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POLYNOMIAL IUNGS OVER JACOBSOÑ-HILBERT
RINGS

Abstract

CARL FAITH

All rings considered are commutative with unit. A ring R is SISI (in
Vámos' terminology) if every subdirectly irreducible factor ring R/I is
self-injective . SISI rings include Noetherian rings, Morita rings, and
almost maximal valuation rings ([Vil) . In [F3] we raised the question of
whether a polynomial ring R[-1 over a SISI ring R is again SISI . In this
paper we show this is not the cace .

1. Introduction

The counter-example to the above is provided by the theorem below proved
in 0.

1 .0 .

	

Theorem. For every field K and local injective module E of K[x]
(= the injective hull of a simple k[x]- module, the split-null extension A =
(K[x], E) is subdirectly irreducible, and a factor ring of R[x], where R is the
split- null extension (K, N) and N is any vector space over K of dimension
not less than ¡ha¡ of E .

By Example 3.4B, R is SISI, but R[x] is not. (See f4 for the proof.)
This leaves open the question : Is R[x]SISI for aVámos, or even Morita, ring

R?. We also settle another question raised in [F3] by showing that not every
SISI ring is "Monica" . To define this term, we need two other concepts : (1) an
ideal I of co-subdirectly irreducible (= COSI) if R/I is subdirectly irreducible
ring ; (2) an ideal I of R[x] is monic if it contains a monic polynomial 7É 0
(equivalently, R[x]II is a finitely generated canonical R-module.)

In connection with (2), we first remark:

1 .1 . Theorem. R is a Jaco bson-Hilbert ring if every maximal ideal of R[x]
is monic.

The necessity is stated as an exercise in [K].
Now define Monica ring to a ring R such that every COSI ideal of R[x] is

monic. As a corollary to Theorem 1 .1, we prove:
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1 .2 . Theorem. A Noetherian ring R is Monica iff R is Jacobson-Hilbert .

Since any Noetherian ring R is Vamosian (see J3), hence SISI, this shows
these rings need not be Monica . (Cf. Theorem 6.1 which asserts that Von
Neumann regular rings are Monica)
We call a ring R an H-ring (after Camillo) if every factor ring modulo a

COSI ideal is a local ring . Obviously any SISI ring is an H-ring . Moreover:

1.3 . Theorem. A Jaco bson-Hilbert ring R is Monica if R[x] is an H-ring.

In Theorem 1 .0, R is trivially an H-ring (since R is local) but R[x] is not
(since A is not a local ring). See Theorem 2.5 for a proof of Theorem 1.3 .
Every Morita ring is 1.c. (See J3.) A conjecture of Zelinsky-Mueller-Vámos

(ZMVC) is that every I .c . ring R is Morita . In [F5] we prove that ZMVC is
equivalent to the assertion that every 1 .c . ring is SISI.

2 . Proofs of Theorems 1 .1 and 1.2
A domainR is a G-domain if its quotient field K= Qc(R) has the equivalent

properties :
(G-1) K = R[ai , . . . , an], for finitely many elements al ,- . . , an
(G-2) K = R[a], for some a E K.

An ideal I is a G-ideal iff I satisfies the equivalent properties :
(G-A) R/I is a G-domain
(G-A) Some maximal ideal M of R[x] contracts to I.

Let radA denote the Jacobson radical of A for any ring A, Le . the intersection
of all maximal ideals of A. An ideal I is a J-ideal if the e.c .'s hold :

(1) rad (R/I) = 0
(2) I is an intersection of maximal ideals .

Let nil rad R denote the maximal nil ideal of R, Le .
nil radR = {a E R 1 3 n a' = 0}

If I is an ideal, then -,II- is the classical radical of I, namely the ideal such that
,ñ-II = nil rad (R/I).

R is a Jacobson-Hilbert ring if R satisfies the e.c .'s :
(J-1) Every G-ideal is maximal
(J-2) t/ ideals I, ~íI- is a J-ideal, Le .

/I = nil rad R/I = rad R/I
(J-3) Every (semi) prime ideal is a J-ideal
(J-4) Every G-ideal is a J-ideal
(J-5) For all maximal ideals M of R[x], M n R is a maximal ideal of R.

See, e.g., [K], or [G] and [Kr] . (A Jacobson-Hilbert ring is called a Hilbert
ring in [K], and Jacobson ring in [Kr], and in Bourbaki .)



POLYNOMIAL RINGS

	

87

2.1 . Proposition. A maximal ideal M of R[x] is monic iff M coniracts to
a maximal ideal of R.

Proof. Let Mo = M fl R be maximal in R. Now M _D Mo [x], and M
Mo[x] that is, Mo[X] is not maximal in R[X], since

so

that is,

S = R[x]lMo[x] .z R/Mo [x]

a polynomial ring over a field ; thus MIMO [x] is a monic ideal of S, hence M
is monic in R[x] .

Conversely, let M be a monic ideal of R[x] . The domain R = R/Mo embeds
canonically in the field A = R[x]/M . Let

P(x) = x ,'+1 _ aoxn _ . . . _ an E M

be a monic polynomial with a; E R.

	

For 0

	

d E R, p(d*) E M where
dd* - 1(modM), Le . d* = dl ; hence

d-(n+1) = ixod-n + . . . + an

1 = (ao -+- . . . + andn)d ( mod M)

d-1 =Ch-+- . . .+úndn E R

so R is a field, hence Mo is maximal, as required .
We say that a ring R is a maxmonica ring if all maximal ideals of R[x] are

monic.

2.2 . Theorem. A ring R is a maxmonica ring iff R is Jacobson-Hilbert .

Proof.. By J-5 and Proposition 2.1, any Jacobson-Hilbert ring is a maxmo-
nica ring . Conversely, if R is maxmonica, every G-ideal of R is maximal by
the proposition, i.e . R is Jacobson-Hilbert (J-1).

2.3 . Theorem. A Noetherian ring R is Monica iff R is Jacobson-Hilbert .

Proof. One way by the last theorem. Conversely, if R is Jacobson-Hilbert,
and I in R[x] is COSI, then A = R[x]/I is QF (since Noetherian rings are
SISI by [V1] ; also see 3.3B below in f3), hence A is Artinian with nilpotent
radical M/I. ThenM is a maximal ideal = v"I-, soM monic implies I monic.



2.4 . Proposition. IfR is a local Jacobson-Hilbert ring with radical J, then
an ideal I of R[x] is contained in jusi finitely many maximal ideals (equivalenily
I is co-semilocal) if I is monic .

Proof. If k = R/J, then k[x] is a principal ideal domain, and hence every
nonzero ideal is co-semilocal in fact co-Artinian. Since k[x] = R[x]/J[x], the
same is true for any ideal K of R[x] containing J[x] properly. Now every ma-
ximal ideal of R[x] containing I also contains I+J[x], which properly contains
J[x] if I is monic, so there are only finitely of them .
Thé converse does not use the local ring hypothesis . Since R Jacobson-

Hilbert implies that R[x] is Jacobson-Hilbert, if R[x]/I is semilocal, then -'í7/I
is the intersection of just finitely many maximal ideals {Mi/I}

	

1 , so ~íI- =
n

	

,Mi contains the product H

	

jM¡. But each Mi is monic by Theorem 1 .1,
hence IIT l Mi whence vII-, whence I is monic.

2.5 . Theorem. The f.a.e .c .'s on R:

(1) R is Jacobson-Hilbert
(2) Every ideal I of R[x] contained in a unique maximal ideal is monte.
(3) Every ideal I of R[x] contained in just finitely many maximal ideals is

monte.

Proof- (1)x(3) by the proof of one part (the converse) of the last theorem,
and (3)>(1) by Theorem 1.1 . Similarly, for (1)<-(2) .
A corollary of Theorem 2.5 is Theorem 1 .3 (See Proposition 5.4 .)

3 . Morita, Vamosian, and SISI Rings

A ring R is Vamosian, or a Vámos ring, provided that the injective hull
E(R/M) is linearly compact (l .c .) in the discrete topology for all maximal
ideals M. See [V1] and [F3] for background, and the basic theorems. We list
a few of these:

3.1 . Locally Noetherian rings, Le . RM is Noetherian for M E maxR (see
[Vl]). Any polynomial ring R[x] is then locally Noetherian ([F3]) . The basic
facts haxken back to Matlis' classic paper [Ma] .

3 .2 . Morita rings, Le . both R and the minimal injective cogenerator E over
R are l.c . R-modules (Mueller [Mu]) . An equivalent formulation:

R = EndRF

canonically, where Fis an injective cogenerator of mod-R (Morita [Mol). Then
there is a Morita duality induced by HOMR(, F) on the l .c . R-modules. If RM
is Noetherian, then A = EndRE(R/M) is l .c ., and HOMA(, E(R/M)) induces
a Morita duality on the l .c . modules ([Ma],[Mo] and [Mu]).
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3.3A. A ring R is right PF provided Ris an injective cogenerator as a right R-
module, equivalently, Ris right self-injective, and has finite essential right socle.
Then, by Morita's theorem, there is a Morita duality, induced by HomR(, R),
when R is a 2--sided PF ring .

3.313 . The QF (= quasi-Frobenius rings are the Artinian (or Noetherian)
right (or left) self-injective rings . Every QF ring is right and left Artinian and
right and left PF; and conversely a left or right Artinian or Noetherian right
or left PF ring is QF. (See, e.g . [F2], Chap . 24 ff.)

3.4A . Theorem (Vámos). Morita rings are Vamosian, and Vámos rings
are SISI, but not conversely .

3.413 . Example (Vámos [Vl]) Let R be any local ring with square-zero
radical N. Then, R is SISI, and f.a .e . :

(1) R is Vámos
(2) R is Morita
(3) dirnRINN < oo .

Proo£ This is essentially in [V1] . If I is COSI in R, then either I = N or
I C N. In the latter case N/I must be simple, so AlI is Artinian of length 2.
Now any semilocal Vamosian ring has finite uniform or Goldie dimension [V1],
hence R is Vámos (Morita) if (3) holds.

3 .4C. By [V1] and [F3], R is locally SISI iff Every local endomorphism ring
(= EndRE(V), where V is a simple R-module, and E(V) is its injective hull)
is commutative.

4 . Proof of Theorem 1 .0

A subdirect irreducible (injective) module is an (injective) module E with
simple essential socle V. In case E is injective, then E = E(V) is a local
injective module ([F3]) .

Proo£ Theorem 1.0 is one of those increasingly familiar theorems in which
the statement contains the proof (practically) .
Any injective module E over a ring T is divisible by all regular elements of

T, hence for a domain T = K[x], E is divisible . This implies that (0, E) is a
waist in A since if (a, x) E A, and a qÉ 0, then

(a, x)(0, E) = (0, aE) = (0, E) .

Since E is subdirect irreducible, this implies that A is also .
Let c be a cardinal of a generating set for E over K[x], let F be the free

K[x]-module on c letters, so there is an exact sequence of K[x]-modules

(3.5 .1)

	

0 �+ I-> F-+E->0.
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Note that if N = L( ` ) , the direct sum of c copies of K, then

(3.5 .2)

	

F= K[x](°) :::i K(°)[x] = N[x] .

NowN is a K-module and the split-null extension R= (K,N) has the required
property, namely, there is a ring epimorphism

for o¡ E K, ni E N,¡=0, . . .,t < oo.

R[x] -+ A.

We use without proof the fact that there is a ring isomorphism

R[x] ^ (K[x], N[x])

Ei-0(«i, ni)
h t

	

txt

	

Zi-0 «ixt , J:i-o nixi

Then, we use the ring homomorphism

(K[i], N[x]) --, A= (K [x], E)
(fi(x),f2(x)) -f (fl(x),f2(x»

where fi(x) E K[x], f2 (x) E N[x], and f2(x) maps onto f2 (x) under the K[x]-
module homomorphismN[x] -a E defined by (3.5 .1) and (3.5 .2). (Hint: use the
fact that f(x)g(x) = f(x)g(x) for f(x) E K[x] and g(x) E N[x], Le. N[x] ---> E
is a K[x]-module homomorphism.)

Finally, sinceA is not a local ring (also not self-injective), then R[x] is neither
a SISI, nor H ring.
We proof a partial converse of Theorem 1 .0 .

4.1 . Theorem. If I is a non-monic COSI ideal of a polynomial ring R[x]
over a Jaco bson-Hilbert local ring R, then I C N[x], where

N = radR = nil radR.

Nexi assume N2 = 0.

	

Then A = R[x]II is the trivial extension (K[x], E)
where

E= N[x] = N[x]II

is divisible, hence injective, whence local injective K[x]-module.

Proo£ A Jacobson-Hilbert local ring R has nil Jacobson radical since the
nil radicalN must be the (intersection of the) unique maximal ideal. Then f
contains N[x], and since

R[x]IN[x] i:~- RIN[x]



and RIN is a Monica ring, then v,'rI- = N[x], consequently I C_ N[x] . But
I :~ N[x], since N[x] is not COSI.
Now let N2 = 0. We first assume I(1R= 0. If 0 :~ ca E N, then a E I, hence

where V = soc A, and f(x) is the image of any f(x) E R[x], under the canonical
map R[x] -> A. Let V = (v), and write

for some g(x) E R[x]. If V ;::z~ R[x]/M, where M is maximal in R[x], then M is
generated modulo N[x] by a monic polynomial m(x), and henceM = (m, N[x]) .
Since N[x] 2 = 0, then g(x) 1 N[x] . Write

where
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v = «g(x)

9(x) = mtgi -I- h

(m, gl) = 1 (modulo N[x]),

and h E N[x], t > 0 . Since N2 = 0, then ah = 0, hence

Now rnv = 0, hence

v = ag(x) = ceftgl .

cxmt+l gl = 0 .

But the regular elements of A are those f(x) with f(x) 1 M, Le . gi is regular,
so ámt+i = 0, that is, á annihilates a power of tñ .

Expressed otherwise,

(1)

	

N zd N C Unol(mn)1

where f1 is the annihilator in A of any f E A.
It is easy to see that if Q D I is such that

then

Q = nmn,

Q=mQ=rrznQVn>0 .

This follows, since if q E Q, then

_
q = mal = m2 a2 = . . .

for suitable á ; E A, and then

1al - ia2 E m, .
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Since
V = M1 = m-L n N[x] 1 = m1 fl N[x] = m1,

is contained in every ideal qÉ 0 of A, the m1 C_ (ñ), so ái E (f) . By induction,
every_á; E (m), consequ_ently ái E (rrz')V; . This proves that al E Q, hence that

CQ

	

mQ, that is, Q = mQ, whence Q = rnnQV. .
Since I is not monic, mn 11 hence mn +I D_ I, so TYdn _D V`dn . Thus Q _2 V .

Let Hn = (f n)l . Then

Fi, =m1 =m1 nN[x]=M1 =V.

Suppose Hn C_ Q, and let ic E Hn+l . Then rnú E Hn C Q = mQ, so mu = mq
for some q E Q. Then h = ic - q E rnl = V C Q hence

ú=h+qEQ.
This proves that
(2)

	

H= U-n 1Hn C Q .
Now, by (1) and (2),

(3)

	

NCN[x]CHCQ.

And since N[x] is a prime ideal, it contains f1yf :~ 0 E A, so

(4)

	

H= N[x] C Q.
Since R[x]/N[x] = K[x] is a polynomial ring over a field, then

(1°°_1 (m') C N[x]
so

that is,

Moreover,

H=Q=n(fn)=N[x].
Now F = R[x]/Mis a field, and Hn+1/Hn is a vector space over F, hence
divisible by every 0 qÉ t E F, and therefore, Hf = H for every f E A/M . Since

H.n =Qmn =Q=H,
then E = N [x] is divisible by every 0 q£ f(x) E K [x] (using (4)) .
By the known theory of injective modules over a PID (see, e.g . [F1]), then

E is injective . Since E is subdirect irreducible, then E is a local injective
K[x]-module, and evidently A is the trivial extension (K[x], E).

This completes the proof once we remove the condition I f1 R = 0 : ifIQ =
I n R, then I D Io[x], and A = R[x]/I is an epic image of the polynomial ring

R[x]lIo[x] ^ (RlIo)[x]

A Pz:i (RlIo)[x]l(IlIo)[x] .

(Illo) n (RlIo) = 0.

Now RIZO is a local ring if R is, and also has square zero radical if R does .
The conclusion of the theorem is therefore valid for any COSI ideal I .
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4.2. Theorem. Le¡ R be a semilocal ring with radical J . Then R[x] is
SISI only if J/J2 is finitely generated .

Proof. R = RIP is a semiprimary ring, hence a finite product of radical
square-zero local rings, hence assume R is a local ring . Since R[x] is a factor ring
of R[x], then R[x] is SISI by [F3], hence theorem 1 .0 implies that dimRJ < oe,
Le . J/J2 is finitely generated . a

4.3 . Theorem . If R is a perfect ring, then R[x] is SISI iff R is Artinian .

Proo£ By a theorem of Osofsky [0] a perfect ring R is Artinian iff J/J2 is
finitely generated . By a theorem of Bass, a perfect ring R is semiperfect and
has radical J qÉ J2 . The theorem now applies to complete the proof.

A valuation ring R is discrete VR(= DVR) provided that R satisfies the
e.c .'s :

(DVR1) R is a Principal ideal ring (PIR)
(DVR2) R is Noetherian

In this case, nn ,,J- = 0 by the Krull Intersection theorem.

Remark. For conveniente below, we allow ¡he possibility that Jn = 0 for
some n .

4.4 Theorem . If R is a SISI VR, equivalenfy, an AMVR, and if J =
radR :~ J2 , then R[x] is SISI only if R is Noetherian, that is, only if R is a
DVR, where R = RIP, and P = n,,,,jn .

Proof. If follows from theorem 4.3 that R[x] is SISI iff RIP is Artinian .
Then R is a Noetherian VR, whence DVR, so J = xR for some x E R.

But, then x 1 J2 , hence xR D J2 , so J = xR.
This implies that R is Noetherian, whence a DVR.

4.5 . Example . Let R = (B, E) be the split-null extension of a DVR B and
the least injective cogenerator E over B. Then R is an AMVR, and R = RIP
is a DVR. Actually, in this case R is PF, by Theorem 2 of [F4] . Similarly, in
Theorem 4.4, we have the :

4.6 .

	

Corollary .

	

Under ¡he assumptions of ¡he theorem, if P :~ P2 , then
either

(1) pIp2 ^ QC(R)~ or
(2) E = pIp2 is the least injective cogenerator of R, and
R/P2 ti (R, E) is PF.

Proof. It follows easily from the theorem that P is divisible by pn for every
n, so pIp2 is divisible over R, hence injective . Since pIp2 is uniform, then
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P/P2 is indecomposable, and accordingly either torsion-free, or else torsion .
Then (1) holds in the former case . IF E = P/PZ is torsion, then it is the least
injective cogenerator over R.

Since R is Morita, then R = EndRE, so R zt; (B, E) is PF by Lemma 1 and
Theorem 2 of [F4] .

5. Polynomial rings over Morita rings

In this section we investigate R[x] for R a Morita ring. By a theorem of
Vámos [V1],[V2], if A is a ring extension of R, and if A is a 1 .c . R-module,
e.g ., if A is finitely generated R-module, then A is also Morita. This implies
that A = R[x]/I is Morita for any monic ideal I of R[x] .

5.1 . Theorem. 1 . If R is Jaco bson-Hilbert, and if a factor ring R[x]/I is
1.c . ring, then I is monic.
2. IfR is a 1. c. Jacobson-Hilbert ring, then for any monic ideal I, the factor

ring A= R[x]/I is 1 .c . as a ring.

ProoL Any 1 .c . ring is semilocal (in fact, semiperfect-see [S]) . Then, A
1.c. implies that I is monic by Corollary 2.3 . In this case R[x]/I is a finitely
generated R-module, whence l .c . as an R-module, whenever R is . (See, e.g .,
[V1].) The converse is trivial if A is 1 .c . as an R-module .

5.2 .

	

Corollary. If R is Jacobson-Hilbert, then for any ideal I of R[x],
R[x]/I is Morita only if I is monic.

	

This holds in particular, when R[x]/I i$
PF (or QF).

ProoL A Morita ring is 1.c . and a PF (also QF) ring is a Morita ring .
(Parí of the next result is Theorem 1.3 of the Introduction .)

5.3 . Proposition. For a Jaco bson-Hilbert ring R, consider the following 3
conditions :

(1) R[x] is SISI
(2) R[x] is an H-ring
(3) Every COSI ideal I of R[x] is contained in just finitely many maximal

ideals
(4) R is Monica;
Then (1) fq (2) <--> (3) => (4) and conversely ifR is a Morita ring .

ProoL Any SISI ring is an H-ring, so (1) => (2) and (2) => (3) is trivial .
Next, (3) ==> (4) by Theorem 2.5 .
Now assume (4) . By the introduction to this section, if R is Morita, then

A = R[x]/I is Morita, hence SISI for any COSI ideal I, and therefore self-
injective . Thus R[x] is SISI, so (4) => (1), assuming R is Morita .
Any Monica ring is Jacobson-Hilbert, so we also have :
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5.4 . Corollary. If R is a Monica Morita ring, then R[x] ás SISI.

6. Von Neumann regular rings are Monica

By a theorem of Kaplansky, a von Neumann regular (VNR) ring R has the
(chaxacterizing) property that RM is a field for each maximal ideal M, and
hence, as Vámos pointed out in [VI], is Vamosian, whence SISI (see f 3.1) .
Moreover, R is Jacobson-Hilbert since every prime ideal is maximal.

6 .1 . Theorem. Any VNR ring R is Monica .

Proof. R is Jacobson-Hilbert, and by 3.1 the ring R[X] is SISI, hence R is
Monica by Prop . 5 .3 .

A ring R is Prüfer (also called Arithmetical) iff RM is a VR for all maximal
ideals M. Any semihereditary ring is a Prüfer ring, since then RM is avaluation
domain (VD) for every maximal ideal.

6 .3 .

	

Corollary. A Prüfer ring R is SISI iff RM is an AMVR for all
maximal ideals M.

Proof. By [VI], R is SISI iff RM is SISI VM. By [F3], any SISI VR is
an AMVR, so the corollary follows.

6 .2 . Corollary. If R is a von Neumann regular (VNR) ring, then R[x] is
Prüfer and SISI, hence R[x]M is an AMVD for all maximal ideals M.

Proof.. Over a VNR ring R, the polynomial ring R[x] is semihereditary hence
Prüfer . Since R is locally Noetherian (in fact locally a field) then so is R[x], so
R[x] is SISI. (See f 3.1). Since R[x]M is Noetherian, it is a DVD . I have Dr .
P. Pillay to thank for noting this .

7. Open Problems

In this paper, we have shown that a polynomial ring over a SISI Jacobson-
Hilbert local ring need not be SISI, in fact need not be an H-ring . Does the
corresponding hold for Vámos or Morita rings? Also similar questions may be
asked for a 1 .c . R, Le . when is R[x]II also a 1 .c . ring, other than when I is
monic?

Characterize R such that all COSI (or maximal) ideals of R[x] are faithful .
These include Monica (maxmonica) rings .
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Note

Hilbert rings are so-called because of their connections with the Hilbert
Nullstellensatz (see [K] for a lucid exposition of Goldman's [G] and Krull's [Kr]
results .) Jacobson rings are named by [Kr] because of their characterizations
via the condition that the nilradical equals the Jacobson radical in a any factor
ring .
Some of these same ideas have been extended to polynomial rings over von

Neumann regular rings by Gentle [Gel . (Cf. Theorem 6.1 which implies that
VNR's are Monica rings .)
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