REGULARITY OF VARIETIES IN STRICTLY PSEUDOCONVEX DOMAINS

FRANC FORSTNERIČ

Abstract .

We prove a theorem on the boundary regularity of a purely p-dimensional complex subvariety of a relatively compact, strictly pseudoconvex domain in a Stein manifold. Some applications describing the structure of the polynomial hull of closed curves in \mathbb{C}^n are also given.

Introduction

Let X be a complex manifold, $M \subset X$ a connected (2p-1)-dimensional submanifold of X of class C^k $(k \ge 1, p \ge 1)$, and A a closed complex subvariety of X\M of pure dimension p such that $\overline{A} \subset A \cup M$. Then either \overline{A} is a complex subvariety of X or else there exists a closed subset $E \subset A$ of (2p-1)dimensional Hausdorff measure $\mathcal{H}_{2p-1}(E) = 0$ such that the pair $(A \setminus E, M \setminus E)$ is a C^k submanifold with boundary [2, p.190]. In the second case A has locally finite 2p dimensional volume in X, and M can be oriented such that the pair (A, M) satisfies the theorem of Stokes [2, p.192], [6], [8]. Consequently M is a maximally complex submanifold of X, i.e., the maximal complex subspace $T_z^C M$ of the real tangent space $T_z M$ to M at z has real codimension one in $T_z M$.

There is a converse of this due to Harvey and Lawson [6]: If X is a Stein manifold and M is a closed, compact, maximally complex submanifold of X of dimension 2p-1 ($p \ge 2$), then M bounds (in the sense of currents) a purely p-dimensional complex subvariety $A \subset X \setminus M$, with boundary regularity as above.

We are interested in the boundary regularity of a purely p-dimensional complex subvariety of a relatively compact, strictly pseudoconvex domain $\Omega \subset X$ with C^2 boundary. We shall give a simple proof of the following

The work was supported in part by a grant from the Science Foundation of the Republic of Slovenia.

Theorem 1. Assume that

(1) X is a Stein manifold;

(2) Ω is a relatively compact, strictly pseudoconvex domain with C^2 boundary in X;

(3) M is a closed (2p-1)-dimensional submanifold of X of class C^k $(p \ge 1, k \ge 2)$ contained in the boundary $b\Omega$ of Ω ;

(4) A is a purely p-dimensional complex subvariety of Ω such that $\overline{A} \subset \subset A \cup M$, and \overline{A} intersects every connected component of M.

Then there exists an open neighborhood U of M such that the pair $(A \cap U, M)$ is a C^k manifold with boundary, and \overline{A} intersects b Ω transversely in the set M.

Consequently A has at most finitely many singularities in Ω . The manifold M is maximally complex, and its tangent space $T_x M$ is not contained in the maximal complex tangent space $T_z^{C} b\Omega$ to the boundary of Ω for any $z \in M$.

We obtain an interesting consequence concerning holomorphic convexity of closed curves. We shall state the result only for $X = \mathbb{C}^n$. Recall that the polynomially convex hull of a compact set $K \subset \mathbb{C}^n$ is

 $\hat{K} = \big\{ z \in \mathbb{C}^n \colon |f(z)| \leq \sup_{K} |f| \text{ for all holomorphic polynomials } f \big\}.$

If M is a rectifiable closed Jordan curve in \mathbb{C}^n , then either M is polynomially convex, $M = \hat{M}$, or else $A = \hat{M} \setminus M$ is a purely one-dimensional analytic variety according to Wermer [10], [11, p.71], Stolzenberg [9], and Alexander [1].

Corollary 2. Let Ω be a bounded C^2 strictly pseudoconvex domain in \mathbb{C}^n with polynomially convex closure, and let M be a simple closed curve of class C^k , $k \geq 2$, contained in the boundary of Ω . If M is not polynomially convex, then the one-dimensional complex variety $A = \hat{M} \setminus M$ has at most finitely many singularities.

Proof: Since $\overline{\Omega}$ is polynomially convex, A is contained in $\overline{\Omega}$. Every point $p \in b\Omega$ is a peak point for Ω , so the maximum principle implies that A is contained in Ω . Therefore the corollary follows from Theorem 1.

We shall say that a submanifold $M \subset b\Omega$ of class C^1 is complex tangential at the point $z \in M$ if

(1) $T_z M$ is contained in $T_z^C b\Omega$.

Here, $T_z^C b\Omega = T_z b\Omega \cap \sqrt{-1} T_z b\Omega$. We shall say that M is complex transverse at z if it is not complex tangential.

Corollary 3. Let $\Omega \subset \mathbb{C}^n$ be as in Corollary 2. If $M \subset b\Omega$ is a simple closed curve of class C^2 that is complex tangential at least at one point, then M is polynomially convex.

Proof: If M is not polynomially convex, Theorem 1 implies that the polynomial hull $\hat{M} = A \cup M \subset \overline{\Omega}$ is a complex variety with smooth boundary near

every point $z \in M$, and \hat{M} intersects $b\Omega$ transversely in M. This implies that M is complex transverse in $b\Omega$ and the corollary follows.

Example. If M is a simple closed C^2 curve in the sphere $\{z \in \mathbb{C}^n : |z| = 1\}$ parametrized by the map $r(t) = (r_1(t), \ldots, r_n(t))$ with nonvanishing derivative, and if

$$\sum_{j=1}^{n} r_{j}^{\mathsf{I}}(t) \overline{r_{j}(t)} = 0$$

for some value of the parameter t, then M is polynomially convex

It seems rather surprising that a condition at one point of the curve guaranties its polynomial convexity, as long as the curve stays inside the given strictly pseudoconvex boundary.

Remarks.

1. Theorem 1 is stated in [2, p.203], but the proof given there does not appear to be complete.

2. If one knows already that M is the boundary of $A = M \setminus M$ in the sense of currents and if $p \ge 2$, then Theorem 1 is a special case of Theorem 10.3 in [6, p.275].

3. In the case when p = 1 and the variety A is a proper holomorphic image of the unit disc $\Delta = \{z \in \mathbb{C} : |z| < 1\}$, Theorem 1 follows from the more general results of Čirka [3] concerning the regularity of one-dimensional complex varieties in the complement of a totally real submanifold of the ambient space.

4. In the case $p \ge 2$, Theorem 1 was proved by the author in [4]. Our new proof is simpler and includes the case p = 1 when M is a curve. We first show that the pair (A, M) is a manifold with boundary in a neighborhood of each point $z \in M$ at which M is complex transversal, i.e., the condition (1) fails. The proof in this case is the same as in [4]. The main difficulty in [4] was to show that M can not be complex tangential at any point if it bounds a p-dimensional variety. In this paper we prove this by a very simple perturbation argument.

Acknowledgement. I wish to thank Josip Globevnik for several stimulating discussions on this subject.

Proof of Theorem 1

By the embedding theorem of Fornæss and Khenkin [7, p.112] we may assume that $X = \mathbb{C}^n$ and Ω is a strictly convex domain in \mathbb{C}^n .

It suffices to prove that each point $z^0 \in \overline{A} \cap M$ has an open neighborhood U such that the pair $(A \cap U, M \cap U)$ is a smooth manifold with boundary. We first prove this in the case when M is complex transverse at z^0 , i.e., condition (1) fails. This part of the argument is the same as in [4]. We include it for the convenience of the reader.

By an affine change of coordinates in C^n we may assume that

(i) $z^0 = 0$,

(ii) $T_0 b\Omega = \{ \Re z_1 = 0 \}$ and $T_0^C b\Omega = \{ z_1 = 0 \}$, and

(iii) the domain Ω is contained in $\{\Re z_1 > 0\}$.

Recall that T_0M is a real (2p-1)-dimensional subspace of $\{\Re e z_1 = 0\}$ that is not contained in $\{z_1 = 0\}$. Thus the orthogonal projection of T_0M onto the z_1 axis is a real line, and the intersection $W = T_0M \cap \{z_1 = 0\}$ has real dimension 2p-2.

We can choose a complex (p-1)-dimensional subspace L contained in $\{z_1 = 0\}$ such that the orthogonal projection $\mathbb{C}^n \to L$ maps W surjectively onto L. After a unitary change of coordinates z_2, \ldots, z_n we may assume that $L = \{z_1 = z_{p+1} = \ldots = z_n = 0\}$.

Let $\pi: \mathbb{C}^n \to \mathbb{C}^p = \{z_{p+1} = 0, \ldots, z_n = 0\}$ be the orthogonal projection. Since $b\Omega$ is strictly convex, we can find an open polydisc neighborhood $U = U' \times U''$ of 0 in \mathbb{C}^n , with $U' \subset \mathbb{C}^p$ and $U'' \subset \mathbb{C}^{n-p}$, such that $\pi: U \cap \overline{\Omega} \to U'$ is a proper mapping. Our choice of L implies that $\pi: T_0M \to \mathbb{C}^p$ is injective. Shrinking U if necessary it follows that π maps $M \cap U$ diffeomorphically onto a real hypersurface $\Gamma \subset U'$ of class \mathcal{C}^k that splits $U' \setminus \Gamma$ in two connected components Γ^+ and Γ^- . Let Γ^+ be the region contained in $\{\Re z_1 > 0\}$. Since $M \cap U$ is contained in the strictly convex boundary $b\Omega \cap U$ and $\mathbb{C}^p \times \{0\}$ contains the normal vector $(1, 0, \ldots, 0)$ to $b\Omega$ at 0, the projection $\pi(M \cap U) = \Gamma$ is hypersurface in \mathbb{C}^p which is strictly convex from the side Γ^+ , provided that the neighborhood U is sufficiently small.

Since $\pi: \overline{\Omega} \cap U \to U'$ is proper and the set $(A \cup M) \cap U$ is closed in U, the restriction

$$\pi\colon (A\cup M)\cap U\to U'$$

is also proper. The convexity of Γ^+ along Γ implies that $\pi(A \cap U)$ is contained in Γ^+ according to the maximum principle. Hence the mapping

(2) $\pi: A \cap U \to \Gamma^+$

is an analytic cover [5, p.101].

Denote by s the number of sheets of this analytic cover, i.e., the number of points in the generic fiber. Notice that all sheets converge to the common edge M as we approach Γ . We claim that this implies s = 1. We only give a sketch of proof since the details can be found in [4].

Let z = (z', z''), where $z' = (z_1, \ldots, z_p)$ and $z'' = (z_{p+1}, \ldots, z_n)$. There is a linear function w = w(z'') that separates points of $\pi^{-1}(z') \cap A \cap U$ for all points $z' \in \Gamma^+$ outside a proper complex subvariety $\sigma \subset \Gamma^+$. For each $z' \in \Gamma^+ \setminus \sigma$ we denote by $w_1(z'), \ldots, w_s(z')$ the values of w at the points of $\pi^{-1}(z') \cap A \cap U$. Let P(w, z') be the polynomial in w defined by

$$P(w,z')=\prod_{j=1}^{s}\left(w-w_{j}(z')\right)=w^{s}+a_{1}(z')w^{s-1}+\cdots+a_{s}(z'), \quad z'\in\Gamma^{+}\setminus\sigma.$$

Its coefficients $a_j(z')$ are bounded holomorphic functions on $\Gamma^+ \setminus \sigma$, so they extend to bounded functions on Γ^+ . The discriminant $\delta(z')$ of P(.,z') is also a bounded holomorphic function on Γ^+ since it is a polynomial expression in the coefficients a_j of P. Recall that $\delta(z') = 0$ if and only if P(.,z') has multiple roots.

If s > 1, the hypothesis $\overline{A} \subset A \cup M$ implies that the nontangential boundary values of δ on Γ equal zero almost everywhere since the different sheets of (2) converge together to M. This implies $\delta \equiv 0$ on Γ^+ , a contradiction. Thus s = 1 as claimed.

It follows that the projection (2) is a bijection, so $(A \cup M) \cap U$ is a graph of the form

$$(A\cup M)\cap U=ig\{(z',f(z'))\colon z'\in\Gamma^+\cup\Gammaig\}.$$

Since A is complex analytic and M is of class C^k , it follows that f is holomorphic on Γ^+ and of class C^k on Γ . Clearly f is also continuous on $\Gamma^+ \cup \Gamma$. The regularity theorem [6, p.249] implies that f is of class C^k on $\Gamma^+ \cup \Gamma$. This proves that $(A \cup M) \cap U$ is a C^k manifold with boundary intersecting $b\Omega$ transversely.

It remains to show that the manifold M is complex transverse at each point $z \in M \cap \overline{A}$ so that the first part of the proof applies. The following argument is considerably simpler than the one in [4], and it also applies in the case p = 1.

Assume that the condition (1) is satisfied for some $z = z^0 \in M \cap \overline{A}$. Let $\Lambda \subset T_{z^0}^C b\Omega$ be the smallest complex subspace of \mathbb{C}^n containing $T_{z^0}M$. Since $T_{z^0}M$ is not a complex subspace, there is a vector $b \in \Lambda \setminus T_{z^0}M$. We can choose a function h of class C^2 , supported on a neighborhood of z^0 in \mathbb{C}^n , such that $h|_M \equiv 0$, but the derivative of h at z^0 in the direction b is nonzero.

Let ρ be a strictly convex defining function of class C^2 for Ω , so $\Omega = \{z \in \mathbb{C}^n : \rho(z) < 0\}$ and $d\rho \neq 0$ on $b\Omega$. If $\epsilon > 0$ is sufficiently small, the domain

$$\Omega_{\epsilon} = \left\{ z \in \mathbb{C}^n : \rho(z) + \epsilon h(z) < 0 \right\}$$

is of class C^2 and strictly convex. Fix such an ϵ . Since h vanishes on M, M is contained in the boundary of Ω_{ϵ} . Thus we have $A \subset \hat{M} \subset \hat{\Omega}_{\epsilon} = \overline{\Omega}_{\epsilon}$, and the maximum principle implies $A \subset \Omega_{\epsilon}$.

Our choice of h implies that $T_{z^0} b\Omega_{\epsilon}$ does not contain A, so $T_{z^0}^C b\Omega_{\epsilon}$ does not contain $T_{z^0}M$. This means that M is complex transverse in $b\Omega_{\epsilon}$ at the point z^0 . By the first part of the proof, with Ω replaced by Ω_{ϵ} , the set \overline{A} is a local \mathcal{C}^* manifold with boundary M near z^0 .

We have proved that the pair (A, M) is a local manifold with boundary near every point $z \in \overline{A} \cap M$. This implies that $\overline{A} \cap M$ is an open and closed subset of M. Since we assumed that \overline{A} intersects every connected component of M, it follows that $\overline{A} = A \cup M$.

It remains to show that \overline{A} intersects $b\Omega$ transversely. The restriction $\rho' = \rho|_{\overline{A}}$ of the plurisubharmonic defining function ρ of Ω to \overline{A} is a negative subharmonic

function of class C^2 on the complex manifold with boundary \overline{A} . The Hopf lemma implies

$$ho(z) \leq -c \operatorname{dist}(z,M), \quad z \in A$$

for some c > 0. Here, dist denotes the Euclidean distance. Since $-\rho(z)$ is proportional to the distance of z to $b\Omega$, we conclude that dist(z, M) is proportional to $dist(z, b\Omega)$ for $z \in A$. Hence \overline{A} intersects $b\Omega$ transversely at each point of M. Thus the condition (1) fails and M is everywhere complex transverse.

References

- H. ALEXANDER, Polynomial approximation and hulls in sets of finite linear measure in Cⁿ, Amer. J. of Math. 93 (1971), 65-74.
- 2. E.M. ČIRKA, "Complex Analytic Varieties," (Russian) Nauka, Moskva, 1985.
- E.M. ČIRKA, Regularity of boundaries of analytic sets, Mat. Sb. 117 (1982), 291-336; Math. USSR Sbor. 45 (1983), 291-335.
- 4. F. FORSTNERIČ, On the boundary regularity of proper holomorphic mappings, Annali Sc. Norm. Sup. Pisa Cl. Sc. Ser. IV, 13 (1986), 109-128.
- 5. R. GUNNING AND H. ROSSI, "Analytic Functions of Several Complex Variables," Prentice-Hall, Englewood Cliffs, 1965.
- 6. F.R. HARVEY AND H.B. LAWSON, On boundaries of complex analytic varieties I, Ann. of Math. 102 (1975), 223-290.
- 7. S.G. KRANTZ, "Function Theory of Several Complex Variables," John Wiley and Sons, New York, 1982.
- 8. N. SIBONY, Quelques problemes de prolongement de courants en analyse complexe, Duke Math. J. 52 (1985), 157-197.
- 9. G. STOLZENBERG, Uniform approximation on smooth curves, Acta Math. 115 (1966), 185-198.
- 10. J. WERMER, The hull of a curve in Cⁿ, Ann. of Math. 68 (1958), 550-561.
- J. WERMER, Banach Algebras and Several Complex Variables, Springer-Verlag, New York 1976.

Institut of Mathematics, Physics, and Mechanics Jadranska 19 YU-61000 Ljubljana, YUGOSLAVIA.

Rebut el 14 de Desembre de 1987