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Abstract

Q-PERFECT GROUPS AND UNIVERSAL
Q-CENTRAL EXTENSIONS

Using results of Ellis-Rodríguez Fernández, an explicit description by gen-
erators and relations is given of the mod q Schur multiplier, and this is
shown to be the kernel of a universal q-central extension in the case of
a q-perfect group, i .e . one which is generated by commutators and q-th
powers . These results generalise earlier work K . Dennis and Brown-Loday.

A group G will be called q-perfect, where q is a non-negative integer, if G is
generated by its commutator subgroup [G, G] and the elements of the form gq
for all g E G . An extension of groups

1 ---L A ---, E ---+ G ---L 1

will be called q-central if it is a central extension and every element of A has
order dividing q . The q-central extension (1) will be called universal if for any
other q-central extensión

1->A'->E'-->G-+ 1

there is a unique morphism of extensions

RONALD BROWN

The existence of universal q-central extensions of q-perfect groups in the
clas~ical case q = 0 is well known, and a similar argument yields the general
case . That is, the universal coefficient theorem yields an exact sequence

0 ---> Ext(Hi(G), H2(G, Zq)) -+ H2 (G, H2(G, Zq)) ->
Hom(H2(G), H2(G,71q )) -> 0.

1 A E G 1

1 --> A' > E'

i

> G -> 1
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The q-perfect condition implies that the Ext term is zero, and so there is a
unique element e in H2 (G, H2(G, Zq)) which maps to the canonical morphism
H2(G) -> H2(G, Zq ) induced by the coefficient morphism Z -+ Zq. This coho-
mology element e determines the universal q-central extension .
However in the case q = 0 Miller in [M] gives for this extension group an

explicit construction by generators and relations (see [K] for a recent account,
and [B-L] for an account deduced from the non-abelian tensor product) . The
aim of this paper is to show that results of [E-R] yield a similar construction,
in terms of generators and relations, for the group E of the universal q-central
extension

for any q-perfect group G.
The group E of this universal q_-central extension is the special case GOgG of

a construction NOgG defined in [E-R] for any group G and normal subgroup
N . We need to derive some extra properties of that construction . While doing
so it seems worth putting the construction in slightly greater generality to allow
possibly wider uses, especially as this causes no extra difficulty in the proofs .

Let v : N -> G be a crossed module . The reader not familiar with this term
can think of v as the inclusion of a normal subgroup. We write 9n for the
operation of an element g E G on an element n E N, and let G operate on
itself by conjugation : zy = xyx-1 . We write [x,y] = xyx -' y -1 . We suppose
N operates on G via v and the conjugation action of G on itself .
Let q be any non-negative integer . The group N ®q G is to have generators

n ® g and {n} for all n E N and g E G, subject to the relations

1 -+ H2(G, Z q) -) E ---> G --> 1

forallg,hEGandm,nEN .
In order to understand the point of there relations, note that a morphism

1 : N®9 G -> G may be defined on the generators by

«n ® g) = [n, g], ~{n} = n9 .

It is straightforward to prove that 1 is well defined, since the relations (2)-(7)
are externalisations of rules for commutator and power operations .
The construction NOgG introduced in [E-R] assumes N is a normal sub-

group of G, and is the quotient of N ®q G by the relations

(2) n ® gh = (n ®g)( 9n ® 9h),
(3) nm ® g = ( nm® ng)(n ® g),
(4) {n}(m ®g){n}

-1
=

nIm
® n,g,

(5) [{n}, {m}] = ng ® mq,

(6) {nm} = {n} 1rjq=1 (n-1 ® (nl_9+`m)t) {m},

(7) {[n, g]} = (n ® g)q,
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for all n E N. The image of n ® g in N09G is written n n g .
The new information we add on there constructions is first that there is an

operation of G on N®9 G which on generators is given by

k (n ® g) = kn ® kg, k {n} = (na ® k)-'{n},

for all g, k E G, n E N. In order to prove that (9) yields a well defined operation
on N ®° G, we have to prove that this operation preserves the relations in the
sense that the operation of k E G on the left-hand side of a relation gives the
right-hand side, modulo the relations (2)-(7) .

In the case of the relations (2) and (3), this has already been verified for the
non-abelian tensor product N ® G in [B-L], which has generators n ® g and
relations corresponding to (2) and (3), and it follows that the same holds here .
Further we can assume for n ® g in N®9 G properties analogous to those for
n ® g in N® G which are proved in Proposition 2.3 of [B-L) .

For the relation (4), we find the operation of k E G on the left-hand side
gives

(ng ® k)-'{n}(km (9
kg) = (n9 ® k)-1(n'km (9 n°k

g){n} by (4 )
=[k,nal (ngkm ® ngkg)(n9 ® k) -' {n} by [B-L] Prop . 2.3(c)

= ( kn'm® kn' g) k{n}

	

as required .

The relation (5) is more tricky . We state it in the form

{n}{m}{n}-' = (n9 ®m9){m,} .

On acting with k on the left hand side of this we get

k({n}{m}{n} ')
= (ne ® k)-'{n}(m9 ® k)-'{m}{n}-'(na ® k)

_ (nv ® k)-' {n}(m 9 ® k)-'{n}-'(n9 ® m9){m}
(n9 (9 k) by ( 5 )

_ (n9 (9 k)-' {n}(m 9 (9 k) -' {n} -' (n9 ® m9) "(n9 ® k){m}
= (na ® k) -1 n9 (my 0 k) -i (nq (9 ,rnv) +n '(nq ® k){m} by (4 )

On acting with k on the right hand side we get

(n9 (9
m9 )(m

9 ® k)-1{m} .

Thus if we write a = n9, b = m9 , the equality of there is an identity

(10)

	

(k 0a) a (k 0 b)(a 0 b) b(a 0 k) = k (a 0 b)(k 0 b) .
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To prove this, it is easiest to use the relation between crossed squares and cat2 -
groups established in [L] . Consider the crossed square constructed in [B-L,
Proposition 2.15] :

N®G

	

K
. G

K

N

	

-~ G
where ic is the commutator morphism n ® g H [n, g] . The group N®G embeds
in the big group of the cate-group corresponding to this crossed square, and
in this embedding, the element n ® g can be represented as a commutator in
the big group . Thus to check the identity in N ® G corresponding to (10) it is
sufficient to check the corresponding commutator identity. But this identity is
well known, and may be checked directly.
The relation (6) presents similar problems . After some fidding, one is re-

quired to verify an identity of the form

n-1((nm)9 ® k)

	

,=1 (n-1
(9 (nl-9+im)¡)

= n_c(n9 ® k) -1Bd=1 ( kn-1 ® (knl-9+`m ) i )(m9 ® k)-1

Again, in the big group corresponding to the crossed square for No G, as above,
this translates to a valid commutator identity. Therefore it holds in N ®9 G.
The preservation of the relation (7) is easily verified, using the crossed square

rule Proposition 2.3(d) of [B-L] . So the operation by k preserves the relations
and so defines an operation of G on N ®9 G.
We - now assert that, with this operation, the morphism 1 :'N ®9 G -+ G

defined above is a crossed module . The first rule for a crossed module, that
j(9x) = g(jx)g -1 , is clear . The second rule, that yxy -1 = {yx, involves
three checks which have not already been done in the proof in [B-L] that
ic : N ® G -+ G is a crossed module . Two of these follow immediately from (4)
and (5), while the third, that

(m ® g){n}(m ® g) -1 = (m,91 {n},

reduces to the rule that (m®g) = ([m, g] 0b)(bm® bg), which is a consequence
of a crossed square rule for N ® G.
As a consequence of the crossed module rules, Ker

	

is central in N ®9 G.
It is now easy to verify that, with this action and the h-map N x G -+

N ®9 G, (n, g) - n ® g, the square

N®9 G { G
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becomes a crossed square [L] . A useful consequence is that the action of G on
Ker 1 is trivial (see [B-L, p.113]) .
We now give a relation between N ®9 G and N ® G.

Proposition 11 . There is an exact sequence

N ®G á>N®9 G->Nab	, 1

where Na b denotes the group N made Abelian.

Proof. There is a morphism a : N ® G --> N ®a G which satisfies a(n ®g) =
n ® g for all n E N, g E G. By (4), Im a is normal in N ®Q G. The quotient
is, by the relations (5) and (6), generated by elements {n} for n E N with
the relations {nm} = {n}{m} and [{n}, {m}] = 1 for all n, m E N. The
proposition follows .

Corollary 12 . If N and G are finite, then so also is N ®v G.

Proof. This follows from the main result of [E], that N ®G is finite if N and
G are finite .

We will show in Remark 19 that the morphism a is in general not injective .
The relation of this new construction to that given in [E-R] is now easy to

establish, and is analogous to the relation between N®G and NAG established
in [B-L] . That is, There is an exact sequence

(13)

	

I'(N/[N, G]) =--> N ®a G -> NAgG ---> 1

where kP is defined by -y([n]) ~--> n ® n. Here I' and y are as in [B-L] (I' is
Whitehead's universal quadratic functor) . Hence we obtain :
(14) If N and G are finite, then so also ás NOQG.

Since the image of the morphism kP in (13) is G-invariant, the crossed module
properties of ~ : N ®a G -> G are inherited by 8 : NOqG -> G.
We now establish a weak universal property for 1 : N ®9 G -> G.

Proposition 15 . Let n : E -> G be an epimorphism with kernel which is
central and has every element of order dividing q. Then there is a morphism
77 : N ®v G -> E such that 7rh = 1 .

Proof: Here rl is defined on the generators by

77(n ® g) = [n
>
, g

'
], rl{n} =

where n', g' E E are elements such that 7rn' = vn, erg' = g . The fact that
[n', g'] is independent of the choice of n', g' follows from centrality, and the
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independence of (n')q follows from the fact that the kernel of 7r consists of
elements of order dividing q . That q is well defined on N ®q G is now easy to
verify.
We now draw come consequences from the exact homology sequence

(16)

	

H3(G,Zq ) ---> H3(G/N, Z q ) -> Ker (NAgG -~ G) --+ H2 (G,Zq )
--+ H2 (G/N,Zq) --% N/N#qG -> H1 (G,Zq) --~ H,(G/N,Zq) -> 0

established in [E-R] . Here Zq is the integers mod q, and

N#qG = j(N ®q G) = D(NAgG)

is the subgroup of G generated by commutators in G and qth powers of elements
of N. It follows immediately from (16) that
(17) Ker (NAgG -> g) consists of elements whose order divides q 2 and Ker
(GAgG -> G) consists of elements whose order divides q .
We can now prove the main result of this paper, which uses the notion of

q-perfect group and q-central extension given at the start .

Proposition 18 . If G is a q-perfect group, then universal q-central exten-
sions of G are isomorphic to the sequence

1->H2(G,Zq)->GA'G~G->1 .

Proof.. Let D denote the kernel of D. We have already pointed out that
1 --> D -> GOgG -> G#qG -> 1 is a q-central extension . (We emphasise that
the centrality was a consequence of the crossed module rules for D.) It is a q-
central extension of G if and only if G is q-perfect . Further, it is a consequence
of (17) that D = H2 (G, Zq ), as pointed out in (E-R] .

Suppose that 1 -> A' -1> E' I> G -> 1 is a q-central extension of G. As
already pointed out, these is a morphism q : GOgG -> E such that 7rrl = D.
Suppose now that G is q-perfect, and that ( is another such morphism . Then
771('1 is a function GAgG -> E with values in A, and so is a morphism since the
extension is central . If G is q-perfect, then so also is GAgG, by rules already
proved and the rule

[g, h] A [g ' , h ' ] = [g ^ g 1 , h n h']

proved in [B-L, Proposition 2 .3] . Hence «-1 is constant, since A is abelian
with every element of order dividing q .
Remark 19. We can now show that in general the morphism a : G

G __+ G ®q G is not injective .

	

If G is perfect, then these groups contain as
subgroups H2G and H2(G, Zq) respectively. There are perfect groups G for
which the natural morphism H2G -> H2(G,Z q ) induced by a is not injective .
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For example, if G is the simple group B3(3), then H2 G is isomorphic to Z3 x Z2
([K, p . 283]) .
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