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EXAMPLES OF SINGULAR MAXIMAL
FUNCTIONS UNBOUNDED ON 7

MICHAEL CHRIST

1. L' examples

In R? consider a continuous curve {(¢,v(t)} : ¢t € Rt} satisfying +(0) = 0.
To it may be associated a maximal function

Mo f(e) = supr™ [ 1~ b0 = )t

Much labor has been devoted to understanding for which curves M., is 2
bounded operator on L?(R*). Positive results are known under various geo-
metric hypotheses; see for nstance [SW), [Carl|, [Carb] and the references
therein. In particular, curvature plays a major role, and important contribu-
tions to our understanding of its ramifications were made by Rubio de Francia
[Carl], [BR], [R].

By analogy with the Calderén-Zygmund theory of singular integrals and the
Hardy-Littlewood maximal function, a fundamental question about these more
singular operators is what happens for p = 1, that is, whether M is of weak
type (1,1). No operator of this type, save those which reduce in a very trivial
way to the Hardy-Littlewood maximal function in B (as when v = 0), has
been proved to be of weak type {1,1). For the closest approach to date see [C].

Our first purpoese here is to show that in fact the weak (1,1) boundedness fails
for a large class of curves, those which are piecewise linear in an appropriate
sense. Among these curves are large families for which L? boundedness is
already known for all p > 1. The prototypical example is ¥t} = ¢* for ¢ = 27,
J € Z, and v affine on each interval 2/ < £ € 25+, The absence of curvature will
be essential to our analysis. Rubio de Francia was quite interested in both weak
{1,1) boundedness and L? boundedness for operators with singularities along
varieties lacking curvature, and again made significant contributions [Carl],
ICR].

QOur construction will apply in greater generality: Let 4,,...8y bhe N line
segments in R” of finite length, » > 2. For cach j let v; € ™! be one of the
two unit vectors oricnted parallel to £;. Somewhat abusively we speak of v; as
the orientation of ¢;, and say that v; = v; if they span the same line in R®, Let
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Aj denote one-dimensional Hausdorff measure on ¢;, normalized to have total
mass one. Define the maximal function

Mf(z)= KS;AEN f£ [z — gl dA;(y)-

Proposition 1. For each n > 2 there exists a constant By, > 0 such thet
for any N 2 1 and any collection of line segments {£; : 1 < 7 < N} as chove
with distinct orientations, the weak fype (1,1) operator norm of M 5 bounded
below by B, N.

By projecting onto a generic two-dimensional subspace one secs that By is
actually independent of the dimension, and that it would suffice to prove this
for n = 2. It is not required that the £; be in any way related to one another,
e.g. that they piece together to form a continucus curve; another situation of
some interest is when each has one endpoint at the erigin.

Since the operators given by convolution with the A; are uniformly bounded

on L', the weak (1,1) operator norm of M is bounded above by CN. So the
rate of growth is the largest imaginable.

Corollary. Suppose that v is affine in cach interval 20 <t < 27%! gnd thai
ils derivalive takes on infinitely many distinct velues. Then M., is not of weak

type {1,1).

It will be apparent from the construction that the same goes for Hitbert trans-
forms along curves.

It is permissible to assume in the proof that each £; has length 270} for some
I{j) € Z. This may be achieved by shrinking each £; by a factor between 1
and 2 to a concentric segment with the same orientation; the resuiting maximal
function is bounded pointwise by twice the original one so it is enough to show
that the new one is unbounded.

Suppose that segments ¢y,.. . £x have distinet orientations v;. By dilating ev-
erything by some factor we may suppose without loss of generality that I{;) > 0
for all j. Denote hy £; the segment {sv; : |s| < 87127(7} centered at the origin.
Denote by éj- the segment concentric with ¢; and with the same orientation but
half as long.

We wish to construct a set of points {zX : 1 € &k € N, 0 € o <« 2/(0))
satisfying certain conditions. First some notation, assuming the zX have already
been constructed: Let A denote the set of sumns w = 22;1 2% . Define for each
1 € j € N an equivalence relation on A as follows. If w is as above, and
w = Zzgk, then w ~; w' if and only if w —w' is a scalar multiple of v;. Then
the conditions are

(1) =0
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(2) 22 e 4,
(3) Forall 1 <7 < N and w,w’ € 4, w ~; w' if and only if a; = §; for all
i 7

Implicit in {3) is that for each k, the points z¥ are distinct if N > 1. It is quite
easy to prove the existence of a set of points z5 satisfying these conditions. Let
us just assume it for the moment and proceed with the proof of the proposition.

Let ¢ > 0 be a small parameter which will later tend to zero. For each
1<; €N, we A define

S(w,j,¢) = {z € R" : distance(z — fj, w} < €/2]}.

Observe that z € S(w,j,€) = distance(z — £;,w') < ¢/2 for all W' ~; w.
For x — €; is a scgment of twice the length of z — £; with the same center,
while by (2) and definition of the equivalence relation, w' — w = su; for some
|s| < 471279 which is one quarter of the length of ¢;.

Let B{w,¢) denote the ball of radius € centered at w and let x5 denote the
characteristic function of a set E. Define

flz) =3 xBwo(z).
wCA
Ifwé Aand z € S{w,j, ¢} then by the observation of the last paragraph,
the segment z — £; meets B{w',€) in a set of length at least ¢/2, for every
w' ~; w. There are 2/) such w'. On the other hand z — ¢; has length 270,
Consequently

x € S(w,j,e) = ffé(x —yYdA,(y) > ¢f2
=> Mf(z) > /2.

So our task is to show that the measure of U, ;S(w,j,€) is large. First
consider the union over w € A with j fixed. To each w associate a canonical
representative ¥ of its j~th equivalence class, specified by @ = Z:zf;”‘= with
a; = 0. The set of all ¥ has cardinality |A|/2/07. We maintain that if € is
chosen sufficiently small, dependingon V, {¢;}, and on A, the sets 5(1, 7, €) will
be disjoint for any two such 1. Indeed S(w,j,¢} = {z : distance{z,% + f;) <
€/2}. If these intersect for by, iy then distance{, — 152,53- — 6’3) < £. But
éj- —fj C Ry;, and iy — i € By; means @ ~, tip, which by (3) implies
W) = Wz, So once ¢ is sufficiently small, distance(1; - w5, é).- — €)) > ¢. Since
A is a finite set, some ¢ > 0 suffices to make all these sets disjoint for each j.

So
| U S(w.s,0)l = (| $05,5,)

weA w
= > I5(®,5,¢)]

> Clen—IQI(J’) . 2-1(13}_,4'



272 M. CHRIST

where ¢; is an absolute constant depending only on the dimension of the ambi-
ent space. The first factor of 27¢9) represents the length of £;, while 27700 |4]
is the cardinality of the set of all j—th equivalence classes.

The final point is that for distinct j's, the sets S{w, j, ¢) are also essentially
disjoint. Indeed if { # j and if w,w’ € A {possibly equal) then |5(w,j,e) N
S(w' i, e}l = O(e”) as € — O since v; # vi; we have intersecting tubular neigh-
borhoods of iwo line segments with differing orientations. Therefore

| | S(w,j,&)| 2 e N|AL - O(").
1<jEN
wEd
The constant implied in the error term O(e*) depends on everything in the
hypotheses and construction and is in no way under control. However by taking
e sufficiently small we obtain

U Stwie|z S NIAL
1€5EN
wEA

Now || fellzs = c2|Ale®. Therefore

s Mfdz) > ¢/2}| 2 ST INIAl
= C_';NE_I "f(”Ll

where ¢2, ¢y are absolute constants,

This construction is completely inapplicable to curves such as y(¢) = £? with
nonvanishing curvature. The question of their L' behavior remains open.

It remains only to prove the existence of points 25 satisfying conditions (1)
through (3). We proceed by induction on k. We claim that foreach 1 < A < N
it is possible to choose {2}, 1 ¢ <k, @ < 2V} so that 2§ =0, 2}, € ¢;, and so
that (3) holds for all § < N but only for w,w' already defined, that is of the
form w = ¥, 24, and similarly for w'. At step k = 1 (3} is no constraint.

k+1 k+1
[v

Suppose the step k is done. For k+1, 2™ must be the origin. 277" is permitted

to be any point of ;.41 which is not an element of any of the finitely many lines
il —ep ) PR -v, 1S5 SN, j#k+1. (Thecase j =k +1is already
handled by the induction process.) But since v; and w4, are distinct, only

finitely many points of £x4; violate this constraint. Choose z5*! to be any

point of £z4, which is not on one of the forbidden lines. Now consider zzkH‘

The only forbidden values are those for which one of 2§ ! — 2f*1 231 — x5!
lies on one of the forbidden lines. So again only finitely many points of £,y

are forbidden and there is no problem in selecting 257!, Continuing in this way

we obtain all the required zX+! o « 28k+1),
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2. L* examples

Untit now it has been unknown whether there are any curves for which M., is
bounded on [* for some but not all p € {1, 00). What one can deduce without
computation from the construction above is that for any infinite sequence {£;}
with distinet orientations and lengths tending to zero, there exists an Orlicz
class which is locally more restrictive than L1, and which is not mapped to weak
L? (locally) by the maximal function. Suppose we were to attempt to apply the
same argument to obtain an L? counterexample for some p > 1, in R?. For any
fixed distribution of points w, |||, = ¢*/? while M fdl, < P70 @ 2P a5
¢ — 0. Therefore a counterexample can no longer be obtained by passing to the
limit. Since that Emit allowed us to avoid the intricate question of how the sets
S{w, j, €} overlap, a close examination of the dependence of this overlapping on
€, on p and on A is required for p > 1.

We shall not attempt such an analysis. Instead we shall indicate how in
certain particular cases a different choice of the “lattice” A leads to a very
computable situation and to LP counterexamples for certain p > 1.

First let N be a large integer and for each 1 <7 < N, let £; be the segment
in B? centered at the origin, with slope j/N and length 2911, Let

Myflz)= Ig?gNIf * py(a)|

where p; is arclength measure on £;, normalized to be a probability measure.

Proposition 2. For each p < 3/2 the operator norm of My on L? is =
NG/PI=2 hence tends to 0o, as N — oo.

For p > 2, My remains uniformly in LP. This follows cither from the ar-
guments of [CW], from Fourier transform and square function estimates, or
from the method of covering lemmas as developed by Cérdoba and R. Feffer-
man. Naturally it would be most interesting to resolve matters in the range
3/2<p <2

To prove the proposition let

A={{z,y) €I x(N7'12):0 < z,y < 2V},

Here N™'Z = {i/N : i € Z}. Let f, be the sum of characteristic functions
of all balls of radius e centered at points of A. Any line of slope k/N, with
1 < & < N, which passes through some one of these balls, must pass through
2 2% of them, unless the first-mentioned ball is located near an edge of the
configuration. In fact the balls it meets will be equally spaced along it, with
spacing interval between 1 and /2. Therefore f, #; is 2 € on a union of about
N2V disjoint strips, each of width = ¢ and length ~ 2V,
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Unfortunately these strips overlap substantially when j is varied. We wish
to choose ¢ sufficiently small that for any one of the strips, the measure of the
union of its intersections with all other strips does not exceed half its measure.
Then the measure of the union of all the strips is comparable to the sum of
their measures, which is readily computable.

Fix a strip with slope j /N and consider its intersection with a strip of different
slope k/N. The measure of the intersection is < GZ/H\} — £|. Now consider all
strips with this slope k£ /N which meet the fixed strip. There are < N2N|fv'— ——%l
of them. Indeed the given strip passes within distance € of some point {0, m/V)
with m € Z, and each strip with slope k/IV passes near a unique point {0, n/N).
However by plane geometry, only those for which |-),{7 - £)2¥ 2 [n — m|/N can
cross the fixed strip, since it has length < 2V, The number of allowed values
of nis 5 N2N|-‘,{7 — %| as claimed.

Therefore the sum of the measures of the intersections with all strips with
slope k/N which meet the given stripis £ e2N2V. Summingoverall1 £ £ < N,
we find that the measure of the union of the intersections of the fixed strip with
all others is < e2N22", Since the given strip has measure 2z €2”| we require

€ =cpN72

where cg 1s a small constant.

Supposing this, the measure of the union of all strips of all slopes is compa-
rable to the sum of their measures, which is 2 N - N2V . 2% the product of
the number of slopes, the number of strips of a given slope, and the measure
of one strip. Since My f. = € on this set,

WMufellp | e eN222N
iy = enverr
= IN
— Cg_le_gp-

This establishes Proposition 2.

If each of the slopes is perturbed by an amount §;, the argument remains
valid if 2N6j <e=cyN2forj = N. Thus§; < 2-NN -2, the example is
extremely sensitive to perturbations. We don’t know whether this reflects a
weakness in the construction. or a genuine feature of the problem.

Another class of examples may be obtained by taking £; to have slope ;77
and length 27, j > 1. Let M) be the associated maximal function.

Proposition 3. M) is yunbounded on LP for ell p < {2r + 2)/(2r 4 1).
This time let N be large and take

A= {{z,y) €T x21:0<zy<c2V}
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As always let f, be the sum of characteristic functions of e-balls centered at the
points of A. If a line of slope j 7" passes through a point of A, then typically
it will pass through about N~72" points of 4. These are equally spaced along
the line, with spacing 22 j*. We restrict attention to the range N/2 < j < V.
Then M7 f, 2 eN7 on the union of the strips. There are about N72¥ strips
of slope j~" for each j (for now the midline of such a strip crosses the y—axis
at a point (0,n7 "} where 0 < n < j72%), for a total of about N"+12V strips,
Each has area =2 2.

Two strips, with slopes 777 and k™7, meet in a set of area S €2/|j~" — k7],
If j is fixed, the total of number of strips with any particular slope k" which
meet it is 5 N72¥ ;77— &~ "|. Thus the measure of the union of the intersection
of one strip with all other strips of any particular slope is % 2 N"2Y and with
all other strips of all slopes (k = N) is 5 ?N"*12V. Therefore the overlapping
condition should be 2 N"+12N = 2™ or

€= ecgN T
Then M f, 2 eN~7 on a set of measure = N - N2V . €2 whence

“M(‘")ﬂ”g . EPN-TP . NTHIGIN
Ifellz ™ €22
— ep-—lNr-i-l—rp

— cg—iN—(p—I)(rH)NrH—fP

_ Cg—lN(2r+2)—(2r+l)p.

p < {2r+2)/{2r + 1), this blows up as N — 0.

Though we have assumed the ¢; to be centered at the origin, the location
of their centers actually is of no consequence in this construction. Translat-
ing £; by a; has the effect of translating the whole family of strips with the
same orientation as €; by a;. The upper bounds on intersections remain valid
independent of the transiations, so the computations are unaffected.

For some families of translations, much simpler examples can be used to show
the unboundedness on L?. Roughly speaking this happens if the segments are
translated by distances which are sufficiently large compared to their lengths.
The best case occurs when all the ¢ ; are centered at the origin; if the maximal
function M, associated to a particular family of segments £; with centers a;
is bounded on LP, then sc is the maximal function A, obtained when all the
£; are translated so as to be centered at the origin. For M, is majorized by
a constant multiple of the composition of M, with M; where M; is obtained
from M, by conjugating with reflection about the origin.

Let v : B — R be continuous, odd, and convex for t > 0. Consider the
“Hilbert transform”

Hi@)= [ fo-tm- ) L
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For such a #, there is a necessary and sufficient condition for H, to be bounded
on L*(R?) [N]. It is that the auxiliary quantity h(f} = /(1) — ¥(f) should
have bounded doubling time, that is, there should exist C' < o such that for
every t > 0, R{C#) > 2h{t). This condition is further known to guarantee
I? boundedness of the maximal function M., for all p > 2. {However for the
maximal function, the condition is far from necessary.) More recently it has
been shown [Carb) that if h satisfies an infinitesimal version of the doubling
condition, h'(#) > eh(t)/t for some € > 0, then M, and H., are bounded on
LP for all 1 < p < oo. However it was also demonstrated in [Carb] that if
+(29)y = j27 for ; € Z and 4 is defined to be affine in the intervening intervals,
then H., is not bounded on L* for any p # 2. This was the first example in
which H., was known to be bounded on IL? but not on all I?, 1 < p. < oo,

As a final example of the method we have:

Proposilti:.:gn 4. Let 4(27) = j2! for j € Z, and lel 4 be affine in each
interval [27,27%2). Then M, is unbounded on LP for all p < 4/3.

Again it would be of substantial interest to know what is the right range of p.

This curve is the union of segments £; = {{¢,4{t)) : 2/ <t < 27!} ¢; has
slope j +2. Let y; be the associated probability measure. Then M, is bounded
poiniwise by twice

Mf(z) = sup Lfl* 2.

Once again let N be large and consider the maximum over all j, N/2 <
j < N. To make this look more like our last example introduce reflected
segments i 4, where {,,22)~ = (®2,%1). This transformation commutes with
translation, so the maximal function has the same boundedness properties as
M f = sup | f|*ji;, where ji; denotes normalized arclength measure on £;. Then
g_,- has length = 727, and slope (7 4+ 2}~'. For j & N, the length is = N2, i
we dilate by a factor of N~! (in both coordinates), we encounter a family of
segments with slopes (j +2)~" and lengths & 27, for § & N. The computations
of the last proposition, for r = 1, now apply verbatim.

3. Dependence on p

Although we have seen that the LF boundedness of our singular maximal
functions does depend on p, one might hold out hope that a relatively simple
situation prevails, that for any given curve boundedness either holds only for
p > 2, or for all p > 1. This is however not the case for

M, @) = supr ™ [ e - 4, 52 = o)



SINGULAR MAXIMAT FUNCTIONS UNBOUNDED ON LP 277

Proposition 5. For each p > 1 there exists ¢ € (1,p) and @ continuous,
convez curve {(¢,7(2)) : t = 0} with 4(0) = 0 and v piecewise C°°, such that
M, 4s bounded on LP but unbounded on L9.

Proof: To construct v, define y(t) = ¢ logt for 0 < ¢ < 1, where the logarithm
is to the base 2. For each even integer j > Olet §; € ({],%] be a number to be
specified later and set

My =72 +(74+2)-(t-2) fortel;
where , ;
I =22, (1 +6;)2°).

Thus the curve agrees with the example in Proposition 4 on the union of the
I; Set J; = [24, 25‘[“2]\1} for even, nonnegative j. On each J; construct the
unique function « which is continuous, has constant second derivative, agrees
with the values already set at the endpoints, and is C! at t = (1 + §,)2. Now
(¢} is defined for all ¢ > 0. It is continuous at 0, convex, and piecewise £,

Define the maximal functions

Mof(z) = sup v~ f e —t, 2 — () dt,
0<re1 a
Miyooa f(z) = sup2™ [ |F(a1 ~ 1, 23 — ()] dt,
iz0 5

Mysaf(z) = 51;32'}- /; [f(zy — £, 22 —(t)}} d¥

where the last two suprema are taken over all even integers j > 0. Then
Mq« < M+ 2Mgaod + 2Mba.d

and for f > 0,
1
M‘ff = _2'Mbadf‘

The first inequality will be used to show that M, is bounded on L?, the second
to show that it is unbounded on L9,

First of all for t < 1, the curve is homogeneous in the sense of Stein and
Weiss [SW], so Mo is bounded on L? for all p > 1. For Myeoq note that h(t) =
ty'{(t) — v(t) satisfies h(4t) > coh(t) for all § > 1 where ¢o > 1, K(t) > nh(t)/t
for some 5 > 0, and each J; C [27, 27+?] is an interval. Under these conditions
the analysis of [Carb] applies without modification to the disconnected curve
{{#,7(t)} : t € UL;} to prove that My,oq is also bounded on L? for all p > 1.

So everything turns on the properties of My.q. To make it bounded on L?
let us require that

(=]

(*) Z&? < 00,

=0
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Define measures g; by

[rdus =27 [ e
Their total variations satisfy ||u;]| = 6; and for all f,

ip

Misaf < (30614 )
j=0

Thus
i Moaa FIID < SN * 25112
<[> 8.

Thus Myp.q will be bounded on L? provided the §; are chosen so that (*) holds.
For simplicity let us make &; depend only on IV on each interval 2 < § < 2M+1,
say &; = en. Then (*) becomes

=]
) Z 2Ne?\, < oG,
N=8

To derive a necessary condition for LY boundedness set

MNf= sup |f|*p;
2N$j<2N+1

By dilating by a factor of ¢5' and using the fact that |jg;|| = en, we see from
Propositions 4 and 3 {with » = 1) that the L9 operator norm of M ¥ is bounded
below by

C,;?N(%_S)EN.
Fix an exponent r € (1,p) and set

EnN = 2—N/r‘

Then (*+) is satisfied. However
o (% =3¢ N — 00
as N — oo provided ¢ is chosen sufficiently close to 1, depending on r. Therefore

the MY are not uniformly bounded in L7, so My.q is unbounded. B

In this computation it is important that the lower bound for the rate of
growth with N in Proposition 3 tends to the optimal rate as p — 1+, even
though it may not be optimal for any p > 1.

The proof of Proposition 5 was inspired by a conversation with Roger Jones.
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