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Abstract

Co-FREDHOLM OPERATORS . IV

H . BERCOVICI

The purpose of this paper is to develop, in the context of operators of class
Co, a theory of Fredholm complexes analogous to that in [6], including
an index stability result under perturbations . As a by-product, a simple
proof of the additivity of the index for Cp-FYedholm operators will be
given .

1 . Introduction

In order to simplify both notation and statements we begin by reformulating
certain facts in the theory of operators of class Co in terms of Hilbert modules
over the algebra H°° of bounded analytic functions in the unit disc . Let K be
a complex Hilbert space, and denote by L(K) the .algebra of bounded linear
operators on K. If T E L(K) is an operator of class CO then we can turn K
into an H°°-module by setting

uk=u(T)k,uC-H',kEK.

This module has the following properties :
(i) ¡JukIl < ¡Juli,,11kIl, u E H-, k E K (in the terminology of [3], K is a

contractive module) ;
(ii) for each k E K the map u --> uk is continuous if H°° is given its -,vealc*

topology and K is given its weak topology ;
(iii) K has nontrivial annihilator in H°°, Le ., {u E H°° : uk = 0 for all

k E K} is a nonzero ideal in H°° .
Conversely, if K is a Hilbert H°°-module satisfying (i), (ii) and (iii), then (1.1)
holds for some operator T of class Co . Therefore, a Hilbert H°°-module sat-
isfying (i), (ii) and (iii) will be called a Co-module. If K is a Co-module and
K' C K is a closed subspace such that uk E K' for all u E H°° and k E K',
then K' is called a submodule of K. Given a submodule K' C K one can
form the quotient module K/K' . With the quotient norm this is yet another
Co-module which can be identified as a Hilbert space with K e K' (the orthog-
onal complement of K' in K) . If Kl and K2 are CO-modules then we denote
by Hom(KI, K2) the Banach space of continuous H°°-module homomorphisms
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from Kl to K2 . (These homomorphisms correspond, of course, with the inter-
twinings between the associated operators of class Co .) We write End(K) for
Hom(K, K). The modules Ki and K2 are quasisimilar if there exists a quasi-
affinity in Hom(K1,K2) ; we recall that a quasiafnity is an operator which
is one-to-one and has dense range . It follows from well-known facts (cf. [1])
that quasisimilarity is indeed an equivalence relation for Co-modules. We write
Ki - K2 if Ki and K2 are quasisimilar .

Let K be a Co -module, and let ( ., .) denote the scalar product in K. We
define the adjoint Co-module K* as follows . As a Hilbert space, K* = K, and
multiplication of k E K* by u E H°°, denoted u#k, is given by

(1 .2)

	

(u#k, h) = (k,u- h), h E K,

where u-(A) = u(a) . If K determined via (1 .1) by an operator T of class
Co , then K* is likewise determined by the operator T*. Clearly, if cp E
Hom(Ki, K2), then the Hilbert space adjoint cp* belongs to Hom(K*, Ki ) .

For every Co-module K we denote by Lat K the lattice of all submodules of
K. Given a homomorphism cp E Hom(Ki, K2 ), there is an induced map cp+
Lat Kl -4 Lat K2 given by W+ (M) = (WM) -, M E Lat K, . We say that co is a
lattice-isomorphism if ~o+ is one-to-one and onto . Fix now a homomorphism ep E
Hom(K1,K2) . Then kercp is a submodule of Kl and (ran cp) - is a submodule
of K2 . One can write now

(i) cp+ is onto Lat ((ran ~p)-) ; and
(ii) (cp*)+ is onto Lat ((ran

cp = J ~3p,

where j : (ranW) - -+ K2 denotes inclusion, p : Ki --, Ki / ker co denotes the
canonical projection, and ep(k + kercp) = cpk, k E Kl . Clearly ep is a quasi-
affinity . We say that co has full range if cp is a lattice isomorphism . We record
for further use the following result from [1] (cf. Lemma 1 .20 in Chapter 7) .

1.4 .

	

Lemma. If cp E Hom(KI , K2) then yo+ is one-to-one if and only if
(ep*)+ is onto . Thus cp has full range if and only if

The second part of the lemnia is not stated in [1], but the reader should have
no difficulty deducing it from the first part . Let us note that cp has full range
if it has closed range . Indeed, if cp has closed range then the homomorphism cp
in (1 .3) is in fact invertible .

Next we introduce a notion that corresponds with property (P) for operators
of class Co (cf. Chapter 7 of [1]) . A Co-module K is said to be finite if it is not
quasisimilar to any of its proper submodules. An equivalent characterization
is that for every ep E End(K) we have kercp = {0} if and only if (ran cp)- = K .
We collect for further reference some basic facts about finite modules (cf . [1]) .



1.7 . Lemma.

(i) cp has full range ; and
(ii) either ker cp or coker 9 is finite .
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1.5. Proposition .
(i) The property offiniteness is preserved by quasisimilarity.

(ii) Le¡ K be a Co-module and K' a submodule. Then K is finite if and only
if both K' and K/K' are finite .

(iii) A Co-module K is finite if and only if K* is finite .
(iv) If co E Hom(K1 , K2) and at least one of ¡he modules K, and K2 is finite

then co has full range.

A basic fact in the sequel is the following result which compensates for the
fact that homomorphisms with full range do not usually have closed range . (see
Proposition 6.9 and Corollary 6.10 in Chapter 7 of [1]) .

1.6 . Proposition . Let K, K' and K" be Co -modules, anda E Hom(K', K),
/~ E Hom(K", K) . Assume that (ran 0)- is finite and ran a C (ran /l)- . Then

(i) (a-'(ran fi))

	

= K';
(ii) (ran a fl ran /i) - D ran a; and
(iii) if K' is cyclic then a-'(ran 0) contains a cyclic vector of K' .

We recall that K has a cyclic vector k if K = (Hwk)-. In general K
has finite cyclic multiplicity if these exist vectors k,, k2,- . . , kn E K such that
K = (H-k1 -f- H'k2 -;- --- -}- H'k�)- . It is known that modules with finite
multiplicity, in particular cyclic modules, are finite .
Next we introduce an equivalence relation on the class of finite Co-modules.

Two modules Kl and K2 are equivalent if these exists a finite module K, and
ep E End(K) such that Kl - ker<p and K2 - coker ep = K/(ran cp)- . It is
shown in [1] that this is indeed an equivalence relation (the proof of transitivity
was first done in [4]) . We will write [K] for the equivalence class of the module
K, and we will write [K] = oo if K is not a finite module . The operation

[K,] + [IC2] = [K, ® K2]

turns the set of equivalence classes into a commutative semigroup with unit
(the zero module) . We record for further use some results proved in [1] .

(i) IfKI and K2 are quasisimilar then [K,] = [K2] .
(ii) If K' is a submodule ofK then [K] = [K'] + [K/K'] .

We finally define the notion of semi-Fredholm homomorphisms - these are
precisely the Co-semi-Fredholm operators defined in Chapter 7 of [1] .

Let K1 and K2 be two Co-modules, and cp E Hom(K1,K2) . Then co is said
to be semi-Fredholm if
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A semi-Fredholm homomorphism ~o is Fredholm if
(iii) both ker cp and coker cp are finite .

If cp is a semi-Fredholm homomorphism, the índex of ~o is defined as

ind cp = [ker cp] - [coker W] .

It is important to note that the semigroup of equivalence classes of finite
modules does not have the cancellation property, and so it cannot be embedded
in a group. Therefore differences in that semigroup must be treated formally ;
thus,

1 .8 . Lemma.

[K,] - [K2] = [K3 ] - [K4]

simply means [K l ]+[K4] = [K2]+[K3] . See Chapter 7 of [1] for an identification
of this semigroup as the class of generalized inner functions .
We conclude this section with a userful elementary result about homomor-

phisms with full range .

(i) Let cp l and W2 be Co-module homomorphisms .

	

Then cp l ® cp 2 has full
range if and only if boih cpl and 92 have full range .

(ii) Let cp, 0 E Hom(K1,K2) be such that (ran

	

)- is finite. If ep has full
range then cp +0 has full range .

Proof.. (i) Set <P = cpl ® W2 and note that cP = "pi ® cP2 . Therefore it sufices
to consider the case in which cp l and ~02 are quasiaffinites . That cp l and ~P2
are lattice-isomorphisms if cp is a lattice-isomorphism is easy to see, and left as
an exercise for the reader . Assume that cpl and W2 are lattice-isomorphisms,
say ~Pi : Kl -> K,', W2 : h'2 -+ K2 . To show that W+ is onto it suffices to
show that its range contains every cyclic module M' C Ki ® K2 . But if M'
is such a module, there are cyclic modules Mi C Ki and M2 C K2 such
that M' C Mi ® M2 . Choose submodules Ml C Kl, M2 C K2 such that
IPl+(M1) = Mi, 'P2+(M2) = M2 and note that ep+(Mi ® M2) = Mi ® M2.
Thus cp : Ml © M2 -+ Mi ® M2 has dense range and, since Mí ® M2 is finite, it
must have full range by Proposition 1.5(iv) . Thus there exists M C Ml ® M2
such that W+(M) = M' . It remains to be shown that 9+ is one-to-one, but
this follows at once from the first part of the argument applied to cp', and from
Lemma 1 .4.

(ii) We can assume without loss of generality that (ran ~o + ran ik)- = K2 .
Under this assumption, the homomorphism p : (ran 0)- --> coker W, obtained
by restricting the canonical projection to (ran iP) - , has dense range, whence
we deduce that coker cp is finite . It follows that cp is semi-Fredholm and hence
~o +0 is semi-Fredholm by Theorem 7.1 in Chapter 7 of [1] . In particular, cp+
has full range .



We define a complex to be a homomorphism S E End(K), where K is some
Co-module, and 0 = 0 . Most of the complexes we will consider will be 71 2 -
graded . This means that K can be written as a direct sum K = Ko ® Kl such
that bKo C Kl and 6Kl C Ko . In this case it is convenient to denote bo E
Hom(KO, Kl) and bi E Hom(Ki, Ko) the restrictions of b to the two summands .
The homology module H(b) of a complex b is the Co-module ker S/(ran S) - . If
S is Z2 -graded we have H(b) = Ho(a) ® H,(6), where Ho(b) = ker So/(ran S l )-
and Hl (ó) = ker61/(ran So) - .
A 71 2 -graded complex b will be called a semi-Fredholm complex if

(i) b has full range ; and
(ii) either Ho(6) or H, (5) is finite

A semi-Fedholm complex b is Fredholm if

(iii) both Ho(b) and H1 (b) are finite .
The index of the semi-Fredholm complex S is defined as

To see the relationship between semi-Fredholm homomorphisms and semi-
Fredholm complexes, we can associate with every homomorphism W E Hom(Ko,
K,) a complex ó E End(Ko ® K,) by setting óo = cp and b l = 0 . Then co is
semi-Fredholm if and only if b is semi-Fredholm, and ind(ó) = ind(cp) .

2.1 .

	

Proposition . Le¡ 8 E End(Ko ® K,) be a 71 2 -graded complex . If
at least one of the modules Ko and Kl is finite then b is semi-Fredholm and
ind(b) = [Ko] - [K1]. If both Ko and KI are finite then b is Fredholm .

Proof. If either Kl or K2 is finite then we know that bo and b l must have
full range . Thus S has full range by Lemma 1 .8 . If Ko is finite then ker bo C Ko
is also finite, and hence Ho(b) = kerbo/(ran 8 1 ) - is finite . Analogously we
conclude that b must be semi-Fredholm if K, is finite, and Fredholm if both Ko
and Kl are finite . To calculate the index we note that Ko /kerbo - (ran ó o )-
so that

Analogously,

whence
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2 . Complexes

ind(b) = [Ho(h)] - [Hi(b)] .

[Ko] = [kerbo] + [(ran bo)-] = [Ho(b)] + [(ran 6j)-] -F [(ran 6o) - ]

[K,] = [Hl (s)] + [(ran b l )-] + [(ran ao)-j,

[Ko] + [Hi(b)] = [K1] + [Ho(b)],

and this immediately gives the index of b.
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The preceding proposition has some immediate consequences pertaining to
exact sequences . A sequence

(2.2)

	

Ko w°+ Kl ) K2

of homomorphisms will be said to be Co-exact if
(i) Wo has full range ; and
(ii) kercpl = (ran cp o )- .

Recall that (2.2) is exact if ker col = ran cpo, so that exactness implies Co-
exactness but not conversely. Analogously, a complex S is Co-exact if it has full
range and H(b) = {0} .

2 .3 . Corollary. Let b E End(Ko ® K,) be a Z2-graded complex. Suppose
that ó is Co-exact and at least one of the modules Ko and Kl is finite . Then
both Ko and Kl are finite, and [Ko ] = [K1 l .

Proof.. We have ind(S) = 0, and hence [Ko] = [K,] by Proposition 2.1 .

2 .4 . Corollary. Le¡

0

	

%Iio <Po
) Ki (P1 ) . . .9=-iKn--L0

be a Co -exact sequence of homomorphisms. Then [Ko]-[K,]+ . . .+(-1)n[Kn] _
0.

Proo£ Define Mo = Ko ® K2 ® . . . and MI = K1 ® K3 ® . . . , and define a
complex b E End(MO ® Ml) by

óo(ko®k2® . . .)=Woko®co2k2® . . . .
61(k,®k3® . . .)=Wlki®W3k3® . . . .

Then ó is Co-exact so that [Mo] = [Mi] by Corollary 2.4 .

This last corollary allows one to give an easy procf, in the spirit of [7], of
the fact that ind(OW) = ind(0) + ind(cp) if cp and 0 are Fredholm homomor-
phisms, say co E Hom(KO, K1) and 0 E Hom(K1 , K2 ) . Indeed, one can form
the sequence

(2 .5)

	

0 --> ker cp
w°-> ker(0~o)

	

ker 0

	

;p2 ) coker cp
93 coker (OW) --91 coker 0 --+ 0,

where cp o is inclusion, co l k = cok if k E ker(V)~o), cp 2 is the canonical projection
onto coker cp = Kl /( ran ~o)- , cp 3 (k+(ran cp) - ) = ?Pk+(ran (Ocp))-, and IP4(k+
(ran(Ocp))-) = k+(ran (p) - . The índex formula follows at once from Corollary
2 .4 and the following result .
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2.6. Lemma. The sequence (2.5) is Co-exact .

Proof.. Since all modules in (2.5) are finite, all homomorphisms cpj have full
range . Clearly cp o is one-to-one and ran Wo = kerep l . That W 2 W 1 = 0 is
immediate . Now, cearly ker ep 2 = ker 0 fl (ran ep) - , and since cp is Fredholm,
there exists a submodule MC Ko such that (WM)- = ker W2 . Since (WM) - C
ker0, we have MC ker(OW) and hence

Next note that
(ran cpl)

	

D (cplM)

	

=(wM)

	

= kercp2 .

kercp 3 = {k -{- (ran cp) - : Ok E (ran

	

and
ran W2 = {k -{- (ran cp)- : Ok = 0},

so that cearly W 3W 2 = 0. Suppose that k is such that Ok E (ran(Ocp))-, and
denote by Ml C Kl and M2 C K2 the cyclic modules generated by k and
Ok, respectively. Since ?Gcp has full range, there exists Mo C Ko such that
(OcwMo)- = M2. By Proposition 1 .6 we have that mi n o -1 (o~omo) is dense
in Ml . Thus, given e > 0, there exists k' E Ml such that JIk - k'¡¡ < e and
Ok' = Ocph for some h E Ko . Then we can write

k' + (ran cp) - = k' - cph -1- (ran ~o) - E ran cp2
because ~(k'-cGh) = 0. Since e > 0 is arbitrary, it follows that ran cp 2 is dense
in ker cp3 . We have

ran cp 3 = {Ok + (ran (Ocp»

	

: k E K,}, and
kercp4 = {k' -}- (ran (Ocp»- : k' E (ran ~o)-},

and it is immediate that ran cp3 is dense in ker cp 4 . Finally, cp 4 is onto .

3 . Homomorphisms between complexes

Let b' E End(K') and 6 E End(K) be two complexes . A homomorphism
cp : b' -> b is simply an element cP E Hom(K', K) such that cpb' = bcp . If 6 and
b' are 7L2-graded with decompositions K' = Kó ® Ki and K = Kó ® Ki, we
will also require that WIií C K;, j = 0,1 . If cp : b' -+ b is a homomorphism,
there is an induced homomorphism co . E Hom(H(b'), H(b)) defined by cp *(k' +
(ran b')-) = cpk' + (ran 6)- , k' E kerb' . This homomorphism is well-defined
since cp ker b' C ker S and cp(ran b')- C (ran b)' .

Consider now an exact (not just Co-exact!) sequence

(3.1)

	

0,S'-"->6--0, b"->0
of homomorphisms between complexes . By analogy with ususal homological
algebra [2] we will define a connecting homomorphism á : H(V) --> H(6') as
follows . Consider an element k" E ker b" . Since 0 is onto, we have k" = Ok
for some k, and Obk = b"Ok = b"k" = 0 . Therefore bk = cpk' for some k',
and cpb'k' = bcpk' = bbk = 0 so that b'k' = 0 because cp is one-to-one . We set
á(k" + (ran b")') = k'+ (ran b') - .
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3.2 . Lemma. The map á is a well defned homomorphism in Hom(H(S"),
H(a'))_

Proof- Let k', k and k" be such that S"k" = 0, Ok = k', and cpk' = Sk . It suf-
fices to prove that there exists a constant C > 0 such that dist(k", (ran S")- ) <
1 implies dist(k', (ran S')-) < C. To do this observe that since 0 has closed
range, there exists a constant A > 0 such that dist(k, ker P) < AIJOkll . Anal-
ogously, since cp _hasclosed range, B11Wkll > Ilk'll for all k' . Assume that
dist(k", (ran S")- ) < 1, and choose ki such that 11k" -S"ki 11 < 1 . Choose next
ki such that Okl = ki and note that we must have

By exactness, we must be able to find ki such that Ilk - Sk l - tpki 11 < A . We
have then

so that

is precisely a* .

dist(k - Skl, ker0) < A.

IISk - bwkí II = Iló(k - Sk, - wkí)II <- A11611

Ilk'-b'kíll <-BIIW(k'-ó'kí)II =Bll¿k-ó~pkÍll <-BAllóll .

Thus dist(k', (ran S') - ) _< BA11S11 .

	

We conclude that a is well-defined and
11a11 :5 BA116 11 . 9

If S E End(K) is a complex then S* E End(K*) is also a complex. Moreover,
since kerS* = (ran S)1 and (ran S*)- = (kerS)' we see upon identifying H(S)
with kerS e (ran S)- that H(S*) = H(S)* . Now, if cp : S' -> S is a homomor-
phism, then ~o* : S* -> S'* is another homomorphism and hence there is an
induced (cp*) * E Hom(H(S*), H(S'*)) . If we identify H(S*) = H(6)* as above,
it is immediate that (cp*) * = (cp * )* . The following result is of a similar nature,
but somewhat more difficult to verify .

3 .3 . Lemma. Let a be the connecting homomorphism of the exact sequence
(3.1) . Then the connecting homomorphism of the exact sequence

O--~ S"* - >S* P-> S'*->0

Proof.. Assume that S' E End(K'), S E End(K) and S" E End(K") . There
is a unique linear map 0- : K" -> K e kero such that 00- = IK, , and a
unique map W- : K -> K' such that ep - cp = II,~, and ker (p- = K e ran ep . In
addition, one can verify easily that (cp*) - _ (cp - )* and Upon
identifying H(V) and H(P) as subspaces of K' and K", respectively, we claim
that

a = Px(6,)WP b0 jH(ó"),



where PM denotes orthogonal projection onto M. Indeed, if k" E ker S" then
k = O - k" satisfies Ok = k" and hence k' = cW-6k satisfies cpk' = Sk . Now the
lemma becomes obvious because the connecting homomorphism of the adjoint
sequence is

With these technical lemmas out of the way, we can prove the Co-exactness
of the long homology sequence .

3.4 . Theorem . Leí á be ¡he connecting homomorphism of the exact se-
quence (3.1) . If ó', 6 and h" have full range then ¡he triangle

is Co-exact .
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H(S')

	

w,,	H(b)

H(V)

Proof.. The equalities a0, = 0, o,Sp, = 0, and cp,á = 0 are immediate .
We will prove that the lattice maps ('p*)+, (0,)+, and á+ are onto Lat(kerip,),
Lat(ker a), and Lat(kerW,) respectively, and the theorem will follow from Lem-
mas 1 .4, 3 .3, and the remarks preceding Lemma 3.3 . Notice that it suf-
fices to show that the range of (ep,)+ , . . . contains every cyclic submodule of
Lat(kerO,), . . . .

Let k+(ran ó)- E kero � , Le ., k E keró and Ok E (ran 6")- . Denote by M C
ker ó the cyclic submodule generated by k, and note that since OM C (ran ó")-
and ó" has full range, we have by Proposition 1 .6 that Mflo-1 (ran ó") contains
a cyclic vector kl for M. Thus Okl E ran 6", say ?Pk l = b"k" . Now 0 is onto,
so we have Ok2 = k" for some k2, whence O(kl - Sk2 ) = 0 . Thus kl - Sk2 = Wk'
for some k', and cp(6'k') = 6(k l - bk2) = 0 . Therefore k' E ker 6' and

kl + (ran b) - = p* (k' -F (ran b ' ) - ) E ran cp, .

We conclude that the cyclic module generated by k l + (ran b)- belongs to the
range (cp,)+ . Clearly though this cyclic module coincides with that generated
by k + (ran S)- , and this shows that (cp,)+ is onto Lat(ker0,) .
Next consider an element k" -+- (ran 6")-

E ker 8 . Thus k" E ker S" and if
k, k' are such that ?%k = k" and epk' = Sk then k' E (ran b')- . Since b' has full
range, there is a cyclic module M' such that k' E (ó'M')- . Now notice that

ók = <pk' E (Spb'M') - = (6WM') - = (b(~oM' + keró)-)-,

and since S has full range we deduce that k E (~oM' + keró)- . Denote by
M the cyclic module generated by K, and by p : (WM' + keró)' --> (~oM' +
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ker S)-/ker 6 the canonical projection . Then (WM'+ker 6)- /ker6 is the closure
of ran(pWIM') and hence it is finite . By Proposition 1 .6 there exists a cyclic
vector kl for M such that pkl E ran(pcpIM') and this clearly implies that
ki E ran cp + ker 6 . If k l = k2 + k3 with k2 E ran 9 and k3 E ker6, then
k" = Ok and Ok3 = Okl generate the same cyclic space . Thus the cyclic
space generated by k" + (ran 6")- is the range under (0 *.)+ of the cyclic space
generated by k3 + (ran 6)- . Therefore (0.)+ is onto Lat(ker á) .

Finally let k' + (ran 6') belong to kercp* , Le ., ~ok' E (ran 6)- . Denote by
M' the cyclic module generated by k' . Since 6 has full range, M' fl cp-' (ran 6)
contains a, cyclic vector ki for M'. Thus cpkl E ran 6, say ki = 6k . We see then
that 6"Ok = 06k = Ocpki = 0 so that in fact ki+(ran 6') - = á(Ok+(ran 6") - ) .
This implies immediately that a+ is onto Lat(kerW,) .

3.5 . Corollary . Assume ¡ha¡ the complexes 6', 6, and 6" in ¡he exaci se-
quence (3.1) are semi-Fredholm. Then ind(5) = ind(6') + ind(V).

Proo£ Since the complexes in question are Z2-graded, the triangle in Theo-
rem 3.4 becomes a hexagon

Ho(6')

	

w--., Ho(6)

	

i Ho(V)

4 . Stability of the index

H,(6ll)

	

,P.- Hi(6)

	

Hl (6')

and one can deduce as in Corollary 2.4 that

[Ho(6')] - [Ho(6 )] + [Ho(V)] - [H1(6')] + [H1(6 )] - [H,(V)] = 0 .

This implies immediately the index formula .

As we mentioned above, the semigroup of all classes of finite Co-modules does
not have the cancellation property . One can nevertheless cancel under certain
circumstances . If Kl and K2 are finite modules we will write [K,] _< [K2 ] if
[K2 ] = [K,] + [K3 ] for some finite module K3 . The following result is proved
in [1] (see Lemma 6 .2 in Chapter 7) .

4 .1 .

	

Lemma. Le¡ K,,, K2 and K3 be finite modules. If [K,] + [K3] _
[K2] + [K3], [K3] :5 [K,], and [K3 ] < [K2], then [K,] = [K2] .

We need an additional lemma in order to prove the main, result in this section .



4.2 . Lemma. If K1	K2	K 3 is a Co -exaci sequence of Co-modules
then [IV2] < [K1] + [K3] .

Proof.. Using Lemma 1.7 we have
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[IC2] = [ker0] + [K2/kerik] = [(ran cp)- ] + [(ran 0) ]
= [K1/kercp] + [(ran 0)

	

] C [K1) + [K2) .

4.3 . Theorem . Leí 6, 61 E End(K) be tuco Z2-graded complexes. Assume
that 6 is semi-Fredholm and (ran(b1 - 6))- is finite . Then 61 is also semi-
Fredholm and

ind(b1 ) + [(ran(b 1 - b))- ] = ind(b) + [(ran(b1 - b))-] .

Proof. Let us set e = b 1 -b, and denote by K' the submodule of K generated
by ran E and ran (be) . Note that if K = Ko ® K1 is the gradation of K, then
K' = Kó ® Ki, where Kó is generated by ran el and ran(S,Eo), and Ki is
generated by ran eo and ran(6oe1) . Since (ran e) - is finite it follows that K'
is finite . Moreover, K' is invariant under 6' and 6; . Invariance under b' is
obvious, and invariance under 6i follows from the inclusions

5 1 ran (6E) = (6 + e) ran(6e) = e ran(be) C ran e,
51 rane=(6+E)rane=(b+e)ranáCeranbCrane,

where we used the equality . (6 + e)2 = 0.

	

Let us denote by 6' and 6i, the
restrictions of 6 and 61 to K', respectively, and denote by b" and 6i the induced
complexes on K" = -K/K' . Thus we have exact sequences

0,6'~b 0-, b"-,0,

p --- 6i ,--> 61 ~ bl ---i 0 ,

where cp denotes inclusion, and ip denotes the canonical projection onto the
quotient module . We claim that in fact b" = 6 Í' . Indeed, this follows immedi-
ately from the fact that ran(6-61) is contained in K' . Moreover, the complexes
b' and 6i are Fredholm by Proposition 2.1, and

(4.4)

	

ind(b') = ind(6i) = [,(ó] - [KÍ) .

Next we note that b has full range, and therefore 51 = 6 + e has full range by
Lemma 1.8 . (ii) . We want to argue that b" has full range as well . Indeed,
consider k+ K' E (ran b") - = (ran b +K') - . This means that k E ((ran b) - +
K')- . Denote by M the cyclic module generated by k, and by p the canonical
projection onto the quotient ((ran 6)-+K')/(ran 6)- . Since pK' is dense, this
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quotient module is finite, and Proposition 1.6 implies the existence of a cyclic
vector k 1 for M such that pk1 E pK' or, equivalently, k1 E (ran 6)- + K'.
Write ki = k2 + k3 with k2 E (ran 6)- and k3 E K' = ker xP, and note that
k2 + K', k1 + K', and k + K' generate the same module in K" . Now, if M2
is the module generated by k2 , then M2 C (ran S)- , and hence M2 = (6N)-
for some submodule N because 6 has full range . It is now immediate that
(PON)- = (06N) - is the cyclic module generated by k + K' = Ok . An
application of the same argument to 6"* shows that b" has full range by virtue
of Lemma 1 .4.

Suppose now that Ho(6) is finite . The Co-exact hexagon

Now, Lemma 4 .2 shows that

Ho(6,)

	

. Ho (6)

	

Ho(V)

H1 (V) <--- Hl (6) F

	

H1(6')

implies that Ho(6") is also finite . Indeed, both Ho(6) and H1(6') are finite (see
Proposition 1 .5 . (ii» . Furthermore, the hexagon

Ho(6i) - Ho(61) - Ho(6i)

H1(6i) <-- H1(61) '

	

H1 ( 6i)

implies now that Ho(61 ) is finite. Indeed, Ho(6i) and Ho(6i) = Ho (6") are
finite . Thus 61 is semi-Fredholm in this case . The case in which H1(6) is finite
is treated analogously.
We turn finally to the index . The two exact hexagons above give

[Ho(6')] + [Ho(V )] + [H1(« = [Ho(6 )] + [H1(6 ')] + [H1(5")],

[Ho(61)] + [H1(6i)] + [H1(6")] = [Ho(6i)] + [Ho(V )] + [H1(61)],

where we used the fact that 6" = 6i . If we add these two relations we get

[H1( 6)] + [Ho(61)] + [Ho(6')] + [H1( 6i)] + [Ho(6")] + [H1(6")]

_ [Ho(6 )] + [H1(61)] + [H, (6')] + [Ho(6i)] + [Ho(V )] +
[H1 (6� )] .

[Ho(6
�

)]

	

[Ho(6)]
+ [H1(6')],

[Ho(V)]

	

[Ho(61)] + [H1(6i)],

[H1( 6 ~~)]

	

[Ho(6~)] + [H,(¿)],

[H1(6~~)1 < [Ho(6i)] + [H1(61)],



and therefore Lemma 4.1 implies
(4.5)

	

[x1 (6)] + [Ho(6 1)] + [Ho(6')l + [H1(6i)]
= [Ho(6)] + [H1(61)] + [H1(6')] + [Ho(6í)] .

Using (4.4) we see that

Co-FREDIIOLM OPERATORS . IV
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[Ho(6')l + [H1(6i)] + [K']
_ [Ho(6')] + [Ki] + [H1(6i)l + [Kó]

_ [H1 (6')l + [IQ + [Ho(6í)] + [Ki]
_ [H1(6')] + [Ho (ói )] + [K'] .

Adding [K'] to both sides in (4.5) we get therefore

[H1(6)] + [Ho(61)] + [H1(6')] + [Ho(6í)] + [K']
= [Ho(6)] + .[H 1 (6 1 )] + [H1(6')] + [Ho(6í)l + [K'],

and since [H1 (6')] + [Ho(6i)] < [K% we get by Lemma 4.1

[H1(6)] + [Ho(6 1)] + [K'] = [Ho(6)] + [H1(51)] + [K'] .
Now clearly [K'] _< [(ran e) - ] + [(ran(6e))-] <_ [(ran e)- ] + [(ran e)- ], and a
filial application of Lemma 4.1 yields

[H1(6)] + [Ho (61)] + [(ran e) - ] = [Ho(5)] + [H1(51)] + [(ran e)- ],
which is the desired index relation .

5 . Concluding remarks

Vasilescu [6] considered complexes of the form
«n-1

(5.1)

	

o---~Xo -'% x1~x2~ . . .

	

~x ', ' 0,
where Xo, X1,...,X� are Banach spaces, and ceo, n 1 , �. ., a,_ 1 are densely
defined closed operators . One can always replace (5.1) by a Z2 -graded complex
(Yo ® Y1, 6), where Yo = X0 ® X2 ® . . . . Y1 = X1 ® X3 ® . . . , and

60(x0 ® x2 ® . . . ) = «0x0 ® a2x2 ® . . . ,

61(x1 ® x3 (D . . . ) = celx1 T ce3x3 ® . . . .
Thus considering 7L2-graded complexes gives a somewhat more general concept
of Fredholmness and índex . For instance, the requirement that 6 be semi-
Fredholm only implies that either the odd-numbered, or the even-numbered
homology groups of (5.1) are fin¡ te-dimensional .
The theory of Fredholm complexes of Co-modules could also be done with

densely defined, closed homomorphisms, but I chose to simplify the exposi-
tion by considering only continuous homomorphisms . Our perturbations in
Theorem 4.3 correspond in the Banach space case with perturbations of finite
rank . Vasilescu allows in [6] compact perturbations . I do not know whether
there exixts a good correspondent, in the context of Co-modules, of compact
operators .
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