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Q-PERFECT GROUPS AND UNIVERSAL
@-CENTRAL EXTENSIONS

BonNaLD BROWN

Abstract

Using results of Ellis-Redriguez Fernandez, an explicit description by gen-
erators and relations 1s given of the mod g Schur muitiplier, and this is
shown to be the kernel of a universal g-ceniral exiension 1n the case of
a g-perfect group, i.e. one which is generated by commutators and g-th
powers. These resnits generalise earlier work K. Dennis and Brown-Loday.

A group G will be called g-perfect, where g is a non-negative integer, if G is
generated by its commutator subgroup [G, G| and the elements of the form g¢?
for all ¢ € G. An extension of groups

(1) 1—A—E-—G—1

will be called g-ceniral if it is a central exiension and every element of 4 has
order dividing ¢. The g-central extension (1) will be called universal if for any
other g-central extension

1 — 4 >F —-G—1

there is a unique morphism of extensions

1 A E G 1
I
1 » A » B G 1

The existence of universal g-central extensions of g-perfect groups in the
classical case ¢ = ( is well known, and a similar argument yieids the general
case. That is, the universal coefficient theorem yields an exact sequence

0 —s Ext(H:i(G), Ho(G,Z,)) — HU G, Ho(G,Z,)) —
Hom(Ha(G), H2(G, Z4)) — 0.
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The g¢-perfect condition implies that the Ext term is zero, and so there is a
unique element e in H¥{(G, H,(G,Z,;)) which maps to the canonical morphism
Ho{GY = Hy{G,Z;) induced by the coeficient morphism # — 7,. This coho-
mology element e determines the universal g-central extension.

However in the case ¢ = 0 Miller in {M] gives for this extension group an
explicit construction by generators and relations (see [K] for a recent account,
and [B-L] for an account deduced from the non-abelian tensor product}. The
aim of this paper is to show that results of [E-R] yield a similar construction,
in terms of generators and relations, for the group E of the universal ¢-central

exiension
1o Ho(G2) — E— G —1

for any g-perfect group G.

The group E of this universal g-central extension is the special case GAYG of
a construction NAYG defined in [E-R] for any group G and normal subgroup
N. We need to derive sume extra properties of that construction. While doing
so it seems worth putting the construction in slightly greater generality to allow
possibly wider uses, especially as this causes no extra difficulty in the proofs.

Let v : N — (G be a crossed module. The reader not familiar with this term
can think of v as the inclusion of a normal subgroup. We write n for the
operation of an element ¢ € G on an element » € N, and let & operate on
itself by conjugation: y = zyz~!. We write [z,y] = ayz~ly~?. We suppose
N operates on G via v and the conjugation action of G on itself,

Let ¢ be any non-negative integer . The group N ®7 G is to have generators
n@g and {n} for all n € N and ¢ € G, subject to the relations

(2) n@gh=(n®9N'n @ *h),

(3) nm®g=("m® "g)}{n® g}

(4) ) m@g)n}™ = me g,

(5) [(r}, {m}] = n? @ m?,

() frm} = {n} [ME] (v~ @ (""" )| {m},
(7) {lngl} = (n®g),

forallg, ke Gandm,ne N,

In order tc understand the point of these relations, note that a morphism
£ : N ®? G — G may be defined on the generators by

£(n@g) =[ngl {{n} = n%.
It is straightforward to prove that £ is well defined, since the relations (2)-(7}
are externalisations of rules for commutator and power operations.
The construction NAYG introduced in {E-R] assumes N is a normal sub-
group of G, and is the quotient of N @7 G by the relations

(8) n®wn =1,
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for all n € N. The image of n @ g in NAYC is wrilten n A g.

The new information we add on these constructions is first that there is an
operation of G on NV ®? G which on generators is given by

9 fn®g)=n® % Hn} = (" @ F) 7 {n},

forallg, ¥ € G, n € N. In order to prove that {§) yields a well defined operation
on N ®Y G, we have to prove that this operation preserves the relations in the
sense that the operation of ¥ € & on the left-hand side of a relation gives the
right-hand side, modulo the relations (2}-(7).

In the case of the relations {2} and (3), this has ziready been verified for the
non-abelian tensor product N ® G in [B-L], which has generators » @ ¢ and
relations corresponding to (2) and (3}, and it follows that the same holds here.
Further we can assume for n @ g in N ®? & properties analogous to those for
n®gin N @ G which are proved in Propositior 2.3 of [B-L].

For the relation (4), we find the operation of ¥ € & on the left-hand side
gives

(n? @ &) Hr}(*m @ fg) = (0" @ K)T(MFm @ "*g){n} by (4)
=l (7 & ") (nf @ k)~ {n} by [B-L] Prop. 2.3(c)
=(*"m® *'g)*{n}, as required.

The relation {5) is more tricky. We state it in the form
{n}{m}{n} 7} = (n? @ m?){m}.

On acting with & on the left hand side of this we gei

“{nHm}n}™)
= ('@ k) H{n}(m! @ k)T {m}H{r} H(n @ k)
= (nf @ k) {n}(m? @ k) {n} (! @ mT){m}(n? ® k) by (5)
= (n?*® k)" {n}(m? @ k) {n} T (n? @ m") ™ (n? @ k){m}
= (@ k)7 " (m! @ k)7 (nT @ m%) ™ (n? ® k){m} by (4)

On acting with & on the right hand side we get
f(nf @ mT)(m? @ k)7 {m}.
Thus if we write @ = n?, b = m?, the equality of these is an identity

(10) (@) *(k®b)(a® a8 k) = *(a® b)(k o)
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To prove this, it is easiest to use the relation between crossed squares and cat?-
groups established in [L]. Consider the crossed square constructed in [B-L,
Proposition 2.15]:

N@G;G

d l

where x 1s the commutator morphism n®g — [n,g]. The group N ® G embeds
in the big group of the cat?-group corresponding to this crossed square, and
in this embedding, the element n ® g can be represented as a commutator in
the big group. Thus to check the identity in N ® G corresponding to {10) it is
sufficient to check the corresponding commutator identity. But this identity is
well known, and may be checked directly.

The relation () presents similar problems. After some fidding, one is re-
quired to verify an identity of the form

" m)? @ k)T e @ (M m))
=" k)T (FrT @ (

kn"q’}"m)i)(mq ® k)_l.
Again, in the big group corresponding to the crossed square for N ®G, as above,
this transiates to a valid commutator identity. Therefore it holds in ¥ ®7 G.

The preservation of the relation (7) is easily verified, using the crossed square
rule Proposition 2.3(d) of [B-L]. So the operation by k preserves the relations
and so defines an operation of G on N @7 G,

We now assert that, with this operation, the morphism § : N @' G — &
defined above is a crossed module. The first rule for a crossed module, that
£(?z) = g(éx)g™ %, is clear. The second rule, that yzy~! = ¥z, involves
three checks which have not already been done in the proof m [B-L] that
k£: N®G — G is a crossed module. Two of these follow immediately from (4)
and (5), while the third, that

(mg){n}(m®g)™" = ™ {n},

reduces to the rule that (m®g¢) = ([m, g]® b} *m & ®¢), which is a consequence
of a crossed square rule for N @ G.

As a consequence of the crossed module rules, Ker £ is central in N @7 G.
It is now easy to verify that, with this action and the A-map N x G —
N®?G, {n,g}— n®g, the square

13
NG —
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becomes a crossed square [L]. A useful consequence is that the action of ¢ on
Ker £ is trivial (see {B-L, p.113]).
We now give a relation between N @2 G and ¥ ® G.

Proposition 11. There is an ezact sequence
N@G L NG — Nt
where N°® denotes the group N made Abelian.

Proof: There is a morphism a: N@® G — N @% G which satisfies a{(n®g) =
n@gforalln e N, g € G. By {4), Im a is normal in ¥ @7 G. The quotient
is, by the relations (5} and (6), generated by elements {rn} for n € N with
the relations {nm} = {n}{m} and [{n},{m}] = 1 for all n, m € N. The
proposition follows, W

Corollary 12. If N end G are finite, then so also s N @7 G.

Proof: This follows from the main result of [E], that N ® & is finite if N and
G are finite. B
We will show in Remark 19 that the morphism « is in general not injective.

The relation of this new construction to that given in [E-R] is now easy to
establish, and is analogous to the relation between N @G and N AG established
in [B-L]. That is, there is an exact sequence

(13) T{N/IN,G]) ZNQIG — NAIG — 1

where ¥ is defined by v([n]} — n ®n. Here T" and 4 are as in [B-L] (T is
Whitehead's universal quadratic functor). Hence we obtain:
(14) If N and G are finite, then so alse is NAG,

Since the image of the morphism ¥ in (13} is G-invariant, the crossed module
properties of £ : N @7 G — G are inherited by §: NAYG - G.

We now establish a weak universal property for £ : N ®7G - G

Proposition 15. Let n : E — G be an epimorphism with kernel which is
cenire! and has every element of order dividing q. Then there is a morphism

n: N@*G = E such that wh = £.
Proof: Here 1 is defined on the generators by
Hn@g) = [n',g'), n{n} = (»')*,

where n'/, ¢ € E are elements such that #n' = vn, 7g’ = g. The fact that
[n’,¢'] is independent of the choice of n',g" follows from centrality, and the
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independence of (n')? follows from the fact that the kernel of 7 consists of
elements of order dividing g. That 5 is well defined on N @7 &7 is now easy to
verify, B

We now draw some consequences from the exact homology sequence

(18) Hi(G,Z,) — H3{G/N,Z;) — Ker (NATG — G} — Hy(G, 1)
—s Ho(G[N,2,) — NIN#,G — Hi(G, L) — H({G[N,Z;) — 0

established in [E-R]. Here Z, is the integers mod ¢, and
N#,G = E(N 81 G) = §(NAIG)

is the subgroup of 7 generated by commutators in G and gth powers of elements
of N. It follows immediately from (16) that

(17) Ker (NAIG — g) consists of elements whose order divides ¢ and Ker
(GA'G — G) consists of elements whose order divides g.

We can now prove the main result of this paper, which uses the notion of
g-perfect group and g¢-central extension given at the start,

Proposition 18. If 7 is & g-perfecl group, then universel g-central ezien-
sions of G are isomorphic to the sequence

1 Ho(G,Z,) — GAG 25 G — 1.

Proof: Let D denote the kernel of 8. We have already pointed out that
1 =+ D — GAIG - G#,G — 1 is a ¢g-central extension. {We emphasise that
the centrality was a consequence of the crossed module rules for 8.) It is a ¢-

central extension of G if and only if G is g-perfect. Further, it is a consequence
of (17) that D = Ha(G,Z,), as pointed out in [(E-R}.

Suppose that 1 — A" 5 E' 5 G - 1 is a g-central exiension of G. As
already pointed out, there is 2 morphism 5 : GAYG — E such that 77 = 8.
Suppose now that & is g-perfect, and that { is another such morphism. Then
7¢7?! is a function GAE — E with values in A, and so is a morphism since the
extension is central. If G is g-perfect, then so also 15 GAYG, by rules already
proved and the rule

(g RlA LY R =[gng' R AR] .

proved in [B-L, Proposition 2.3). Hence 5~ is constant, since A is abelian
with every element of order dividing 4. B

Remark 19. We can now show that in general the morphism « @ G ®
G — G ®@? G is not injective. If &7 is perfect, then these groups contain as
subgroups HG and H(G,1;) respectively. There are perfect groups G for
which the natural morphism HoG — Ha{G,Z,) induced by o is not injective.
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For exampie, if & is the simple group B3(3)}, then H>G is isomorphic to Z3 x Z;
(K, p. 283]).
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