hölder's inequality for $|\alpha| = m$

(2.2)
$$D^{\alpha}(v_j * \eta_{\varepsilon}) = D^{\alpha}v_j * \eta_{\varepsilon} \in L^p(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$$

since the trace of $D^{\beta}v_j$ on $\partial\Omega_{\lambda_j}$ is 0 if $|\beta| \leq m-1$.

By using an idea of V. Komornik, we show that (1.3) holds with u = u'', $v = v_i * \eta_{\varepsilon}$ if $\varepsilon > 0$ is sufficiently small.

Let $w = v_j * \eta_{\varepsilon}$. Further, consider a fixed function $\varphi \in C_0^{\infty}(\mathbb{R}^n)$ such that $0 \leq \varphi \leq 1$, $\varphi(x) = 0$ if $|x| \geq 1$, $\varphi(x) = 1$ if $|x| \leq 1/2$ and define w_k by

$$w_k(x) = \varphi\left(\frac{x}{k}\right) w(x).$$

Then

(2.3)
$$D^{\alpha}w_{k}(x) = \sum_{\gamma \leq \alpha} c_{\gamma} \frac{1}{k^{|\gamma|}} D^{\gamma} \varphi\left(\frac{x}{k}\right) D^{\alpha - \gamma} w(x)$$

whence

(2.4)
$$\|D^{\alpha}w_{k}\|_{L^{\infty}(\mathbb{R}^{n})} \leq \sum_{\gamma \leq \alpha} \frac{d_{\gamma}}{k^{|\gamma|}} \sup_{B_{k}} |D^{\alpha-\gamma}w|,$$

(2.5)
$$\|D^{\alpha}w_{k}\|_{L^{p}(\mathfrak{R}^{n})} \leq \sum_{\gamma \leq \alpha} \frac{d_{\gamma}}{k^{|\gamma|}} \|D^{\alpha-\gamma}w\|_{L^{p}(B_{k})}.$$

In order to estimate the right hand sides of (2.4), (2.5) we prove estimations

(2.6)
$$||f||_{L^{\infty}(B_k)} \leq \text{const } k^l \sum_{|\beta|=l} ||D^{\beta}f||_{L^{\infty}(B_k)},$$

(2.7)
$$||f||_{L^{p}(B_{k})} \leq \text{const } k^{l} \sum_{|\beta|=l} ||D^{\beta}f||_{L^{p}(B_{k})},$$

if f(x) = 0 in a neighbourhood of 0. Indeed, we have

$$f(x) = \int_0^{|x|} \frac{x}{|x|} Df\left(t\frac{x}{|x|}\right) dt$$

and so

(2.8)
$$||f||_{L^{\infty}(B_k)} \leq k ||Df||_{L^{\infty}(B_k)}$$

Further,

$$|f(x)| \leq \int_0^{|x|} \left| Df\left(t\frac{x}{|x|}\right) \right| \, dt \leq |x|^{\frac{1}{q}} \left(\int_0^{|x|} \left| Df\left(t\frac{x}{|x|}\right)^p \right| \, dt \right)^{1/p}$$

and, consequently, by using the notation $S_r = \{x \in \mathbb{R}^n: |x| = r\}$

$$(2.9) \quad \|f\|_{L^{p}(B_{k})}^{p} \leq \int_{0}^{k} \left[\int_{S_{*}} |x|^{\frac{p}{q}} \left\{ \int_{0}^{|x|} \left| Df\left(t\frac{x}{|x|}\right) \right|^{p} dt \right\} d\sigma_{x} \right] dr \leq \\ \leq \int_{0}^{k} r^{\frac{p}{q}} dr \|Df\|_{L^{p}(B_{k})}^{p} = \frac{1}{p} k^{\frac{p}{q}+1} \|Df\|_{L^{p}(B_{k})}^{p}, \|f\|_{L^{p}(B_{k})} \leq \\ \leq \left(\frac{1}{p}\right)^{\frac{1}{p}} k \|Df\|_{L^{p}(B_{k})}.$$

Applying (2.8) resp. (2.9) successively we obtain (2.6) resp. (2.7).

Clearly, without loss of generality, we may assume that $0 \in \partial \Omega$ and so for sufficiently small $\varepsilon > 0$ $w = v_j * \eta_{\varepsilon}$ is 0 in a neighbourhood of 0. Thus we may estimate the right hand sides of (2.4), (2.5) by (2.6) resp. (2.7) and so (2.2) implies that

$$\|D^{\alpha}w_k\|_{L^{\infty}(\mathbb{R}^n)}, \|D^{\alpha}w_k\|_{L^{p}(\mathbb{R}^n)}$$

are bounded $k = 1, 2, \ldots$. Further, by the definition of w_k

$$w_{k} = w \text{ in } B_{\underline{k}}$$

Therefore, applying (1.3) to u = u'', $v = w_k$, by using Vitali's theorem we obtain as $k \to \infty$ that (1.3) holds with u = u'', $v = v_j * \eta_c$.

Now, we shall prove that (1.3) is valid also with u = u'', $v = v_j$. Let $\varepsilon_k > 0$ be such that $\lim(\varepsilon_k) = 0$. Then for each fixed $r \ge r_0$

$$\lim_{k\to\infty} \|v_j * \eta_{\varepsilon_k} - v_k\|_{W_p^m}(\Omega_r) = 0$$

(see e.g. [7]), consequently, for a suitable subsequence (ε'_k) of (ε_k)

$$(2.10) D^{\alpha}(v_j * \eta_{\epsilon'_{\mu}}) \longrightarrow D^{\alpha}v_j (|\alpha| \le m)$$

a.e. in Ω_r . Applying this statement to $r = r_0, r_0 + 1, r_0 + 2, \ldots$ we may extract a subsequence $(\epsilon_k^{\prime\prime})$ such that (2.10) holds a.e. in Ω .

Now we prove that for a fixed j, $|\alpha| = m$ the sequence of functions

(2.11)
$$f_{\alpha}(x, D^{\alpha}u'')D^{\alpha}(v_j * \eta_{\varepsilon_k'}), \qquad k = 1, 2, \dots$$

is equiintegrable in Ω . According to (2.1) $v_j(y) = u'(\Phi_j(y))$ where $\Phi_j(y) = x_0 + \frac{1}{\lambda_j}(y - x_0)$ (out of $\Omega \quad u'$ is considered to be 0). Consequently, with some positive constant $c_6 > 0$ we obtain

$$|D^{\alpha}(v_{j} * \eta_{\epsilon_{k}''})(x)| = \left| \int_{\mathbb{R}^{n}} D^{\alpha} v_{j}(y) \eta_{\epsilon_{k}''}(x-y) \, dy \right| \leq \leq c_{6} \int_{\mathbb{R}^{n}} |D^{\alpha} u'(\Phi_{j}(y))| \eta_{\epsilon_{k}''}(x-y) \, dy.$$

Therefore, by using Lemma 3, XI and $\int_{\mathbb{R}^n} \eta_{\varepsilon_{\mu}^{\prime\prime}} = 1$, functions (2.11) can

be estimated for sufficiently large k in the following way:

$$\begin{aligned} |f_{\alpha}(x, D^{\alpha}u''(x))D^{\alpha}(v_{j}*\eta_{\epsilon_{k}'})(x)| &\leq \\ &\leq c_{6}\int_{\mathbb{R}^{n}}|f_{\alpha}(x, D^{\alpha}u''(x))D^{\alpha}u'(\Phi_{j}(y))|\eta_{\epsilon_{k}''}(x-y)\,dy \leq \\ &\leq c_{4}c_{6}\int_{\mathbb{R}^{n}}f_{\alpha}(x, D^{\alpha}u''(x))D^{\alpha}u''(x)\eta_{\epsilon_{k}''}(x-y)\,dy + \\ &+ c_{4}c_{6}\int_{\mathbb{R}^{n}}f_{\alpha}(x, D^{\alpha}u'(\Phi_{j}(y)))D^{\alpha}u'(\Phi_{j}(y))\eta_{\epsilon_{k}''}(x-y)\,dy \leq \\ &\leq c_{4}c_{6}f_{\alpha}(x, D^{\alpha}u''(x))D^{\alpha}u''(x) + \\ &+ c_{4}c_{5}^{2}c_{6}\int_{\mathbb{R}^{n}}f_{\alpha}(\Phi_{j}(y), D^{\alpha}u'(\Phi_{j}(y)))D^{\alpha}u'(\Phi_{j}(y))\eta_{\epsilon_{k}''}(x-y)\,dy + \\ &+ 2c_{4}c_{6}k(x)\int_{\mathbb{R}^{n}}|D^{\alpha}u'(\Phi_{j}(y))|\eta_{\epsilon_{k}''}(x-y)\,dy. \end{aligned}$$

In the last sum the first term is Lebesgue integrable in Ω , the second and third terms are equiintegrable in $\Omega(k = 1, 2, ...)$ since for some $\Omega_0 \supset \overline{\Omega}$

$$y \mapsto f_{\alpha}(\Phi_{j}(y), D^{\alpha}u'(\Phi_{j}(y))D^{\alpha}u'(\Phi_{j}(y)) \in L^{1}(\Omega_{0}),$$
$$D^{\alpha}u'(\Phi_{j}(y)) \in L^{p}(\Omega_{0}), k \in L^{q}(\Omega).$$

Thus the sequence of functions (2.11) is equiintegrable in Ω and so by (2.10) and Vitali's theorem we find

(2.12)
$$\lim_{k\to\infty}\int_{\Omega}f_{\alpha}(x,D^{\alpha}u'')D^{\alpha}(v_{j}*\eta_{\varepsilon_{k}''})\,dx=\int_{\Omega}f_{\alpha}(x,D^{\alpha}u'')D^{\alpha}v_{j}\,dx.$$

By using (2.10), VI, VII, Sobolev's imbedding theorem, Hölder's inequality and Vitali's theorem it is not difficult to show that for $|\alpha| \leq m-1$

(2.13)
$$\lim_{k \to \infty} \int_{\Omega'} g_{\alpha}(x, u'', \dots, D^{\beta}u'', \dots) D^{\alpha}(v_j * \eta_{\epsilon_k'}) dx = \int_{\Omega'} g_{\alpha}(x, u'', \dots, D^{\beta}u'', \dots) D^{\alpha}v_j dx.$$

Finally, $\|v_j * \eta_{\epsilon''_k}\|_V \leq \|v_j\|_V$, thus it may be supposed: we have chosen subsequence (ϵ''_k) of (ϵ'_k) such that

(2.14)
$$(v_j * \eta_{\epsilon_k'}) \longrightarrow v_j$$
 weakly in V.

Since (1.3) holds with u = u'', $v = v_j * \eta_{\varepsilon_k''}$, thus from (2.12) - (2.14) we obtain as $k \to \infty$ that (1.3) holds with u = u'', $v = v_j$. Consequently, similarly to the above arguments, we obtain as $j \to \infty$ that (1.3) is valid for u = u'', v = u'. Analogously can be considered cases u = u'', v = u''; u = u', v = u' resp. u''.

References

- 1. MUSTONEN, V., SIMADER, C.G., On the existence and uniqueness of solutions for strongly nonlinear elliptic variational problems, Ann. Acad. Sci. Fenn. Ser. A I. Math. 6 (1981), 233-254.
- 2. LANDES, R., Quasilinear elliptic operators and weak solutions of the Euler equation, *Manuscripta Math.* 27 (1979), 47-72.
- 3. SIMADER, C.G., Remarks on uniqueness and stability of weak solutions of strongly nonlinear elliptic equations, *Bayreuther Mathe*matische Schriften 11 (1982), 67-79.
- 4. SIMON, L., On strongly nonlinear elliptic variational inequalities, Acta Math. Acad. Sci. Hung. 52 (1988), 147-164.
- SIMON, L., On uniqueness, regularity and stability of solutions of strongly nonlinear elliptic variational inequalities, Acta Math. Acad. Sci. Hung. 55 (1990), 379-392.
- 6. FORTUNATO, D., Remarks on some nonlinear boundary value problems, Annali di Matematica Pura Appl. (4) 124 (1980), 217-231.
- ADAMS, R., "Sobolev spaces," Academic Press, New York, San Francisco, London, 1975.
- 8. LIONS, J.L., "Quelques méthodes de résolution des problèmes aux limites non linéaires," Dunod, Gauthier-Villars, Paris, 1969.
- 9. LANDES, R., On Galerkin's method in the existence theory of quasilinear elliptic equations, J. Functional Analysis **39** (1980), 123-148.

Eötvös Loránd Tudományegyetem 1088 Budapest Muzeum krt. 6-8 HUNGARY

Rebut el 29 d'Abril de 1991

٠

.