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SOME REMARKS ON LIE FLOWS

M. LLABRES AND A. REVENTOS

Abstract

The first part of this paper is concerned with geometrical and cohome-
logical properties of Lie flows on compact manifolds. Relations between
these properties and the Euler class of the flow are given.

The second part deals with 3—codimensional Lie flows. Using the classi-
fication of 3-dimensional Lie algebras we give cohomalogical obstructions
for a compact manifold admits a Lie flow transversely modeled on a given
Lie algebra.

0. Introduction

Let F be a foliation on a manifold M given by an integrable subbundle
L C TM. The complex of basic forms is the subcomplex Q*(M/F)} C Q*(M)
of the De Rham complex given by the forms a satisfiying Lya = Gand ixa = 0
for all X € I'L. The cohomology of this complex, H*{M/F), is called the basic
cohomology of the foliated manifold (M/F).

A.ElKacimi and Q. Hector proved in (3], and independently V. Serpiescu in
[11], that for Riemannian foliations on compact manifolds the space of cohomo-
legy H*{M/F) satisfies Poincaré duality if and only if H*(M/F} # 0 (where
n = codim F}. In this case F will be called unimeduler.

In the case of Riemanman flows, it is proved by Molino-Sergiescu (cf. [8])
that F is unimodular if and only if it is isometric, 1.e. there exists a Riemannian
metric g on M and a unit vector field X tangent to F which generates a group
of isometries.

The Euler class 6f an isometric flow F can then be defined by (cf. [9])
e(F) = [d(ixg)) € H*(M/F).

One interesting class of Riemannian flows is constituted by Lie flows (1-
dimensional foliations transversely modeled on Lie groups). "

If 7 is an unimodular Lie flow transversely modeled on & {a Lie group of Lie
algebra G) it is known (cf. [6]) that H*(G) is canonically injected in H*(M).
Moreover, F is homogeneous (see §1 for definition) if and only if e(F) € H(G).

In this paper we prosecute the study of geometrical and cohomological pro-
perties of Lie flows initiated in [6].Some of these properties are related with the
annulation of e{ F'}. We obtain the following results (see §1 for definitions):
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Theorem 1. Lei F be o homogencous Lie G-flow on a compact manifold M.
Then F is unimodular if and only if the Lie algebra G 15 unimodular,

Theorem 2. Let F be an unimodular Lie flow on a compact manifold of
dimension 3. Then the following conditions are equivelent:
i) e(F)#0.
i} F i3 a contact folintion.
wi) F does not edmit any Riemannian complementary folietion.

The second part of this paper is devoted to 3-codimensional Lie flows. In [4]
a study is made of the realization of such flows on compact manifolds. This
study is based on the classification of the 3-dimensional Lie algebras.

Using this classification we study here some particular cases. For instance

Theorem 3. Lel F be a 3-codimensional Lie flow on & compact manifold
M, transversely modeled on the abelian Lie algebra G. Then we have:

1) dim HY(M;R) = 3 (and the leaves of F are the fibves of a non-trivial
S!-bundle cver the torus T%),

or

i) dim H'(M;R) = 4 (and M is the torus T*).

On the other hand it is proved in [4] that every Lie flow of codimension 3 and
structural Lie algebra G of dimension 2 must be modeled on Gy,Gs, Gz (k ¢ Q)
or Gg (see the definition of G; in §1). Examples for G;, Gs and Gr are given.
Nevertheless a characterization of those algebras in the families §; and Gy for
which this situation is possible has not been given. The following result gives a
cohomological restriction for the existence of such 2 flow on a compact manifold

M.

Theorem 4. Let F be a 3-codimensional Lie flow transversely modeled on G
or Gy (h # 0} and structural Lie algebra of dimension 2. Then dim H}(M;R) =
1.

Finally we relate the annulation of the Euler class with the existence of a
complex structure on M.

Theorem 5. Let F be an unimodular G Lie flow of codimension § on a
compact manifold M. If G £ G7 (k= —1) and e(F) = 0 then M 1s a complez
maonifold.

1. Preliminaries

Let F be a smooth foliation of codimension n on a smooth manifold A given
by an integrable subbundle L ¢ TM, We denote by L{M, F) the Lie algebra of
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foliated vector fields,i.e. X € L{M,Fiifandonly (X, Y] e PLiorallY € ['L.
'L is an ideal of L{M,F} and the elements of XY({M,F) = L{M,F)/TL are
called basic vector fields.

If there is a family {Xi,.-.,X.} of foliated vector fields on M such that the
corresponding family {X1,...,X .} of basic vector fields has rank n everywhere
the foliation is called transversely parallelizable and {X;,..., X} a transvers
parallelism. If the vector subspace G of X(M/F) generated by {X1,..., X}
is a Lie subalgebra, the foliation is called a Lie foliation.

We shall use the following structure theorem {cf. 7]}

Theorem. Let F be a transversely parellelizable foliation on o compact me-
nifold M, of codimension n. Then

a) There is & Lie algebra H of dimension g < n. _
b) There i3 ¢ locally irivial fibretion = : M — W with compect fibre F and

dimW=n-g=m

c) There is a dense Lie H-foliation on F such that :
1 ] The fibres of ware the adhervences of the lecves of F.

1 1) The foliation induced by F on a fibre F of 7 13 tsomorphic to the
H-foliation on F.

H is called the structural Lie algebra of (M, F), 7 the basic fibration and W
the basic manifold.
- We shall also use the relation between the basic cohomology and te cohome-
logy of the Lie algebra §. In particular it is proved in [§]

Theorem A. Let F be an unimodular Lie G-foliation on e compact manifold
M. Then the Lie algebre G is unimodular,

Theorem B. Let F be o Lie G-foliation with codim F = 1. Then F is
vnimodular if and only if G s unimodular and the structural Lie algebra H is
also unimodular.

We shall be concerned with one dimensional Lie foliations, in particular with
homogeneous Lie fows:

Definition.

A Lie G-flow F on a compact manifold M is an homogeneous Lie flow if
there 13 @ Lie group H and a discrete uniform Lie subgroup H, of H such that
M = H/H, and there i3 a I-dimensional normal subgroup K of H such that
the leaves of F are the orbits of the left aciion of K on H.
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Theorem C. (cf (6]} Let F be an wnamoduler Lie flow with Lie algebra .
Then F is homogeneous if and only if the Euler class e(F) € H2(M/F) belongs
to HX(G).

Finally, we recall the clasification of the 3-dimensional Lie algebras:
i) G, the abelian Lie algebra.
1) Gy, the Lie algebra of the Heisenberg group.
i} Ga, SO(3)
) Gy, S1(2)
v) G5, AG R where Ais the aﬁne 2 dlmensmnal Lle algebra.
For the remainder ones we give the produet
vi) Gs, [e1.62] = 0, ley,e3) = ey, [ea, €3] = €1 + 2.
vil) Gr, [e1.e2] =0, [e1,e3] = €1, [ez,e3l = key + 22, 0 £ kER.
an) Gs, [81,82] =0, [81,63] = €2, [62‘83] = —e; + hey, hER, ht < 4,

2. Unimodular Lie flows

In this section, F will denote a G-Lie flow and X a unit vecter field tangent
to F . :

Proposition 2.1. LetF be a codimension n Lie flow. Then F is vnumodular
if end only if there exst n foliated vector fields Vi, ..., Y, which define a Lie
parvallelism and such thai [V, X =0 fori=1,...,n

Proof: .

If F is unimodular X generates a group of isometries with respect to a
Riemannian metric g. We choose a transvers parallelism Y3, --- , Y, orthogonal
to X. The Lie bracket [X, Y]] is then at the same time tangent and orthogonal
to X, ie. [X,Y;] = 0. Reciprocally, if there exist ¥),...,Y, correspondig to
a transverse Lie paraliclism with (X, Y} = 0 Vi. Let 6,8%,...,6" be the dual
basis of X, ¥),....¥,. The above assumption is equivalent to that 48 is a basic
2-form:

ixdB(Yi} = X6(Y:) - Yif{X) - 8[X,Yi] =0
If F i1s not unimodular, the n-form .
w=8 A A8
must be exact as a basic form, i.e. there exisis a (n— 1)-basic form « such that
w = de.

The volume element 5 of M corresponding to the given basis of 1-forms
8,6, ...,8" is such that .
n=8Aw=0Ada=dlAa)—diAa.

Observe that df A & = 0 because is a. (n + 1)-basic form. :

So we obtain that the volume element of & 1s an exact form. This is not
possible, ®
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 Proposition 2.2. Let F be an unimodular G-Lie flow. Then there are equi-
valent:

) efFy=0

1) There exssi foliated vector fields Yi,...,Y, correspondig fo a given Lie
parallelism Yy,...,Y, such that for the dual basis 6,8%,... 6" of X,
Yi,..., Y, the I-form 8 is closed.

Proof:

i}= i) Assume that X is a Killing vector field for a Riemannian metric g. If e = d8,
where f is a basic 1-form we can modificate g and the parallelism in the
following way:

§=9-(x®B+F®x) (x=ixg}
Y =Y+ B(Y)X

Then we have dix g} = 0 and ‘§(X,):}) ={ie ix§= 8 where 8,8, .87
is the dual basis of X,Y,,...,Y,. This proves i)=3 ii}.

1n)=r 1) We can consider that the tangent field X penerates a group of isometries
with respect to a Riemannian metric g (cf. [B]).

The one characteristic form ¥ = ixg can be writien

(1) x=6+ Zg(x,y,-)ai.

i=1

All the functions g(X,Y;)} are basic.In fact as we can choose the vector fields
Y,, corresponding to the class Y; such that [X,¥]] =0fori=1,...,n and
Lxg =0 we have:

=Xg(X,Y).

Thus the 2-form @ = ¢(X,Y;})8" is a basic form. Differentiating in {1)

1=1

dx = 8 + df = dB,
s0 e F) = [dy] = [d8] = 0 in HX(M/F). m

Theorem 1. Lei F be an homogeneous Lie G-flow. Then F i3 unimodular
if and only if G is unimodular.

Proof:
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One implication is the Theorem A.

Assume that ¢ is unimodular. Let {}71 s Yol bea transvers Lie parallelism
of F. Since F is homogeneous the Lie brackets are

[YhYJ‘] = ZC:}YL + a,-}-X
k=1
¥, X]=8X

where all the coefficients ¢f;,

the transverse parallelism.

ai;,b; are constants, for suitable representants of

By Proposition 2.1 it suffices to prove that & =0fori=1,...,n.
The assumption that G is unimodular implies that for all ¢

Ly‘.w =0
In fact, Ly,w is an n-basic form and
Lyw(Y,.. ., Yy) = diyw(Yy,...,Ya) =0

because the differential of every (n — 1)-form on an unimeodular Lie-algebra G
is zero.

Thus
Lywa 8=10
but
O=LywAf=Ly(wA®)—wALlyl=4divi(n)—whnrbb
Then

bt"q = di‘y‘.?'}.

If &; was not zero then 5 will be exact. This is not possible because 7 is a
volume element on the compact manifold A/. &

3. Contact Aows and Euler class

Recall that a contact flow F is a flow generated by a vector field X associated
to a contact form £, 1.e.

txf=1ixd8 =0 and A{dY* # 0 everywhere,

with n = codim F.

Saralegui proves in ([9]) that a contact flow F is unimodular. The results in
the above paragraph enable us to give a shorter proof of this fact in the case
of Lie flows.
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Proposition 3.1. If F is a contact Lie flow, then F 1s unimodular.

Proof: Let & be the contact form associated to X.
Ussing the same notation as in the proof of Theorem 1 we have

dé = an&,-a AE 4 Za,-js"'/\si.
t= 17

Assume that F is not unimodular, then there exists b; # 0 (¢f. proposition
2.1). This is not possible because

ixdd =) b8 £0. m

=1

Definition 3.2. A foliation FL of codimension n transverse to F is called
complementary Riemannian foliation of F if there ezisls & Riemannian metric
on M such that is bundle-like with respect the two foliations F 1 F=L.

Proposition 3.3. Let F be an unimoduler Lie flow on g compact manifold.
Then there are equivaleni:
) e{F)y=0.

i¢) There exists ¢ complemeniary Riemannian foliction of F.

Proof:

i)= ). If e(F) =0 one can find a Lie parallelism X, Y7,..., ¥, such that in
the dual basis 8,8, ..., 8" the differential d# is zero.

Since F is unimodular the b; coefficients are zero and we have

8= aub O,
1,3

then df = 0 implies a;; =0 for all,j =1,...,n.

This condition means that ¥7,...,Y¥, define a foliation transvers to F.

Now, we have to find a g such that is bundle-like with respect the two folia-
tions.

Let g be a metric for which X is isometric and ¥; are ortogonal to X. It
suffices to prove that

1) Xg(¥o, V) = o([X. YiL. Y) + o(Ya IX, Y51 a5
(2) Yig(f X, hK) = g{lYs, f X}, RX) + o(FX, [V, X)) Vi

The condition {1) is true because X is Killing; (2} is immediat.
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u)=> i) U F admits a complementary Riemannian foliation, then there
exists a Lie parallelism {¥,,..., ?u} such that the distribution ¥,,... ¥, is
integrable for a suitable representants of {¥;} de {¥;}.

To see this, let F+ be the complementary Riemannian foliation.

With the metric g we project over the Z;-plane the vector fields Y;, correspon-
ding to the given transverse Lie parallelism, and we obtain the decompos:tlon

V=Y +YVN =¥+ 20X,

where A s a function.
The vector fields Y are foliated and independent:

[Y, X] = [Vi — A X, X] = [V, X] + X(A\)X € TF.

0=) w¥i= Z,u(y A X) :>O—Z;£‘Y::>p,—0 Vi,
— 1=1
Then Y} define a distribution which is clearly integrable by construction.

We shall prove that the transverse parallelista given by these foliated vector
fields is a Lie parallelism:

[,V = ) ciYe = (VP + AKX Y + 4,X] = Y &Y+ uX —
k=1 k=1

—= VLY )+ TF =) Y+ TF.

1Y
k=i

So

RSP 4y
is a Lie parallelism.
Since in [Y, Y]] there is no part tangent to F, we have
oty k
LY = T eyl
k=1 ’

Let 6,8%,...,8" the dual basis of X,Y{!,... ¥}, then

dé =0.

This is equivalent to e{F) = 0 (cf. Proposition 2.1). R

The following result relates the annulation of the Buler class with the exis-
tence of a contact Lie flow.
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. Proposition 3.4. Let F be a contact Lie flow. Then the Euler class e(F)
s not zero.

Proof:

Assume that e{F) = 0, then there exists a transverse Lie parallelism such
that d8 = 0; this implies that the corresponding coefficients a;; are all G,

Let o be the contact form associated to X. In this case da is a 2-basic form.
But

do(Y;, Y;) = Yia(Y;) - YialYs) - (Y0, Y5)) =

k=1

Then da = 0 1s not 2 contact form, this 1s a contradiction. #

Theorem 2. Let F an unimodular Lie flow on o compuct manifold of di-
mension 3. Then there are equivalent:

i) e(F)Y#0.
i) F 13 a contact flow.
1t} F does not admit any complementary Riemannian folistion.

Proof:

Since i) &> #i) 1 41} =1} are true for arbitrary dimension of M {cf. Proposition
3.3 and 3.4}, we have only to prove i) =ii).

Assume that F does not admit any complementary Riemannian foliation
then '

[Yl,Yg‘] = C%gyl + C?zY‘z + a12X

with a2 # 0.

The differential form # is a contact form:

A6 =56 A8 + b6 NG F aya8* AG°

80

BAdE=a 8 AG'AG £0. |

4. Lie flows of codimension 3

The existence of a Lie flow on a compact manifold M is a very strong con-
dition. The structure of the transverse Lie algebra determines in general many
properties of M. As a first step in the study of this relations we restrict our
attention to Lie flows of codimension 3. In this manner we can use the classi-
fication of the 3-dimensional Lie algebras to study separately each case.

For instance, if the Lie flow is modeled on the abelian algebra we have:
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Theorem 3. Let F be a Lie flow of codimension § on a compact menifold
M, transversely modeled on the abelion algebre G. Then we have:

i) dim HY(M;R) = 3 {and the leaves of F are the fibres of a non—irivial
S —bundle over the torus T3},

or
ii) dim HYM;R) =4 (and M is the torus T*)

Proof: Since F is a Lie foliation we have the holonomy representation
A IL{MY — A(IL{M)) = I € &, (cf[2]) where G is, in this case, the
connected simply connected group associated to the abelian Lie algebra g, i.e.
G = R® with the standard addition. I is the holonomy group of F.

Ashlzyz 'y ') =0, hinduces h: HY(M;Z) — T,

On the other hand, the generalized Gysin sequence of a Riemannian flow,
introduced by G. Hector in [5], gives

0 — BN M/F) — HYM;R) - H3(M/f) 2 HYM/F)

Since H¥(M/F) = 0 or R (cf.[1]), we have dim HY(M;R) = dim HY{M/F)
(ifim f = 0) or dim HY{(M;R) = dim HYM/F)} 4+ 1{ ifim f # 0). But the
basic cohomology H*(M/F) coincides with the cohomology H*{G} of the Lie
algebra G when T is a normal subgroup of G (¢f.[6]). In our case, as G is abelian
this condition is trivially fulfilled and we have H*(M/F) = H*{(G) = R*. This
implies dim H!(M;R) = 3 or 4. We study separately these two cases.

i} If dim HY{(M;R) = 3, HY{(M;2) = 2* + T, where T is the torsion part
of H'(M;Z). Then

T = (I, (M) = MIL(M)/ <xyz™'y™' >)= (B (M;T)) =
= h(Z® + T) = }{Z%),i.e T is generated by A(1,0,0), A{0,1,0) and h(0,0,1).

As R¥/T = M/F is compact, the vectors e; = A{1,0,0}, e = A(0,1,0)
and e; = £(0,0, 1} are linearly independent. So I is a discret subgroup
of R, In particular F is a compact foliation and the basic manifold is
T3,

#1) The case dim H*(M;R) = 4 occurs only when H*(M/F) =R, ie Fis
an unimodular Lie Aow. For these flows the map ¢ in the Gysin sequence
is the multiplication by the Euler class e(F). As f is exhaustive, e{F)
must be zero. This implies {¢f.[6]) that F is an homopeneous Lie flow
for the Lie algebra G + R, that is A = H/H, where H is the connected
simply connected group associated to the Lie algebra G + R and Hy is
a discret subgroup of H. As G is abelian, M = T* as stated. B

In [2] it 1s given one example of a Lie flow of codimension 3 transversely
modeled on G, and structural Lie algebra of dimension 1. This example is not
unimodular, i.e. H3{AM/F) = 0. -In fact every example of this situation has
this property. ' :
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Proposition 4.1. Let F o G;-Lie flow of codimension 3 with § = S{2) and
structural Lie elgebra H of dimension 1. Then F is not unimodular.

Proof:

The assumption that F is unhmodular implies that the transverse central
sheaf admits a global trivialization. That is we can find a global foliated vector
field ¥ such that Y is in the center of { M, F).

Let ¥7,Y,,Y: be the foliated vector ficlds such that their Lie bracket is
", Yz = Y5, [¥2,Yh) = 1, [¥5,. 1)) = Ya.
There exist basic functions fy, f;, fs and a function f such that
Y=hHWh + Y+ fiYa + fX

From the condition [¥;, Y] € TF we obtain the following systems of equations:

1 =1 =2 t=23
nif)=0 2{h)=h () =—fa
Wifa)=FH Yo(fz) =90 alfr)=-h
ifi)=-1a Yao(fa) = A Yi(f2) =10

Derivating the system ¢ by the vector field ¥; we obtain

{Ylyl(f2}:"f2 {Yz}’:z(fl)tfi {Y3Y3(fl):f1
Y Whi)=—f YaYo(fs) = £ Y3Y3(f2) = Fo

Since M is compact the function f; will take maximum and minimum value

Let p be the point where f; takes the maximum value, and let ¢, be the
mtegral curve of Y3 passing through p.

The condition Y3{f,) = ~ f» imphes that f3(p) = 0.

As the manifold M is compact, these vector fields are complet and the restri-
ction of f to the integral curve of ¥3 passing through p gives the one variable
differential equation:

]
& =X

with mitials conditions xp = fo{p) = 0,25 = V3( ) = - fi(p).
If fi{p) # 0 then the solution of the eguation is not bounded, but f; must
be bounded because it is defined on a compact manifold.
Analogously, i ¢ is a point where the function f; takes the minimum value
then fi{g¢)="0. '
Hence, f; is constant equal zero. This means that f = ¥3{(fi) =01 f3 =
Y2{(f) =0 :
" Then the vector field Y™ is tangent to F and it can not give a trivialization
of the transverse central sheaf, which is a contradiction. W

If the flow is modeled on G; or (7 we have:
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Theorem 4. Let F be a Lie flow of codimension § on e compuct manifold
M, irensversely modeled on Gy or Gg{h # 0) and structural Lie algebra of
dimension 2. Then dim H'(M;R) = 1.

Proof: It is easy to see that every 2-dimensional abelian subalgebra of G or
Gs is an ideal. It follows from this (cf.{6]) that for every Lie flow on a compact

manifold M transversaly modeled on G; or G5 there is a transverse parallelism’
Y;, Y5, Y3 on M such that

[71,7a] = 0, [Th, V] = 71, (Yo, Va] = k¥% for Gr and [T4, %3] =0, [74, %] = o,
[¥2,¥3] = ~¥) + hY; for Gs, with Y; and Y, tangent to F everywhere
On the other hand every basic closed 1-form # can be written as
6= 160 +g6° + h&®

where §°,0%,6%,8% 15 the dual basis of X, ¥;,Y,,¥: (X the generator of the
flow) and f, g,k are basic functions.

Next observe that since Y)(f} = Y2(f) = 0 (and the same for ¢ and h} we
have

0=di(Y;,Y3) = ~Yo(f) - f— g
0= db(Ys,Ys) = ~Y(g)~ f— ¢

This system of differential equations can be interpreted now as a system on
the basic manifold 5.

For G; we have

f'=-f
g =—kg
and for Gy
' Jl=-g
g =Ff—bhg

Thus in both cases we obtain f = g = 0. (i h = 0 the second system has
non trivial periodic sclutions, but this case is not considered here).

Thus every basic closed 1-form 8 can be expressed as § = k- 6%, As 8 is
projectable on the basic manifold S* we have k- 6° = §* + da where a is & basic
function on M. Thus dim H!(M/F) = dim HY{S};R)=1.

On the other hand, it is proved in [4] that in the hypothesis of this Theorem,
k ¢ . In particular k£ # —1 and hence G; and G (h # 0) are not unimodular,
This implies that the flow F is not unimodular (cf.[6]), 1.e H3}{M/F) = 0.
Using now the generalized Gysin sequence

0 — HY{M/F} — HY{M;R) — H¥M/JF)
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we obtain dim H'(M;R) = dim H'(M/F)=1. &
Finally we relate the annulation of the Euler class with the existence of a
natural complex structure on M. Recall that a unimodular Lie flow rmust be

{ransversely modeled on a unimodular Lie algebra. As we are in codimension
3 the only possibilities are G;,02,G3,G4,Gr(k = =1}, Ge{h =0). W

Theorem 5. Let F be an unimodular G Lie flow of codimension § on 4
compact manifold M. If G # Gk = —1) end e(F} = 0, M 15 a complez
manzfold.

Proof: We know (cf. Proposition 2.2) that there are independent vector fields
X, Y1,Y2, V5 such that X is tangent to F,{Y;,Y2,Y3} is a tranvers parallelism
on M with (X, Y;] = 0and [¥;,¥;] = c:‘jl’}\-, where cfj are the structure constants
of G. .
 We define an almost complex structure J on M by JX = Y1, JY; = =X,
JY, =Y,, JY; = -¥,

QObviously J2 = — id.

The torsion of J is given by

NY,Zy=[JY, JZ) - 1Y, 2] - J|JY, 2] — J{Y, T Z]
Computing it on X, Y], Y2, Y2 we obtain

N(X. 1) =[JX, T0] - [X. "] - J[JX, Y]

— J{X,JYi]
=%, =X} - (X, 7] - J[V3, 1)~
- J[X,~X]=0.

N(X,Y2) =[11, V3] - [X, Y2l — J[VA, Y2
- J[X? Y3}
= ["1,Y3] — J[13, V3]

Analogously

N(X,Y3) = -J([1,13] = J[In, ]}
NI, 1) = - J([11, V3] = J{"h, Y2}
NI, Ys) = =1, Vs3] + J[Y1, 12
N(Y,,Y3) =0

Hence N = 0 if and only if [¥3,Y¥;] = J[¥],Ye]. But for ¢, and §» we have
[¥1.Y¥2] = (¥1,Y3] = 0 and for G; and G; we have [}1,Y3]) = Y3, Y1, Y3] = -Y,.
For Gg(h = 0} one must modify a little the definition of J. In fact, if we
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put JX = ¥;, J¥; = -X,JY, = ¥}, JY; = -Y; the integrability condition
becomes [¥3,Y;] = —Y; and [¥3,¥2] = Y; which is certainly satisfied. So in all
these cases {the only ones considered in the Theorem) J is integrable, i.e. M
is a complex manifold.

Remark 1. As H%*(G3) = H?*{G,) = 0 the condition e(F)} = 0 is always
satisfied in these cases if F is homogeneus.

Remark 2. If ¢ = §,, M is a complex torus. In fact in this case for each
vector field ¥ on M we have

[2,JY) = J[Z,Y] where Z = X, Y},Y;, or V5
i.e. Z is an mmfimitesimal antomorphism of the complex structure. Hence
X—iJX=X-i¥

and

Y,—ilJYe =Y —t}a

are holomorphic vector fields on M. As they are C-independent in each point
they give a complex parallelism on M and M is a complex torus,
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