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EXAMPLES OF SINGULAR MAXIMAL
FUNCTIONS UNBOUNDED ON U'

MICHAI,L CHRIST

1 . L' examples

In R2 consider a continuous curve {(t, y(t» : t E R+ }, satisfying y(0) = 0 .
To it may be associated a maximal function

r

x)

	

sup,	jf(.Mtif(

	

x1 - t, xz - y(t))1 dt .
r>ó 0

Much labor has been devoted to understanding for which curves M ., is a
bounded operator on LP(R2 ). Positive results are known under various geo-
metric hypotheses ; see for instance [SW], [Carl], [Carb] and the references
therein . In particular, curvature plays a major role, and important contribu-
tions to our understanding of its ramifications were made by Rubio de Francia
[Carl], [DR], [R] .
By analogy with the Calderón-Zygmund theory of singular integrals and the

Hardy-Littlewood maximal function, a fundamental question about these more
singular operators is what happens for p = 1, that is, whether M .,, is of weak
type (1,1) . No operator of this type, save those which reduce in a very trivial
way to the Hardy-Littlewood maximal function in Ri (as when y = 0), has
been proved to be of weak type (1,1) . For the closest approach to date see [C] .
Our first purpose here is to show that in fact the weak (1,1) boundedness fails

for a large class of curves, those which are piecewise linear in an appropriate
sense . Among these curves are large families for which LP boundedness is
already known for all p > 1 . The prototypical example is y(t) = t2 for t = 2j,
j E Z, and y affine on each interval 2i _< t _< 2j+i . The absence of curvature will
be essential to our analysis . Rubio de Francia was quite interested in both weak
(1,1) boundedness and LP boundedness for operators with singularities along
varieties lacking curvature, and again made significant contributions [Carl],
[CR] .

Our construction will apply in greater generality :

	

Let Ql , . . . ~N be N line
segments in R" of finite length, n >_ 2 . For each j let vj E Sn-1 be one of the
two unit vectors oriented parallel to Qj . Somewhat abusively we speak of vj as
the orientation of £j, and say that v ; = vj if they span the same line in R" . Let
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Aj denote one-dimensional Hausdorff measure on ~j, normalized to have total
mass one . Define the maximal funetion

Mf(x)=

	

sup

	

1f(x-y)¡dAj(y).
1<j<N Á

Proposition 1. For each n >_ 2 there exists a constant Bn > 0 such that
for any N >_ 1 and any collection of line segments {2j : 1 _< j < N} as aboye
with distinct orientations, the weak type (1,1) operator norm of M is bounded
below by BnN.

By projecting onto a generie two-dimensional subspace one sees that Bn is
actually independent of the dimension, and that it would suffice to prove this
for n = 2. It is not required that the Pj be in any way related to one another,
e.g . that they piece together to form a continuous curve ; another situation of
some interest is when each has one endpoint at the origin .

Since the operators given by convolution with the ñj are uniformly bounded
on L1 , the weak (1,1) operator norm of M is bounded above by CN . So the
rate of growth is the largest imaginable .

Corollary. Suppose that y is afne in each interval2i _< t <_ 2j+1 and that
its derivative takes on infinitely many distinct values . Then M., is not of weak
type (1,1).

It will be apparent from the construction that the same goes for Hilbert trans-
forms along curves .

It is permissible to assume in the proof that each Qj has length 2I(a> for some
I(j) E Z . This may be achieved by shrinking each Pj by a factor between 1
and 2 to a concentric segment with the same orientation ; the resulting maximal
function is bounded pointwise by twice the original one so it is enough to show
that the new one is unbounded .

Suppose that segments 21, . . . £N have distinct orientations vj . By dilating ev-
erything by some factor we may suppose without loss of generality that I(j) > 0
for all j . Denote by ¿j the segment {svj : Is1 < 8-12I(j)} centered at the origin.
Denote by ij the segment concentric with Qj and with the same orientation but
half as long .
We wish to construct a set of points {zk : 1 <_ k < N, 0 < a < 2I(k)}

satisfying certain conditions . First some notation, assuming the zó have already
been constructed : Let .A denote the set of sums w = ~k1 zák . Define for each
1 < j _< N an equivalente relation on .A as follows . If w is as above, and
w' _ zQk, then w -j w' if and only if w - w' is a scalar multiple of vj . Then
the conditions are



SINGULAR MAXIMAL FUNCTIONS UNBOUNDED ON Lp

	

27 1

(2) zQ E ¡k

(3) For all 1 < j < N and w, w' E A, w -j w' if and only if ce ; = 0; for all
i 7É

j .

	

-

Implicit in (3) is that for each k, the points zá are distinct if N > 1 . It is quite
easy to prove the existente of a set of points z~ satisfying these conditions . Let
us just assume it for the moment and proceed with the proof of the proposition .

Let e > 0 be a small parameter which will later tend to zero . For each
1 < j < N, w E A define

S(w, j, e) = {x E Rn :

	

distance(x - 2j, w) < E/2} .
Observe that x E S(w,j, e) =:>

	

distance(x - 2i, w') < e/2 for all w' -j w .
For x - ~j is a segment of twice the length of x - 2i with the same center,
while by (2) and definition of the equivalente relation, w' - w = svj for some
¡si < 4-12I( .i) , which is one quarter of the length of Qj .
Let B(w, e) denote the ball of radius e centered at w and let XE denote the

characteristic function of a set E. Define

fe(x) = 1: XB(w,e)(x) .
wEA

If w E A and x E S(w, j, e) then by the observation of the last paragraph,
the segment x - (?j meets B(w', E) in a set of length at least e/2, for every
w' -j w. There are 2,0) such w' . On the other hand x - £j has length 2'(j) .
Consequently

x E S(w, j, E) => 1 fE(x - y) da d (y) > E/2

=> Mf,(x) > e/2 .

So our task is to show that the measure of U w jS(w,j, e) is large .

	

First
consider the union over w E A with j fixed . To each w associate a canonical
representative w of its j-th equivalente class, specified by iiw = r zá k with
aj = 0 . The set of all ziw has cardinality JAI/2,(j) . We maintain that if E is
chosen sufficiently small, depending on N, {2j}, and on A, the sets S(w, j, e) will
be disjoint for any two such w . Indeed S(w, ],e) = {x : distance(x, w + ei) <
e/2} .

	

If these intersect for w1, w2 then distance(w 1 - zD2, ¿j - ¡j) < e .

	

But
2j - 2> C Hvj, and i& 1 - tiw 2 E IRvj means w 1 -i w2, which by (3) implies
w 1 = ¡V2 . So once e is sufficiently small, distance(w 1 - w2, ii	> e . Since
A is a finite set, some e > 0 suffices to make all these sets disjoint for each j .
So

U

	

S(-, j, e)

	

1 U S(tu,J, E) 1
wEA

	

ilw

_

	

I S(w,j, e) I
vw

> c1 En-12I(.i) , 2-,(j) 1-41
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where c l is an absolute constant depending only on the dimension of the ambi-
ent space . The first factor of 2I(j) represents the length of £j, .while 2-I(j) 1,41

is the cardinality of the set of all j-th equivalence classes .
The final point is that for distinct j's, the sets S(w,j, e) are also essentially

disjoint . Indeed if i 7É j and if w, w' E A (possibly equal) then IS(w, j, e) fl
S(w', ¡,e)¡ = O(en) as e --> 0 since vj :~ vi ; we have intersecting tubular neigh-
borhoods of two line segments with differing orientations . Therefore

U

	

S(w, .7, e)~ ? clon-1 N~.A~ - O(En) .
1<j<N
WEA

The constant implied in the error term O(En) depends on everything in the
hypotheses and construction and is in no way under control . However by taking
e sufficiently small we obtain

Now llfEIIL' = CJAIen . Therefore

{x : Mf,(x) > e/2}1 > 2 en-1N1,41

- C3Ne-1ILI,IIL'

where c2, c3 are absolute constants .

U

	

S(w,j,E)I

	

2 en-'N1-41 .
1<j<N
wEA

This construction is completely inapplicable to curves such as -y(t) = t2 with
nonvanishing curvature . The question of their L1 behavior remains open .

It remains only to prove the existence of points zk satisfying conditions (1)
through (3) . We proceed by induction on k . We claim that for each 1 _< k <_ N
it is possible to Choose {z i : i _< k, a < 2I(`)} so that zó = 0, zó E Qi, and so
that (3) holds for all j < N but only for w, w' already defined, that is of the
form w = Ei<_k z« . and similarly for w' . At step k = 1 (3) is no constraint .
Suppose the step k is done . For k+1, zó+1 must be the origin . zi

+1 is permitted
to be any point of Qk+1 which is not an element of any of the finitely many lines
E¡<k(z« ; - zp ;) +R - vj, 1 < j < N, j jF k+ 1 . (The case j = k + 1 is already
handled by the induction process .) But since vj and vk+1 are distinct, only
finitely many points of ik+1 violate this constraint . Choose zi+ 1 to be any
point of 4+1 which is not on one of the forbidden lines . Now consider z2+1 .

+1 - i+1+1 _ ó+1The only forbidden values are those for which one of z2

	

z, z2

	

z

lies on one of the forbidden lines . So again only finitely many points of ik+1
are forbidden and there is no problem in selecting z2+ 1 . Continuing in this way
we obtain all the required zk+ 1 , a < 2I(k+1) .
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2 . LP examples

Until now it has been unknown whether there are any curves for which M., is
bounded on LP for some but not all p E (1, oo) . What one can deduce without
computation from the construction above is that for any infinite sequence {Qj}
with distinct orientations and lengths tending to zero, there exists an Orlicz
class which is locally more restrictive than Ll, and which is not mapped to weak
L1 (locally) by the maximal function . Suppose we were to attempt to apply the
same argument to obtain an LP counterexample for some p > 1, in R2 . For any
fixed distribution of points w, IIfEIIP ^ e2IP while IIMfEIIP ;5 el+P-1 < 62/P as
e -> 0 . Therefore a counterexample can no longer be obtained by passing to the
limit . Since that limit allowed us to avoid the intricate question of how the sets
S(w,j, e) overlap, a close examination of the dependence of this overlapping on
e, on p and on A is required for p > 1 .
We shall not attempt such an analysis . Instead we shall indicate how in

certain particular cases a different choice of the "lattice" A leads to a very
computable situation and to LP counterexamples for certain p > 1 .

First let N be a large integer and for each 1 <_ j < N, let Qj be the segment
in R2 centered at the origin, with slope j/N and length 2j+1 . Let

MNf(x) =

	

sup

	

If * F1j(x)I1<j<N

where icj is arclength measure on £j, normalized to be a probability measure.

Proposition 2. For each p < 3/2 the operaior norm of MN on LP is á
N(31P)-2 , hence tends to oo, as N -> oo .

For p > 2, MN remains uniformly in LP. This follows either from the ar-
guments of [CW], from Fourier transform and square function estimates, or
from the method of covering lemmas as developed by Córdoba and R . Feffer-
man . Naturally it would be most interesting to resolve matters in the range
3/2<p<2.
To prove the proposition let

A = {(x, y) E Z x (N-1 Z) : 0 < x, y < 2N}.

Here N-1Z = {¡IN : i E Z}. Let fF be the sum of characteristic functions
of all balls of radius e centered at points of A. Any line of slope k/N, with
1 _< k _< N, which passes through some one of these balls, must pass through
2N of them, unless the first-mentioned ball is located near an edge of the

configuration . In fact the balls it meets will be equally spaced along it, with
spacing interval between 1 and ~/2 . Therefore fE * jij is it e on a union of about
N2N disjoint strips, each of width P7, e and length Pz~ 2N .
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Unfortunately these strips overlap substantially when j is varied . We wish
to choose e sufficiently small that for any one of the strips, the measure of the
union of its intersections with all other strips does not exceed half its measure .
Then the measure of the union of all the strips is comparable to the sum of
their measures, which is readily computable .

Fix a strip with slope jIN and consider its intersection with a strip of different
slope k/N . The measure of the intersection is ; e 2 /I Ñ - i I . Now consider all
strips with this slope k/N which meet the fixed strip . There are S N2N I Ñ - Ñ 1
of them . Indeed the given strip passes within distance e of some point (0, m/N)
with m E Z, and each strip with slope k/N passes near a unique point (0, n/N) .

However by plane geometry, only those for which I Ñ - L 12N ^'. In - ml/N can
cross the fixed strip, since it has length ;!S 2N . The number of allowed values
of n is :S N2N1 N - LI as claimed .

Therefore the sum of the measures of the intersections with all strips with
slope k/N which meet the given strip is ;~ e 2N2N . Summing over all 1 < k <_ N,
we find that the measure of the union of the intersections of the fixed strip with
all others is ;S e2 N2 2N . Since the given strip has measure a e2N , we require

This establishes Proposition 2 .

where c o is a small constant .
Supposing this, the measure of the union of all strips of all slopes is compa-

rable to the sum of their measures, which is ? N - N2N - e2N, the product of
the number of slopes, the number of strips of a given slope, and the measure
of one strip . Since MNf, ~t e on this set,

IIMNfElip

	

J . eN222N

Ilff1IP e2N22N
= CP_1N

coP-' Ns-ZP-

	

.

If each of the slopes is perturbed by an amount 6;, the argument remains
valid if 2N6j < e = co N-2 for j ~ N. Thus 6j ;!S 2-NN-2 ; the example is
extremely sensitive to perturbations . We don't know whether this reflects a
weakness in the construction_or a genuine feature of the problem .

Another class of examples may be obtained by taking Qi to have slope j -r

and length 23 , j > 1 . Let M(r) be the associated maximal function .

Proposition 3. M(r) is unbounded ora LP for all p < (2r + 2)/(2r -f- 1) .

This time let N be large and take

A={(x,y)EZxZ :0<x,y<2 N } .
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As always let fF be the sum of characteristic functions of e-balls centered at the
points of A . If a line of slope j-r passes through a point of A, then typically
it will pass through about N-r2' points of A. These are equally spaced along
the line, with spacing ~ j r . We restrict attention to the range N/2 < j <_ N.
Then M(r)fE ~t 6N- r on the union of the strips . There are about Nr2N strips
of slope j-r for each j (for now the midline of such a strip crosses the y-axis
at a point (0,nj-r ) where 0 < n < jr2N), for a total of about Nr+12N strips .
Each has area .^s e2N.
Two strips, with slopes j-r and k-r, meet in a set of area S e2/Ij -r - k-rl .

If j is fixed, the total of number of strips with any particular slope k- r which
meet it is ;5 Nr2N Ij -r-k-r l . Thus the measure of the union of the intersection
of one strip with all other strips of any particular slope is < e2Nr2 N , and with
all other strips of all slopes (k izz~ N) is < e2Nr+12N. Therefore the overlapping
condition should be e2Nr+12N = coe2N, or

Then M(r)f, ~t 6N-r on a set of measure ti N - Nr2N - e2N, whence

IIM(r)f.l1nP ~t
cPN-rP . eNr+122N

IlfEllp

	

e222N
= ep-1Nr+1-rp
= C0p-1N-(p-1)(r+l)Nr+l-rp
= Cp-1N(2r+2)-(2r+1)p .

If p < (2r + 2)/(2r -}- 1), this blows up as N -> oo .
Though we have assumed the £j to be centered at the origin, the location

of their centers actually is of no consequence in this construction . Translat-
ing 2i by aj has the effect of translating the whole family of strips with the
same orientation as 2i by a j . The upper bounds on intersections remain valid
independent of the translations, so the computations are unaffected .
For some families of translations, much simpler examples can be used to show

the unboundedness on LP . Roughly speaking this happens if the segments are
translated by distances which are sufficiently large compared to their lengths .
The best case occurs when all the ~j are centered at the origin ; if the maximal
function Ml associated to a particular family of segments Pi with centers aj
is bounded on LP, then so is the maximal function M2 obtained when all the
2j are translated so as to be centered at the origin . For M2 is majorized by
a constant multiple of the composition of Ml with Ml where M1 is obtained
from M1 by conjugating with reflection about the origin .

Let y : 6é ~--> R be continuous, odd, and convex for t > 0 . Consider the
"Hilbert transform"

H-,f(x) - f_,00
f(XI

- t'
x2 - y(t))

di
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For such a y, there is a necessary and sufficient condition for H., to be bounded
on L2(R 2 ) [N] . It is that the auxiliary quantity h(t) = ty'(t) - 7(t) should
have bounded doubling time, that is, there should exist C < oo such that for
every t > 0, h(Ct) >_ 2h(t). This condition is further known to guarantee
LP boundedness of the maximal function M, for all p > 2. (However for the
maximal function, the condition is far from necessary.) More recently it has
been shown [Carb] that if h satisfies an infinitesimal version of the doubling
condition, h'(t) > eh(t)1t for some e > 0, then My and Hy are bounded on
LP for all 1 < p < oo . However it was also demonstrated in [Carb] that if
y(2)) = j2) for j E Z and y is defined to be afiine in the intervening intervals,
then Hy is not bounded on LP for any p :~ 2. This was the first example in
which H., was known to be bounded on L2 but not on all LP, 1 < p < oo .

As a final example of the method we have :

Proposition 4 . Leí y(2j) = j2i for j E Z, and leí y be afne in each
inierval [23 , 2j+1 ] . Then My is unbounded on LP for all p < 4/3 .

Again it would be of substantial interest to know what is the right range of p .
This curve is the union of segments ~j = {(t, y(t)) : 2i < t < 2j+1 } . £j has

slope j +2 . Let M; be the associated probability measure . Then My is bounded
pointwise by twice

Mf(x)=suplf1 *,Uj .
i

Once again let N be large and consider the maximum over all j, N12 <
j < N. To make this look more like our last example introduce reflected
segments 2t, where (X1,112)" = (112 ,x 1 ) . This transformation commutes with
translation, so the maximal function has the same boundedness properties as
Mf= sup lf 1 * Pj, where Pj denotes normalized arclength measure on 2j . Then
$j has length :d j2)., and slope (j -F 2) -1 . For j Pti N, the length is izd N2j . If
we dilate by a factor of N-1 (in both coordinates), we encounter a family of
segments with slopes (j -I-2)-1 and lengths .^s 2 9 , for j P:~ N. The computations
of the last proposition, for r = 1, now apply verbatim .

3 . Dependence on p

Although we have seen that the LP boundedness of our singular maximal
functions does depend on p, one might hold out hope that a,relatively simple
situation prevails, that for any given curve boundedness either holds only for
p > 2, or for all p > 1 . This is however not the case for

r

M

	

x)

	

su

	

r-1

	

f(111

	

t x2 - yl¡t)) dt .7f(
r>®



Proposition 5 . For each p > 1 these exists q E (1,p) and a continuous,
convex curve {(t,y(t» : t >_ 0} with y(0) = 0 and y piecewise C°°, such that
My is bounded on LP but unbounded on L9 .

Proof: To construct y, define y(t) = t log t for 0 < t < 1, where the logarithm
is to the base 2 . For each even integer j > 0 let ój E (0, -1 1 be a number to be
specified later and set

where

Thus the curve agrees with the example in Proposition 4 on the union of the
Ij . Set Jj = [2j, 2j+ 2 ]\Ij for even, nonnegative j . On each Jj construct the
unique function y which is continuous, has constant second derivative, agrees
with the values already set at the endpoints, and is Cl at t = (1 + ój)2j . Now
y(t) is defined for all t > 0. It is continuous at 0, convex, and piecewise C°° .

Define the maximal functions

and for f > 0,
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y(t) = j2j + (j + 2) - (t - 2j)

	

for t E Ij

Ij = [2', (1 + ój)2'] .

r
x

	

su r-
¡

	

x

	

t x

	

t dt
o<r<<i 0

Mgoodf(x) = sup2-i Lf(xa - t,x2 - 'Y(t))Idt,
j>o

	

/J¡

Mbadf(x) = sup 2-i

	

Lf(xi - t, x2 -y(t))I dt
j>0 Á

where the last two suprema are taken over all even integers j > 0 . Then

My < Mo + 2Mgood + 2Mbad

Myf > 1Mbadf-

The first inequality will be used to show that My is bounded on LP, the second
to show that it is unbounded on L9 .

First of all for t _< 1, the curve is homogeneous in the sense of Stein and
Weiss [SW], so Mo is bounded on LP for all p > 1 . For Meood note that h(t) =
ty'(t) - y(t) satisfies h(4t) > coh(t) for all t >_ 1 where co > 1, h'(t) > 77h(t)/t
for some il > 0, and each Jj C [2j, 2j+2 ] is an interval . Under these conditions
the analysis of [Carb] applies without modification to the disconnected curve
{(t,y(t)) : t E UIj} to prove that Mgood is also bounded on LP for all p > 1 .

So everything turns on the properties of Mbad . To make it bounded on LP
let us require that

00

ó~ < oo .
j-_o
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Define measures pj by

Their total variations satisfy l1 uj ll = Sj and for all f,

Thus

1 f djcj = 2-j

	

f(t, y(t» dt .

°° \1/P
Mbadf :5 (Y-(lfl * l~j)Pl

j=0

ljMbadfil' <_ ~ ilifl * t1jljp

llflh1: 6;'

Thus Mbad will be bounded on LP provided the 6j are chosen so that (*) holds .
For simplicity let us make Sj depend only on N on each interval 2N _< j < 2N+i

say bj = EN . Then (*) becomes

Then (**) is satisfied . However

2NEN < oo .
N=0

To derive a necessary condition for L9 boundedness set

MNf =

	

sup

	

¡f l * [ti .
2N<j<2N+ 1

By dilating by a factor of EN l and using the fact that ¡¡[ti 11 = EN, we see from
Propositions 4 and 3 (with r = 1) that the L9 operator norm ofMN is bounded
below by

cg2N( v _3)CN .

Fix an exponent r E (1,p) and set

EN = 2_Nlr.

2N(
49-s) EN 1 00

as N -+ oo provided q is chosen sufficiently close to 1, depending on r . Therefore
the MN are not uniformly bounded in Lg, so Mbad is unbounded .

In this computation it is important that the lower bound for the rate of
growth with N in Proposition 3 tends to the optimal rate as p even
though it may not be optimal for any p > 1 .

The proof of Proposition 5 was inspired by a conversation with Roger Jones .
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