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POLYNOMIAL RINGS OVER JACOBSON-HILBERT =
RINGS

CARL FAITH

Abstract

All rings considered are commutative with unil. A ring R is SIST (in
Vamos' terminology) if every subdirectly irreducible factor ring RfJ is
self-injective. SIST rings include Noetherian rings, Morita rings, and
almost maximal valuation rings ([W1}). In [F3] we raised the question of
whether a polynomial ring R(x] over a SIST ring R is again SI5I. In this
paper we show this is not the case. . '

1. Introduction

The counter—example to the above is provided by the theorem below proved

in §4.

1.0. Theorem. For every field K and local injective module E of K|z]
{= the injective hull of a simple k{z]- module), the split-null eztension A =
{K|[z], E) ts subdirectly irreducible, and ¢ factor ring of Riz], where R is the
split— null extension (K, N) and N ts any vector space over K of dimension
not less than that of E.

By Example 3.4B, R is SIST, but R[z] is not. {See §4 for the proof.)

This leaves open the question: Is R[z]STST for a Viamos, or even Morita, ring
R?. We also settle another question raised in [F3] by showing that not every
SIST ring is "Monica”. To define this term, we need two other concepts: {1) an
ideal I of co-subdirectly irreducible (= COST) if R/I is subdirectly irreducible
ring; {2} an ideal I of R[z] is menic if it contains a monic polynomial # 0
(equivalently, Rfz]/I is a finitely generated canonical R-module.)

In connection with (2), we first remark:

1.1. Theorem. R isa Jacobson—Hilberi ring iff every mazimal ideal of Rjz]
i85 monic.

The necessity is stated as an exercise in [K].
Now define Monice ring to a ring R such that every COST ideal of R[z] is
monic. As a corollary to Theerem 1.1, we prove:
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1.2. Theorem. A Noctherian ring R i3 Monica off R 18 Jacobson—Hilbert.

Since any Noetherian ring R is Vamosian {(see §3), hence SISI, this shows
these rings need not be Monica. {Cf. Theorem 6.1 which asserts that Von
Neumann regular rings are Monica.)

We call 2 ring A an H-ring (after Camillo} if every factor ring modulo a
C'OS1I ideal is a local ring. Obvicusly any 5187 ring is an H-ring. Moreover:

1.3. Theorem. A Jacobson-Hilbert ring R is Monica if R[z] is an H~ring.

In Theorem 1.0, R is trivially an H-ring {since R is local) but R|z] is not
(since 4 is not a local ring}. See Theorem 2.5 for a proof of Theorem 1.3.

Every Moritaring is 1.c. {See $3.} A conjecture of Zelinsky-Mueller-Vamos
{ZMVC) is that every l.c. ring R is Morita. In [F5] we prove that ZMVC is
equivalent to the assertion that every l.c. ring is SIST.

2. Proofs of Theorems 1.1 and 1.2

A domain R is a G-domain if its quotient field K = @¢{R) has the equivalent
properties:
{(G-1) K = Rja,,...,aul, for finitely many elements a,...,a,
{(G-2) K = Rja], for some a € K.
An ideal T is a G—ideal iff T satisfies the equivalent properties:
(G-A) R/ is a G-domain
(G-A) Some maximal ideal M of R|z] contracts to I.
Let rad A denote the Jacobson radical of A for any ring A, i.e. the intersection
of all maximal ideals of A. An ideal I is a J-ideal if the e.c.’s hold:
(1) rad (R/I} =0
(2} I 1s an intersection of maximal ideals.
Let nil rad R denote the maximal nil ideal of R, i.e.

nil radR = {a € R |3,e" = 0}
If I is an ideal, then /7 is the classical radical of I, namely the ideal such that
VI/I = nil rad (R/I).
R is a Jacobson—Hilbert ring if R salisfies the e.c.’s:
{J-1} Every (G-ideal is maximal
(1-2) ¥ ideals I, /T is 2 J-ideal, i.e.

VI/I = nilrad R/I = rad R/I
{(J-3) Every (semi) prime ideal is a J-ideal
{J-4) Fvery G-ideal is a J-ideal
{J-5) For all maximal ideals M of Rz}, M N R is 2 maximal ideal of R.

See, e.g., [K}, or [G] and [Kr]. (A Jacobson-Hilbert ring is called a Hilbert
ring in {K], and Jacebsen ring in [Kr}, and in Bourbaki.)
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2.1. Proposition. A mezimal ideal M of Rfz] is monic iff M contracts to
a mazimal tdeal of R.

Proof: Let Mo = M N R be maximal in R. Now M 2 Mg[z], and M
Mo[z) that is, Mp[X] is not maximal ir R[X], since

§ = R[z]/Mo|z] = RfMolz]

a polynomial ring over a field; thus M/My[z] is a monic ideal of S, hence M
is monic in Rfz].

Conversely, let M be a monic ideal of R[z]. The domain R = R/Mo embeds
canonically in the field 4 = R[z]/M. Let

plz)=2" —apz® — - —a €M

be a monic polynomial with «; € R. For 0 # d € R, p{d*) € M where
dd* = 1{mod M), i.e. d* = d*; hence

d{nH) — God "+t @,

SO
1=(ag + + a&nd*}d( mod M)

that is,

d!'=édg+ -+ a&d" € R
so R is a field, hence My is maximal, as required. W

We say that a ring R is a maezmonice ring if all maximal ideals of E[z] are
monic.

2.2. Thecrem. A ring R is a mazmonica ring iff R is Jacobson-Hilbert.

Proof: By J-5 and Proposition 2.1, any Jacobson-Hilbert ring is 2 maxmo-
nica ring. Conversely, if R is maxmonica, every G-ideal of R is maximal by
the proposition, i.e. R is Jacobson—Hilbert (J-1). B

2.3. Theorem. A Noctherian ring R is Monica iff R is Jacobson- Hilbert,

Proof: One way by the last theorem. Conversely, if R is Jacobson-Hilbert,
and [ in Rjz] i1s COSI, then A = R[z]|/] is QF (since Noetherian rings are
SISI by [V1]; also see 3.3B below in §3), hence 4 is Artinian with nilpotent
radical M/I. Then M is a maximal ideal = v/I, so M monic implies I monic. ¥
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2.4. Proposition. If R is ¢ local Jacobson—Hilbert ring with radical J, then
an tdeal I of R[z] is contained in just fintlely many mezimal ideals (equivalently
I 1s co-semiocal) §ff I ta monic.

Proof: If k¥ = R/J, then k[z] is a principal ideal domain, and hence every
nonzero ideal is co-semilocal in fact co-Artinian. Since k[z] = R[z]/J(z], the
same is true for any ideal K of R[z] containing J[z] properly. Now every ma-
ximal ideal of R[z] containing I also contains I + J[z], which properly contains
J[z] if I is monic, so there are only finitely of them.

The converse does not use the local ring hypothesis. Since R Jaccbson—
Hilbert implies that R[z] is Jacobson-Hilbert, if R[z]/T is semilocal, then VIJT
is the intersection of just finitely many maximal ideals {M;/I}E;, so VI =
N?_, M; contains the product I}, M,;. But each M; is monic by Theorem 1.1,
hence II7_; M; whence VT, whence I is monic. W

2.5. Theorem. The fa.e.c.’s on R:

(1) R is Jacobson—Hilbert

{2) Every ideal I of R[z]| contained in ¢ unigue maximel ideal is monic.

(3) EBwery ideal I of R[x]| contained in just finitely many mazimal 1deals s
monic.

Proof: (1)=(3) by the proof of one part {the converse} of the last theorem,
and (3)=(1} by Theorem 1.1. Similarly, for {I)=(2). &

A corollary of Theorem 2.5 is Theorem 1.3 {See Proposition 5.4.}

3. Morita, Vamosian, and SISI Rings

A ring R is Vamosian, or a Vdmoes ring, provided that the injective hull
E(R/M) is linearly compact {1.c.} in the discrete topology for all maximal
ideals M. See [V1] and [F3] for background, and the basic theorems. We list
a few of these:

3.1. Loeally Noetherian rings, i.e. Rps is Noetherian for M € max R (see
{V1]}). Any polynomial ring R[z] is then locally Noetherian ([F3]}. The basic
facts harken back to Matlis’ classic paper [Ma].

3.2. Morite rings, i.e. both R and the minimal injective cogenerator E over
R are 1l.c. R-modules (Mueller [Mu]}. An equivalent formulation:

R = EndpF

canonically, where F is an injective cogenerator of mod—R (Morita [Mo]). Then
there is a Morita duality induced by Homng(, F'} on the 1.c. R-modules. If R
is Noetherian, then A = EndgE(R/M) is 1.c., and Hom4(, B{R/M)} induces
2 Morita duality on the 1.c. modules {{Ma],[Mo] and [Mu]).
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3.3A. A ring Ris right PF provided R is an injective cogenerator as a right R-
module, equivalently, A is right self-injective, and has finite essential right socle.
Then, by Morita’s theorem, there is a Morita duality, induced by Hompg(, R),
when R is a 2-sided PF ring.

3.3B. The QF (= guasi-Frobenius rings are the Artinian {or Noetherian)
right (or left) self-injective rings. Every QF ring is right and left Artinian and
right and left PF; and conversely a left or right Artinian or Noetherian right
or left PF ringis QF. {See, e.g. [F2], Chap. 24 ff.)

3.4A. Theorem {Vimos). Morita rings are Vamosian, end Viamos rings
are SISI, but not conversely.

3.4B. Example {Vdmos {V1]) Let R be any local ring with square—zero
radical ¥V. Then, R is $151, and f.a.e.:
(1) R is Vamos :
(2) R is Morita
(3) dimR;NN < 00
Proof: This is essentially in [V1]. If I is COST in R, then either I = N or
I € N. In the latter case N/I must be simple, so AfT is Artinian of length 2.

Now any semilocal Vamosian ring has finite uniform or Geldie dimension [V1},
hence R is Vémos (Morita) if (3) holds. W

3.4C. By [V1] and {F3], R is locally SISI iff every local endomorphism ring
{= EndpE(V}, where V is a simple R-module, and E{V} is its injective hull)

1s commutative.

4. Proof of Theorem 1.0

A subdirect irreducible {injective} module is an {injective) module E with
simple essential socle V. In case E is injective, then E = E(V} is a local
injective module ([F3]).

Proof: Theorem 1.0 is one of those increasingly familiar theorems in which
the statement contains the proof {practically).

Any injective module E over a ring T is divisible by all regular elements of
T, hence for a domain T = K|z], E is divisible. This implies that {(0,F)} is a
waist 1n A since if (g,2) € 4, and ¢ # 0, then

(a,2)(0, E) = (0,eE) = (0, E).

Since F is subdirect irreducible, this implies that A4 is also.

Let ¢ be a cardinal of a generating set for E over K[z], let F be the free
K|z)-module on ¢ letters, so there is an exact sequence of K{z|-modules

(3.5.1} 0o FoFES0
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Note that if N = L{¢) the direct sum of ¢ copies of K, then
(3.5.2) F = K[z)9 ~ K9z} = Niz].

Now N is a K-module and the split-null extension R = { KX, N} has the required
property, namely, there is a ring epimorphism

R[z] — A.
We use without proof the fact that there is a ring isomorphism
Riz] # (K[z], Nlz])
Z::ﬂ(a'l 1 n‘.)xi - [Zf:l} a‘.xi 4 E::U nix‘.]

for oy € K,n; € N,i=40,...,t < oo.

Then, we use the ring homomorphism

(h(=2), fola)) — (fi{2), fala))

where fi(2) € K|z}, f2(z) € N|z), and fa(z) maps onto fa(z) under the K|z]-
module homomorphism N[z] — E defined by {3.5.1) and {3.5.2). {Hint: use the
fact that f(z)g(z) = flx)g(z) for f(z) € K{z] and ¢(z) € N[z}, i.e. N[z} - E

is a K[z]-module homomorphism.}

{ (K[e}, N[z]) — A = (K[z], E)

Finally, since A4 is not a local ring (also not self-injective), then Rfz] is neither
a SISI, nor H ring. A

We proof a partial converse of Theorem 1.0.

4.1. Theorem. If I is a non-monic COST ideal of a polynomial ring R[z]
over a Jacobson-Hilberst local ring R, then I C N(z], where

N =rad R = ni rad R.

Nezt assume N? = 0. Then A = Rlz]/I is the trivial extension {K{z], E)
where

E = Niz] = Nlz|/I

is divisible, hence injective, whence local injective K{z]-module.

Proof: A Jacobson-Hilbert local ring R -has nil Jacobson radical since the
nil radical N must be the {intersection of the) unique maximal ideal. Then /T
contains N{z], and since

R{z|/N[z] =.R/N[z]
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and R/N is a Monica ring, then VI = N[z|, consequently I C Nfz]. But
I # N{z}, since N|z] is not COSL.
Now let N? = 0. We first assume INR = 0. If 0 # o € N, then o € I, hence

aRjz] D2V

where V = soc A, and f(z) is the image of any f(&) € R[z], under the canonical
map R[z] - A. Let V = (v), and write
v = ag(z)

for some g(z) € R[z). I V ~ R[z]/M, where M is maximal in R[z], then M is
generated modulo Nx] by a monic polynomial m{z), and hence M = (=, N{z]}.

Since N[z]2 =0, then g{z) ¢ N[z]. Write
g(z) = mig, + A

where
{m, 1) = 1 (modulo N[z]},

and h € Njz], ¢t > 0. Since N? = 0, then ah = 0, hence

Now v = 0, hence
amtlgr =0.

But the regular elements of A are those f(z) with f{z) ¢ M, 1.e. g7 is regular,
so am't1 =0, that is, & annihilates a power of m.

Expressed otherwise,
(1) N =N Cus,(mmt .

where f is the annihilator in A of any f € 4.
It is easy to see that if @ 2 T is such that

then

for suitable a; € A, and then

ay; —mas € mt,
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Since N
V=M!'=m*nN[z] =mtn N =mt,

is contained in every ideal # 0 of A, the Mt C (), so & € {). By induction,
every @; € (), consequently & € (/')V;. This proves that a, € ¢, hence that
Q € mQ, that is, @ = m@, whence Q@ = m"@QV,.

Since T is not monic, m™ ¢ I hencem"+I 2 I,s0 "™ 2 VV,. Thus @ D V.
Let H, = (m™)*. Then

H=mt=m'NNl=M"=V

Suppose H, C @, and let a € Hopr1. Thenma € H, S Q = m@, so w = My
forsome 7€ Q. Then h=u— g€ mt =V C Q hence

#=h+ qc Q
This proves that
(2) H= ;;.ozlgn c Q
Now, by (1) and (2},
3) NCFRCHCO.
And since N[z] is a prime ideal, it contains fL1Vf # 0 € 4, so
(4) H =N} CQ.

Since R[z]/N[z] = K|[z] is a polynomial ring over a field, then
o2y {m") € Nlz)
)
(5) =G =n(m") = Nl
Now F' = R[z|/M is a field, and Hunt1/Hx is a vector space over F, hence
divisible by every 0 # ¢t € F, and therefore, H f = H for every f € A/M. Since
Hm"=Qm"=Q =1,

then E = Njz) is divisible by every 0 # f(z) € K[z} {using (4)).

By the known theory of injective modules over a PID {see, e.g. [F1]), then

E is injective. Since E is subdirect irreducible, then E is a local injective
K[z)-module, and evidently A4 is the trivial extension (K|z], E).

This completes the proof once we remove the condition INR =0:iflp =
INR, then I 2 Ip[z], and A = R[z]/I is an epic image of the polynomial ring
Rlz}/ Io[z] =~ (B/Io)lz]

that is,
A = (R/Io)z)/(I]/1Io}lz].
Moreover,
(I/Io} N (R/Io) = 0.

Now R/Io is a local ring if R is, and also has square zero radical if B does.
The conclusion of the theorem is therefore valid for any COSI ideal 1. B
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4.2. Theorem. Let R be a semilocal ring with radical J. Then Rix] i3
SISI only if J/J? is finitely generated.

Proof: R = R/J? is a semiprimary ring, hence a finite product of radical
square—zero local rings, hence assume R is a local ring. Since R[z] is a factor ring
of R[z], then RJz]is SISI by [F3], hence theorem 1.0 implies that dimzJ < oo,
i.e. J/J? is finitely generated. W

4.3, Theorem. If R is a perfect ring, then Riz] ts SIST iff R is Artinian.

Proof: By a theorem of Osofsky [0] a perfect ring R is Artinian iff J/J? is
finitely generated. By a theorem of Bass, a perfect ring R is semiperfect and
has radical J # J2. The theorem now applies to complete the proof. W

A valuation ring R is discrete VR{= DV R) provided that R satisfies the

e.c.’s:

{DVR1) R is a Principal ideal ring {PIR)
(DV R2) R is Noetherian
In this case, NuewJ™ = 0 by the Krull Intersection theorem.

Remark. For convenience below, we allow the possibility thet J® = 0 for
some n.

4.4 Theorem. If R is a SISI VR, equivalently, an AMVR, and if J =
redR # J?, then R[z]| is SISI only if R is Noetherian, that is, only if R is a
DVR, where R=R/P, and P = Npe ™.

Proof: If follows from theorem 4.3 that R[z) is SISI iff R/J? is Artinian.
Then R is a Noetherian V R, whence DVR, so J = z R for some z € R.

But, then z ¢ J2, hence zR D J?,s0 J = zR.

This implics that R is Noetherian, whence a DVR. B

4.5. Example. Let R = (B, E} be the split-null extension of a DV R B and
the least injective cogenerator E over B. Then R is an AMVR, and R = R/P

is a DV R. Actually, in this case R is PF, by Theorem 2 of [F4]. Similarly, in
Theorem 4.4, we have the:

4.6. Corollary. Under the assumptions of the theorem, if P # P2, then
either

(1) P/P? = Qc(R), or B
(2) E = P/P? is the least injective cogenerator of R, and
R/P? =~ (R,E) is PF.

Proof: It follows easily from the theorem that P is divisible by p" for every
n, so P/P? is divisible over R, hence injective. Since P/P? is uniform, then
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P/P? is indecomposable, and accordingly either torsion-free, or else torsion.
Then (1) holds in the former case. IF E = P/ P? is torsion, then it is the least
injective cogenerator over B. W

Since R is Morita, then R = EndgzE, so R~ (B, E)is PF by Lemma 1 and
Theorem 2 of [F4].

5. Polynomial rings over Morita rings

In this section we investigate Riz| for R a2 Morita ring. By a theorem of
Vamos [V1],[V2], if 4 is a ring extension of R, and if A is & 1.c. R~module,
e.g., if A is finitely generated R-module, then A is also Morita. This implies
that A = R[z]/I is Morita for any monic ideal I of R[z].

5.1. Theorem. I. If R is Jacobson—Hilbert, and if a fector ring Riz]/I is
l.c. ring, then I is monic.

2 IfR is ¢ l.c. Jacobson—Hilbert ring, then for any monic ideal I, the factor
ring A = Rlz|/] is l.c. as a ring.

Proof: Any l.c. ring is semilocal {in fact, semiperfect-see [S]). Then, A
l.c. implies that I is monic by Corollary 2.3. In this case R[z]/T is a finitely
generated R-module, whence l.c. as an R-module, whenever R is. (See, eg.,
[V1].) The converse is trivial if A 1s 1.c. as an R-module, &

5.2. Corollary. If R is Jocobson—Hilbert, then for any ideal I of Rjz],
R[z)/I is Morita only if I is monic. This holds in particular, when R[z]/T is
PF (or QF).

Proof: A Morita ring is 1.c. and a PF {also QF) ring is a Morita ring. @
{Part of the next result is Theorem 1.3 of the Introduction.)

5.3. Proposition. For a Jacobson-Hilbert ring R, consider the following §
conditions:

(1) Riz] is SISI

(2) Riz] is en H-ring

(3) Bvery COSI ideal I of Rjz] is coniatned in just finitely many mazimal

ideals

(4} R is Monica;

Then (1) & (2) & (3] = (4) and conversely if R is ¢ Morita ring.

Proof: Any SIST ring is an H-ring, so (1) = {2} and {2} = (8} is trivial.
Next, {3} = (4) by Theorem 2.5.

Now assume (4). By the introduction to this section, if R is Morita, then
A = Rjz}/I 1s Morita, hence SIST for any COSI ideal I, and therefore self-
injective. Thus Rfz] is SISI, so (4} = (1), assuming R 1s Morita. B

Any Monica ring is Jacobson-Hilbert, so we also have:
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5.4. Corollary. If R is ¢ Monica Morita ring, then Riz] is STSI.

6. Von Neumann regular rings are Monica

By 2 theorem of Kaplansky, a von Neumann regular (VN R) ring R has the
{characterizing) property that Ry is a field for each maximal ideal A/, and
hence, as Vémos pointed out in [VI], is Vamosian, whence SIS {see § 3.1).
Moreover, R is Jacobson—Hilbert since every prime ideal is maximal.

6.1. Theorem. Any VNR ring R is Monica.

Proof: R is Jacobson-Hitbert, and by 3.1 the ring R[X] is SI51, hence R is
Monica by Prop. 5.3. B

A ring R is Prifer (also called Arithmetical) iff Ry is a VR for all maximal
ideals M. Any semihereditary ring is a Pritfer ring, since then Ras is a valuation
domain (V' I2) for every maximal ideal.

6.3. Corollary. A Prifer rving R is SISI iff Ry i3 an AMVER for all
mazstmal ideals M.

Proof: By [VI], R is SIST iff Ry is SIST YM. By [F3], any SISI VR is
an AMV R, so the corollary follows. W

6.2. Corollary. If R is a von Neumenn regular (VNR) ring, then Rlz] i3
Prifer and SISI, hence R|[z)ar is an AMV D for oll mazimal ideals M.

Proof: Qver a VN R ring R, the polynomial ring R[z] is semihereditary hence
Pritfer. Since R is locally Noetherian (in fact locally a field) then so is E{z], so
Rlz] is SISI. {See § 3.1). Since R[z]as is Noetherian, it is a DV D. I have Dr.
P. Pillay to thank for noting this. ®

7. Open Problems

In this paper, we have shown that a polynomial ring over 2 $15I Jacobson-
Hilbert local ring need not be SISI, in fact need not be an H-ring. Does the
corresponding hold for Vamos or Morita rings? Also similar questions may be
asked for & 1.c. R, i.e. when is R[z]/I also a 1.c. ring, other than when I is
monic?

Characterize R such that all COST {or maximal) ideals of R[z] are faithful.
These include Monica {maxmonica) rings.
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Note

Hilbert rings are so-called because of their connections with the Hilbert
Nullstellensatz (see [K] for a lucid exposition of Goldman’s [G] and Krull’s {Kr]
results.) Jacobson rings are named by [Kr] because of their characterizations
via the condition that the nilradical equals the Jacobson radical in a any factor
ring.

Some of these same ideas have been extended to polynomial rings over von
Neumann regular rings by Gentle [Ge]. (Cf. Theorem 6.1 which implies that
VN R’s are Monica rings.)
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