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REGULARITY OF VARIETIES
IN STRICTLY PSEUDOCONVEX DOMAINS

FRANC FORSTNERIC

Abstract

We prove a theorem on the boundary regularity of a purely p-dimensional
complex snbvariety of a relatively compact, strictly pseudoconvex domain
in a Stein manifold. Some applications describing the structure of the
polynomial hull of closed curves in € are alsc given.

-Introduction

Let X be a complex manifold, M C X a connected {2p — 1)-dimensional
submanifold of X of class C* {k > 1, p > 1}, and A a closed complex subvariety
of X\M of pure dimension p such that A ¢ AU M. Then either 4 is a
complex subvariety of X or else there exists a closed subset E ¢ A of {2p~ 1}-
dirnensional Hausdorff measure ¥pp..1(E) = 0 such that the pair (A\E, M\ E)
is 2 C* submanifold with boundary (2, p.190]. In the second case A has locally
finite 2p dimensional volume in X, and M can be oriented sych that the pair
{A, M) satisfies the theorem of Stokes [2, p.192], [6], [8]. Consequently M is
a maximally complex submanifold of X, i.e., the maximal complex subspace
TY M of the real tangent space T,M to M at z has real codimension one in
T,M.

There is 2 converse of this due to Harvey and Lawson [6]: If X is a Stein
manifold and M is a closed, compact, maximally complex submanifold of X of
dimension 2p — 1 (p > 2}, then M bounds {in the sense of currents} a purely p-
dimensional complex subvariety A C X\ M, with boundary regularity as above.

We are interested in the boundary regularity of a purely p-dimensional com-

plex subvariety of a relatively compact, strictly pseudoconvex domain @ € X
with €? boundary. We shall give 2 simple proof of the following
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Theorem 1. Assume that

{1} X 15 a Stein manifold;

(2) 11 i5 a relatsvely compact, strictly pseudoconvesz domam with C? bound-
ary in X;

{3) M is a closed (2p—1}-dimensional submanifold of X of elass C* {p > 1,
k > 2) contained in the boundary b8 of (1;

(i} A ts a purely p-dimensional complex subvartety of 1 such that A C
C AUM, and A intersects every connected component of M.
Then there exists an open neighborhood U of M such that the pair {ANU, M)
is a CF manifold with boundary, and A intersects bQ transversely in the set M.

Consequently A has at most finitely many singularities in 2. The manifold
M is maximally complex, and its tangent space T, M is not contained in the
maximal complex tangent space TO 501 to the boundary of {2 for any z € M.

We cobtain an interesting consequence concerning holomorphic convexity of
closed curves. We shall state the result only for X = C". Recall that the
polynomially convez hull of a compact set K C €™ is

K= {z € c™: {f{z)| < sup|f] for all holomorphic polynomials I}
K

If M is a rectifiable closed Jordan curve in €™, then either M is polynomially
convex, M = M, or else A = M\ M is 2 purely one-dimensional analytic variety
according to Wermer [10], |11, p.71], Stolzenberg [9], and Alexander [1}.

Corollary 2. Let Q1 be a bounded C? .strictly pseudoconver domain in C°
with polynomially convez closure, and let M be a simple closed curve of ¢lass
C*, k > 2, contained in the boundary of (1. If M is not polynomially convez,
then the one- d:mem:ona! complex variety A M\M has at most finitely many
singularities,

Proof: Since {1 is polynomially convex, A is contained in 1. Every point
p € b{ is a peak point for 2, so the maximum principle implies that A is
contained in 0. Therefore the corollary follows from Theorem 1. B

We shall say that a submanifold M C b8 of class C! is complez fangential at
the point 2z € M if

(1) T, M is contained in T 1.
Here, TC b(1 = T, 50 N /~1T, b0). We shall say that M is complez transverse

at z if it is not complex tangential.’

Corollary 3. Let 1 C C" be as tn Corollary 2. If M C W) 1s a simple
closed curve of class C® that s complez tangential at least at one point, then
M is polynomially convez.

Proof: If M is not polynomially convex, Theorem 1 implies that the polyno-
mial hull M = AUM C 0 is a complex variety with smooth boundary near
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every point z € M, and M intersects b} transversely in M. This implies that
M is complex transverse in 6{} and the corollary follows. B

Example. If M is a simple closed C? curve in the sphere {z € C":|2| = 1}
parametrized by the map r{} = (rl {t},... , 7 (t)} with nonvanishing derivative,
and if

n .
Yol =0
j=1
for some value of the parameter 1, then M is polynomially convex
It seems rather surprising that a condition at one point of the curve guar-
anties its polynomial convexity, as long as the curve stays inside the given
strictly pseudoconvex boundary.
Remarks.

1. Theorem 1 is stated in |2, p.203], but the proef given there does not
appear to be complete.

2. If one knows already that M is the boundary of 4 = M \M in the sense
of currents and if p > 2, then Theorem 1 is a special case of Theorem 10.3 in
6, p.275].

3. In the case when p = 1 and the variety A is a proper holomorphic image
of the unit disc & = {# € C:|2z| < 1}, Theorem 1 follows from the more
general results of Cirka (3] concerning the regularity of one-dimensional complex
varieties in the complement of a fotally real submanifold of the ambient space.

4. In the case p > 2, Theorem 1 was proved by the author in [4]. Our new
proof is simpler and includes the case p = 1 when M ‘is a curve. We first show
that the pair {4, M)} is a manifold with boundary in a neighborhood of each
point z € M at which M is complex transversal, i.e., the condition (1) fails.
The proof in this case is the same as in [4]. The main difficulty in [4] was
to show that M can not be complex tangential at any point if it bounds a p-
dimensional variety. In this paper we prove this by a very simple perturbation
argument.

Acknowledgement. | wish to thank Josip Globevnik for several stimulating
discussions on this subject.

Proof of Theorem 1

By the embedding theorem of Fornass and Khenkin |7, p.112] we may assume
that X = €™ and { is a strictly convex domain in €™,

It suffices to prove that each point 2° € AN M has an open neighborhood
U such that the pair (A NU, M N U} is 2 smooth manifold with boundary. We
first prove this in the case when M is complex transverse at 2%, i.e., conditien
(1) fails. This part of the argument is the same as in [4]. We include it for the
convenience of the reader.

By an affine change of coordinates in C™ we may assume that
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(1) 20 = H
{ii) Tobl = {Rez, =0} and T§ 6Q = {z =0}, and
(iii} the domain 0 is contained in {Rez > 0}.

Recall that Ty M is a real {2p — 1)-dimensional subspace of {Re z; = 0} that
is not contained in {z; = 0}. Thus the orthogonal projecticn of ToM onto
the z; axis is a real line, and the intersection W = ToM i {#; = 0} has real
dimension 2p — 2.

We can choose a complex {p — 1)-dimensional subspace L contained in {z, =
= 0} such that the orthogonal projection C* — L maps W surjectively onto L.
After a unitary change of coordinates 25, .. . , 2, we may assume that L = {2, =
= Zp31 =...= 2, =0}

Let m:€® — €f = {#,,1 = 0,...,2, = 0} be the orthogonal projection.
Since b§1 is strictly convex, we can find an open polvdisc neighborhood U =
=U'xU" of 0in C*, with U' C €? and U" C C"77, such that m: U N - U
is & proper mapping. Our choice of L implies that n: ToM — CP is injective.
Shrinking U if necessary it follows that # maps M N U diffeomorphically onto
a real hypersurface T C U’ of class C* that splits U'\I' in two connected
components I'* and ™. Let I'' be the region contained in {Rez;, > 0}.
Since M NU is contained in the strictly convex boundary 82 U and €7 x {0}
contains the normal vector {1,0,...,0} to {1 at 0, the projection #{(MNU} =T
is hypersurface in €7 which is strictly convex from the side I't, provided that
the neighborhood U is sufficiently small.

Since m: XN U — U’ is proper and the set (4 UM} NU is closed in U, the
restriction

m{AUMINU = U'

is also proper. The convexity of I't along I implies that (A N¥) is contained
in I'* according to the maximum principle. Hence the mapping

{2) mANU —+T*

is an analytic cover 5, p.101].

Denote by s the number of sheets of this analytic cover, i.e., the number of
points in the generic fiber. Notice that all sheets converge to the common edge
M as we approach I'. We claim that this implies s = 1. We only give a sketch
of proof since the details can be found in [4].

Let z = {z',2"), where 2’ = {21,... ,2,} and 2" = (2,41,... ,24}. Thereisa
linear function w = w{z"} that separates points of #~ 1 {z'}N AN for all points
2! € 't outside 2 proper complex subvariety ¢ C I'*. For each 2/ € T'"\o we
denote by wy (2}, ... ,w,{2') the values of w at the points of 7= {2'} N AN U.
Let P{w,2') be the polynomial in w defined by

P(w,?') = ]‘[ (w—w;{z)) =w" +a: (2w T+ +ald), ZeT\o
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Its coefficients a;{2') are bounded holomorphic functions on I'*\g, so they
extend to bounded functions on I'*. The discriminant §(2') of P{.,7') isalso a
bounded holomorphic function on I'F since it is a polynomial expression in the
coefficients a; of P. Recall that é(z") = 0 if and only if P(.,2') has multiple
roots.

If s > 1, the hypothesis A C AU M implies that the nontangential boundary
values of § on T equal zero almost. everywhere since the different sheets of {2}
converge together to M. This implies § =0 on I'*, a contradiction. Thuss =1
as claimed.

It follows that the projection {2} is a bijection, so (A UM} N U is a graph of
the form
(AuM)nU = {{(<, f(z")): 2 e T* UT}.

Since A is complex analytic and M is of class C*, it follows that f is holomorphic
on I'* and of class C* on ['. Clearly f is also continuous on 't UT. The
regularity theorem |8, p.249] implies that f is of class C¥ on I'* UT. This proves
that (A UM} NV is a C* manifold with boundary intersecting 50 transversely.

It remains to show that the manifold M is complex transverse at each point
2 € M 1 A so that the first part of the proof applies. The following argument is
considerably simpler than the one in [4], and it also applies in the case p = 1.

Assume that the condition {1} is satisfied for some z = 2° € M N A. Let
AC 'I‘fo 51 be the smallest complex subspace of €™ containing T,0 M. Since
T,o M is not a complex subspace, there is a vector b € A\T,o M. We can choose
a function h of class €2, supported on a neighborhood of z° in €*, such that
hlar = 0, but the derivative of h at 20 in the direction & is nonzero.

Let p be a strictly convex defining function of class C* for 1,50 1 = {z €
€ €":p(z} < 0} and dp # 0 on 5. If ¢ > 0 is sufficiently small, the domain

1, = {ze€c™:plz) + chiz) <0}

is of class C* and strictly convex. Fix such an e. Since k vanishes on M, M is
contained in the boundary of {I.. Thus we have A C McC flt = §1,, and the
maximum principle implies 4 C Q..

Our choice of & implies that T,040, does not contain A, so TS b8, does not
contain T,«A. This means that M is complex transverse in b, at the point
#°. By the first part of the proof, with 0 replaced by (1., the set 4 is a local
C* manifold with boundary M near 2°.

We have proved that the pair (A4, M) is a local manifold with boundary near
every point z € AN M. This implies that AN M is an open and closed subset
of M. Since we assumed that A intersects every connected component of M,
it follows that 4 = A U M.

It remains to show that A intersects 681 transversely. The restriction p' = Plx
of the plurisubharmonic defining function p of {1 to A is a negative subharmonic
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function of class C? on the complex manifold with boundary A. The Hopf
lemma implies
plz) < —cdist{z, M}, =z€ 4

for some ¢ > 0. Here, dist denotes the Euclidean distance. Since —p(z} is pro-
portional to the distance of z to {1, we conclude that dist(z, M} is proportional
to dist(z,b81) for z € A. Hence A intersects b{) transversely at each point of
M. Thus the condition {1} fails and M is everywhere complex transverse.
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