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CONVERGENCE OF THE ‘RELATIVISTIC’ HEAT

EQUATION TO THE HEAT EQUATION AS c → ∞

V. Caselles

Abstract
We prove that the entropy solutions of the so-called relativis-
tic heat equation converge to solutions of the heat equation as
the speed of light c tends to ∞ for any initial condition u0 ≥ 0
in L1(RN ) ∩ L∞(RN ).

1. Introduction

To limit the speed of propagation of different types of waves which are
solutions of nonlinear degenerate parabolic equations some mechanisms
of saturation of the flux as the gradient becomes unbounded have been
proposed by different authors [16], [11], [17].

The speed of light c is the highest admissible velocity for transport
of radiation in transparent media, and, to ensure it, J. R. Wilson (in
an unpublished work, see [16]) proposed to use a flux limiter. The
flux limiter merely enforces the physical restriction that the flux cannot
exceed energy density times the speed of light, that is, the flux cannot
violate causality. The basic idea is to modify the diffusion-theory formula
for the flux in a way that gives the standard result in the high opacity
limit, while simulating free streaming (at light speed) in transparent
regions. As an example, one of the expressions suggested for the flux of
the (positive) energy density u is

(1.1) F = −νu
∇u

u + νc−1|∇u|
(where ν is a constant representing a kinematic viscosity and c the speed
of light) which yields in the limit ν → ∞ the flux F = −cu ∇u

|∇u| . Ob-

serve also that when c → ∞, the flux tends to F = −ν∇u, and the
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corresponding diffusion equation becomes the heat equation, which has
an infinite speed of propagation.

The diffusion equation corresponding to (1.1) is

(1.2) ut = ν div

(

u∇u

u + ν
c |∇u|

)

and is one among the various flux limited diffusion equations used in the
theory of radiation hydrodynamics [16]. Indeed, the same effects can be
guaranteed for a similar equation [8]

(1.3) ut = ν div





u∇u
√

u2 + ν2

c2 |∇u|2



 ,

which was introduced by Y. Brenier [8]. He was able to derive (1.3)
from Monge-Kantorovich’s mass transport theory and described it as
a relativistic heat equation. Both equations, (1.2) and (1.3), interpolate
(see [8]) between the usual heat equation (when c → ∞) and the diffusion
equation in transparent media (when ν → ∞) with constant speed of
propagation c

(1.4) ut = c div

(

u
∇u

|∇u|

)

.

Let us mention that many other models of nonlinear degenerate parabolic
equations with flux saturation as the gradient becomes unbounded have
been proposed by Rosenau and his coworkers [11], [17], and Bertsch and
Dal Passo [7], [12].

We consider the solution of (1.3) with initial condition u(0, x) =
u0(x) ∈ L∞(RN ) ∩ L1(RN ), u0 ≥ 0. In a series of papers [3], [4], [5]
we developed a theory of existence and uniqueness of entropy solutions
for (1.3) and we studied the propagation of discontinuity fronts at the
speed of light c. Moreover, in [6] we proved the convergence of (1.3)
to equation (1.4) when ν → ∞. Our purpose in this paper is to study
the asymptotic limit of equation (1.3) as c → ∞. If uc(t, x) denotes the
entropy solution of (1.3) we shall prove that uc converges as c → ∞ to
the solution of the classical heat equation

(1.5) ut = ν∆u

with initial condition u(0, x) = u0(x).
Let us explain the plan of the paper. In Section 2 we recall the basic

existence and uniqueness result of entropy solutions of (1.3) and state
the main result of convergence of solutions of (1.3) to solutions of (1.5)
as c → ∞. Section 3 is devoted to the proof of this convergence result.
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2. Preliminaries

In [3], [4] we studied the well-posedness of (1.3) for initial conditions
in (L1(RN ) ∩ L∞(RN ))+. We proved that the underlying elliptic oper-
ator to (1.3) defines a nonlinear contraction semigroup in L1(RN )+, we
defined the concept of entropy solution proving its existence and unique-
ness and we proved that entropy solutions coincide with the semigroup
ones.

For the concept of entropy solution of (1.3) we refer to [4]. Let us
recall the basic existence and uniqueness result proved in [4].

Theorem 2.1. For any initial datum 0 ≤ u0 ∈ L∞(RN )∩L1(RN ) there
exists a unique entropy solution u of (1.3) in QT = (0, T ) × R

N for
every T > 0 such that u(0) = u0. Moreover, if u(t), u(t) are the entropy

solutions corresponding to initial data u0, u0 ∈
(

L∞(RN ) ∩ L1(RN )
)+

,
respectively, then

(2.1) ‖(u(t) − u(t))+‖1 ≤ ‖(u0 − u0)
+‖1 for all t ≥ 0.

Moreover, the map T (t)u0 = u(t), t ≥ 0, defines a nonlinear contraction
semigroup in L1(RN )+.

Our main purpose is to prove the following result.

Theorem 2.2. Let uc be the entropy solution of (1.3) with u(0, x) =
u0(x)∈(L∞(RN )∩L1(RN ))+. As c→∞, uc converges in C([0, T ], L1(RN ))
to the solution U of the heat equation (1.5) with U(0, x) = u0(x).

We observe that the same result is true for equation (1.2). Since the
proof is similar, we skip the details.

Observe that v(t, x) is an entropy solution of (1.3) if and only if
u(t, x) = v(νt, νx) is an entropy solution of

(2.2) ut = div





u∇u
√

u2 + 1
c2 |∇u|2



 .

Thus, without loss of generality we may assume that ν = 1, and, for
simplicity, we shall assume it in the sequel.

Since, by Theorem 2.1, T (t)u0 = u(t) determines a nonlinear contrac-
tion semigroup in L1(RN )+, we may reduce the proof of Theorem 2.2
to a dense set of functions in (L∞(RN ) ∩ L1(RN ))+ with respect to the
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norm in L1(RN ). We shall consider the set of functions

A :=

{

u ∈ S(RN ) : u0(x) > 0 for all x ∈ R
N ,

∥

∥

∥

∥

∇u0

u0

∥

∥

∥

∥

∞

< ∞
}

,

Ae := {u ∈ A : u0(x) ≥ λ0e
−β

|x|2

2 for some λ0, β > 0},
where S(RN ) denotes the space of rapidly decreasing functions in R

N .
Functions in S(RN ) which are positive and behave like λe−β|x|, for
some λ, β > 0 and for |x| large enough, belong to Ae and, thus, both Ae

and A are dense in L1(RN )+.

We shall concentrate our efforts in proving Theorem 2.2 when u0∈Ae.
In that case, we shall prove that solutions satisfy a Lipschitz bound which
enables to pass to the limit as c → ∞ in (2.2).

3. Convergence of solutions of (1.3) to solutions of heat
equation

Our first purpose is to prove the following result.

Proposition 3.1. Assume that u0 ∈ Ae. Let u be the entropy solution
of (2.2). Then for any t > 0, u(t) ∈ Ae. Moreover, we have

(3.1) sup
[0,T ]×RN

|∇u(t, x)|
|u(t, x)| ≤

∥

∥

∥

∥

∇u0

u0

∥

∥

∥

∥

∞

.

Observe first that, according to Proposition 3 in [5], u(t, x) > 0 for
any t > 0 and any x ∈ R

N . To prove the gradient bound (3.1) we reduce
it to the case where c = 1. For that, we observe that u(t, x) is the entropy
solution of (2.2) with u(0, x) = u0(x) if and only if ũ(t, x) = u

(

t
c2 , x

c

)

is
the entropy solution of

(3.2) ut = div

(

u∇u
√

u2 + |∇u|2

)

with ũ(0, x) = u0

(

x
c

)

. Now, assume that we have proved that

sup
[0,T ]×RN

|∇ũ(t, x)|
|ũ(t, x)| ≤

∥

∥

∥

∥

∇ũ(0)

ũ(0)

∥

∥

∥

∥

∞

.

Writing this inequality in terms of u, we have

c−1

∣

∣∇u
(

t
c2 , x

c

)∣

∣

|u
(

t
c2 , x

c

)

| ≤ sup
x∈RN

c−1

∣

∣∇u0

(

x
c

)∣

∣

u0

(

x
c

) .

This implies (3.1). Thus, without loss of generality we assume that c = 1.
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For any R > 0, let ΩR := [−R, R]N . In order to prove the Lips-
chitz bound (3.1) for the entropy solutions of (3.2) we need to approxi-
mate (3.2) by

(3.3)































∂u

∂t
= div

(

u∇u
√

u2 + |∇u|2

)

in QR
T = (0, T ) × ΩR

u∇u
√

u2 + |∇u|2
· νΩR = 0 on SR

T = (0, T )× ∂ΩR

u(0, x) = u0(x) in x ∈ ΩR,

with νΩR the unit outward normal on ∂ΩR.

Proposition 3.2. Assume that u0 ∈ A. Then there exists an entropy
solution uR ∈ C([0, T ], L1(ΩR)) of (3.3). Moreover u(t, x) > 0 for
any t > 0, x ∈ R

N and

(3.4) sup
[0,T ]×ΩR

|∇uR(t, x)|
|uR(t, x)| ≤ sup

ΩR

|∇u0(x)|
|u0(x)| .

To prove Proposition 3.2 we consider the following approximation.
First we define ũR

0 (x) = u0(x − R(1, . . . , 1)) in [0, 2R]N , then we extend
it to Ω2R := [−2R, 2R]N by symmetry so that

(3.5) ũR
0 (x1, . . . , xi, . . . , xN ) = ũR

0 (x1, . . . ,−xi, . . . , xN )

for any x = (x1, . . . , xN ) ∈ [−2R, 2R]N and any i = 1, . . . , N , and then
we extend it by periodicity so that the extended function, call it ũR

0 , is
periodic of fundamental period [−2R, 2R]N and has no discontinuities
in R

N . Then we smooth it by defining

ũR
0n = ρn ∗ ũR

0 ,

where ρn(x) = n−Nρ( x
n ), ρ ∈ C∞

0 (RN ), ρ ≥ 0, supp ρ ⊆ B(0, 1),
∫

RN ρ(x) dx = 1. Then the functions ũR
0n ∈ C∞(RN ) have also the

symmetries (3.5) and are periodic with fundamental period [−2R, 2R]N .
We consider the following approximating problem

(3.6)



































∂u

∂t
= div

(

u∇u
√

u2 + |∇u|2

)

+ η∆u in QT = (0, T )× Ω2R

(

u∇u
√

u2 + |∇u|2
+ η∇u

)

· νΩ2R = 0 on SR
T = (0, T ) × ∂Ω2R

u(0, x) = ũR
0n in x ∈ Ω2R.
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Lemma 3.3. Assume that u0 ∈ S(RN ), u0(x) > 0 for all x ∈ R
N .

Then there is a solution uR
η,n of (3.6) which is even,

∂uR
η,n

∂t , D2uR
η,n ∈

L2([0, T ] × Ω2R), and ∇uR
η,n ∈ C1+β/2,2+β([0, T ]× Ω2R) for any T > 0.

Moreover, we have the estimates

(3.7) uR
η,n ≥ inf

x∈[0,2R]N
ũR

0n,

(3.8) ‖uR
η,n(t)‖Lq([0,2R]N ) ≤ ‖ũR

0n‖Lq([0,2R]N )

for any q ∈ [1,∞] and any t ≥ 0,

and

(3.9)

∫ T

0

∫

[0,2R]N
|∇Ta,b(u

R
η,n)| dx dt ≤ C

for any Ta,b(r) := max(min(b, r), a) (0 < a < b) where the constant C >0
only depends on a, b and u0 and does not depend on η, n, R.

We denote ∂t = ∂
∂t , ∂i := ∂

∂xi
, ∂ij := ∂2

∂xi∂xj
.

As usual, if Qa,b =[a, b]×Q, 0≤a≤b, and Q is a compact subset of R
N ,

then C1+β/2,2+β(Qa,b) denotes the parabolic Hölder space of functions

in Qa,b [13], [14]. If V is an open subset of R
N , by C

1+β/2,2+β
loc ([0, T ]×V )

we denote the set of functions u in C1+β/2,2+β(Qa,b) for any set [0, T ]×Q

where Q a compact subset of V .

Proof: The present lemma follows from Theorem 3.1 and Theorem 8.1
in Chapter 5 of [14]. Let us sketch the proof. Let us approximate (3.6)
by the following PDE:

(3.10)
ut = div

(

u∇u
√

ǫ2 + u2 + |∇u|2

)

+ η∆u on (0, T ) × R
N

u(0, x) = ũR
0n x ∈ R

N .

The equation (3.10) can be written as

ut = div Aǫ,η(u,∇u)

where

Aǫ,η(w, p) =
wp

√

ǫ2 + w2 + |p|2
+ ηp (w, p) ∈ [0,∞) × R

N .
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Then Aǫ,η(w, p) is continuously differentiable in (w, p). We denote Aǫ,ηi

the coordinates of Aǫ,η, Aǫ,ηi
w := ∂wAǫ,ηi, Aǫ,ηi

pj
:= ∂pj A

ǫ,ηi and similarly
for higher order derivatives. We require some computations:

Aǫ,ηi
w =

pi(ǫ
2 + |p|2)

(ǫ2 + w2 + |p|2)3/2
,

Aǫ,ηi
pj

=
wδij

(ǫ2 + w2 + |p|2)1/2
− wpipj

(ǫ2 + w2 + |p|2)3/2
+ ηδij ,

Aǫ,ηi
ww =

−3wpi(ǫ
2 + |p|2)

(ǫ2 + w2 + |p|2)5/2
,

Aǫ,ηi
wpj

=
δij(ǫ

2 + |p|2)
(ǫ2 + w2 + |p|2)3/2

+
pipj(2w2 − ǫ2 − |p|2)
(ǫ2 + w2 + |p|2)5/2

,

Aǫ,ηi
pjpk

= −w(δijpk + δikpj + δjkpi)

(ǫ2 + w2 + |p|2)3/2
+

3wpipjpk

(ǫ2 + w2 + |p|2)5/2
.

Then we have

η|ξ|2 ≤ Aǫ,ηi
pj

ξiξj ≤ (1 + η)|ξ|2,(3.11)

N
∑

i=1

(|Aǫ,ηi| + |Aǫ,ηi
w |) ≤

√
N(4 + η|p|),(3.12)

the functions Aǫ,ηi are Lipschitz in (w, p) with bounds independent of ǫ

and η, as soon as η remains bounded, and the functions Aǫ,ηi
w , Aǫ,ηi

pj
are

also Lipschitz with a bound depending on 1
ǫ . Then by Theorem 8.1

on Chapter 5 of [14], we have that there exists a solution uR
η,n,ǫ ∈

C1+β/2,2+β(QT ) for some β > 0 (indeed any β < 1) where QT is any
bounded cylinder in [0, T ] × R

N . The solution satisfies ‖uR
η,n,ǫ(t)‖∞ ≤

‖u0‖∞. Observe that since Aǫ,ηi
w , Aǫ,ηi

pj
are Lipschitz (with a bound

depending on 1
ǫ ) and Aǫ,ηi

wpj
pi, Aǫ,ηi

w and Aǫ,ηi
ww pi are bounded, then the

uniqueness conditions of Theorem 8.1 on Chapter 5 of [14] hold, and
we have a unique solution in the class of functions which are bounded
together with its derivatives of first and second order. In particular since
uR

η,n,ǫ(·+2R(1, . . . , 1)) and uR
η,n,ǫ(x1, . . . ,−xi, . . . , xN ), i = 1, . . . , N , are

also solutions of (3.10) in this class, we deduce that uR
η,n,ǫ has the same

symmetries and is periodic with fundamental period [−2R, 2R]N . In
particular, this implies that

(3.13) ∇uR
η,n,ǫ · ν[0,2R]N = 0 t > 0, x ∈ ∂[0, 2R]N .
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Using (3.13), the estimates (3.7) and (3.8) and

(3.14)

∫ T

0

∫

[0,2R]N
|∇uR

η,n,ǫ|2 dx dt ≤ 1

2η

∫

[0,2R]N
(ũR

0n(x))2 dx

follow easily by multiplication by suitable test functions and integration
by parts in [0, 2R]N . The estimate (3.9) can be proved as in [3].

The regularity of uR
η,n,ǫ permits now to use Theorem 3.1 in Chap-

ter 5 of [14]. Indeed, observe that the estimates in (3.11), (3.12) are
independent of ǫ, and the terms on the right hand side of (3.11), (3.12)
which do not depend on |p| are constants. Then Theorem 3.1 in Chap-
ter 5 of [14] proves that ∇uR

η,n,ǫ is Hölder-continuous in [0, T ] × Q

and
∂uR

η,n,ǫ

∂t , D2uR
η,n,ǫ ∈ L2([0, T ] × Q) for any compact set Q ∈ R

N

with bounds which depend on N , ‖u0‖∞, η and the constants in the
right hand side of (3.11), (3.12) (which are universal). Letting ǫ → 0,
we obtain that there is a weak solution of (3.10) uR

η,n whose restric-

tion to [0, 2R]N is in L1((0, T ) × [0, 2R]N) ∩ L2((0, T ), W 1,2([0, 2R]N)),
it satisfies the estimates in (3.7), (3.8), (3.9) and (3.14) and is such

that
∂uR

η,n

∂t , D2uR
η,n ∈ L2([0, T ] × Q) and ∇uR

η,n is Hölder-continuous

in [0, T ]× Q for any compact set Q ⊆ R
N .

To prove the last assertion, let Aη(w, p) = A0,η(w, p) and let us ob-
serve the previous computations of Aηi

ww, Aηi
wpj

and Aηi
pjpk

permit to

check that Aηi, Aηi
w , Aηi

pj
are Lipschitz continuous in any set of the

form {(w, p) : w ≥ α > 0, p ∈ R
N}. Since, by (3.7), uR

η,n is bounded

away from zero in [0, T ] × R
N , then using Theorem 8.1 of Chapter 5

in [14] we obtain that uR
η,n ∈ C1+β/2,2+β([0, T ] × R

N ) for some β > 0.

In particular uR
η,n, ∇uR

η,n, D2uR
η,n are locally Hölder continuous in (t, x)

and the functions

Aij(t, x) = Ai
pj

(uR
η,n(t, x),∇uR

η,n(t, x)),

Bi(t, x) = Ai
w(uR

η,n(t, x),∇uR
η,n(t, x))

and its derivatives are Hölder continuous in (t, x). Observe that ∂kuR
η,n is

a weak solution of the partial differential equation

(3.15) ∂tω = ∂i (Aij∂jω) + ∂i (Biω) .

We consider this PDE in [0, T ] × B(0, R′) (where B(0, R′) denotes the
ball centered at 0 of radius R′ > 0) with boundary conditions

ω(0, x) = ∂kũ0n(x) x ∈ B(0, R′)(3.16)

ω(t, x) = ∂kuR
η,n(t, x) t ∈ [0, T ], x ∈ ∂B(0, R′).(3.17)
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Now, we consider the PDE obtained by expanding (3.15)

(3.18) ∂tω = Aij∂ijω + ∂iAij∂jω + Bi∂iω + ∂iBiω

with boundary conditions (3.16), (3.17). Since its coefficients of (3.18)
are Hölder continuous in (t, x) and the initial condition is in

C2+β(B(0, R′)), there is a solution ω ∈ C
1+β/2,2+β
loc ([0, T ] × B(0, R′))

of (3.18) which is also a weak solution of (3.15) [13], [14]. By unique-
ness of weak solutions of (3.15) which satisfy the boundary conditions

(3.16), (3.17) classically, we have that ∇uR
η,n ∈ C

1+β/2,2+β
loc ([0, T ]×R

N ).
This implies our statement.

Lemma 3.4. Assume that u0 ∈ A. Then we have

(3.19) sup
[0,T ]×[0,2R]N

|∇uR
η,n(t, x)|

|uR
η,n(t, x)| ≤ sup

x∈[0,2R]N

|∇ũR
0n(x)|

|ũR
0n(x)| .

Proof: We consider here uR
η,n as a function in [0, T ]×R

N with the sym-

metries stated after Proposition 3.2. By the regularity of uR
η,n stated

in Lemma 3.3 we can proceed to the following change of variables and
the subsequent computations. Define uR

η,n = ev. Since uR
η,n(t, x) > 0,

then v(t, x) ∈ R. Then v(t, x) is a solution of

(3.20) vt = div

(

∇v
√

1 + |∇v|2

)

+
|∇v|2

√

1 + |∇v|2
+ η∆v + η|∇v|2

which is even and periodic with fundamental period [−2R, 2R]N . We
shall use Bernstein method to obtain an estimate on ‖Dv‖∞. Let us
write (3.20) as

(3.21) vt = aij(∇v)∂ijv + F (|∇v|2),
where we use the Einstein convention, aij(p) =

δij√
1+|p|2

− pipj

(1+|p|2)3/2
+

ηδij , F (|p|2) = |p|2√
1+|p|2

+ η|p|2. Let vk = ∂kv. Let ω = |∇v|2. Differen-

tiating (3.21) with respect to xk, and multiplying the resulting equation
by vk, we obtain

1

2

d

dt
ω = vkvkt =

1

2
aij∂ijω +

1

2

∂aij

∂pl
ωl∂ijv − aijvkivkj + F ′(|∇v|2)ωk · vk

≤ 1

2
aij∂ijω +

1

2

∂aij

∂pl
ωl∂ijv + F ′(|∇v|2)ωk · vk.

As an application of the maximum principle, we obtain

(3.22) ‖∇v(t)‖∞ ≤ ‖∇v0‖∞.

Then (3.19) is implied by (3.22).
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We denote by C1
ct((0, T )×Ω) the set of functions obtained as restric-

tions to (0, T ) × Ω of functions φ ∈ C1
0 ((0, T ) × R

N ).

Definition 3.5. Let Ω be an open bounded set in R
N with Lispchitz

boundary. Let u ∈ L1((0, T ) × Ω) and z ∈ L1((0, T ) × Ω, RN ). We say
that

ut = div z in (0, T )× Ω

z · νΩ = 0 on (0, T ) × ∂Ω

with test functions in C1
ct((0, T )× Ω) if

∫ T

0

∫

Ω

uφt dx dt =

∫ T

0

∫

Ω

z · ∇φdx dt ∀ φ ∈ C1
ct((0, T ) × Ω).

Next lemma is obvious and we state it for convenience.

Lemma 3.6. Let un, u ∈ L1((0, T ) × Ω), zn, z ∈ L1((0, T ) × Ω, RN )
be such that un → u weakly in L1((0, T ) × Ω) and zn → z weakly in
L1((0, T ) × Ω, RN ). If

unt = div zn in (0, T ) × Ω

zn · νΩ = 0 on (0, T ) × ∂Ω

with test functions in C1
ct((0, T )× Ω), then

ut = div z in (0, T )× Ω

z · νΩ = 0 on (0, T )× ∂Ω

with test functions in C1
ct((0, T )× Ω).

Lemma 3.7. Let Ω be an open bounded set in R
N with Lispchitz bound-

ary. Let u ∈ L1((0, T ) × Ω) be such that ∇u ∈ L1((0, T ) × Ω, RN ) and
let z ∈ L∞((0, T ) × Ω) be such that

(3.23)
ut = div z in (0, T )× Ω

z · νΩ = 0 on (0, T )× ∂Ω

with test functions in C1
ct((0, T )×Ω). Let j : R → R be a convex function

with p = j′ ∈ W 1,∞(R). Then

(3.24) −
∫ T

0

∫

Ω

j(u)φt dx dt+

∫ T

0

∫

Ω

z·∇p(u)φdx dt+

∫ T

0

∫

Ω

z·∇φp(u) dx dt=0

holds for any φ ∈ C1
ct((0, T )× Ω).
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Proof: For any function v(t, x), let us denote ∆+
τ v(t) = v(t+τ)−v(t)

τ

and ∆−
τ v(t) = v(t)−v(t−τ)

τ , and v−τ (t, x) := 1
τ

∫ t

t−τ v(s, x) ds, v+
τ (t, x) :=

1
τ

∫ t+τ

t
v(s, x) ds. Let φ ∈ C1

ct((0, T ) × R
N ), φ ≥ 0 with φ(t) = 0 when

0 ≤ t ≤ τ0, τ0 > 0. Using Definition 3.5 (which formally amounts to
multiply (3.23) by φ+

τ and integrate by parts), we deduce that

(3.25) ∆−
τ u = div z−τ in (τ, T ) × Ω

and

(3.26) z−τ · νΩ = 0 on (τ, T ) × ∂Ω,

again using test functions in C1
ct((τ, T )×Ω). From the convexity of j we

have that

∆−
τ j(u) ≤ p(u)∆−

τ u for t ≥ τ.

Hence, denoting by ρ̃n an approximation of the identity in (t, x) with
compact support, if we choose 0 < τ < τ0, we have

−
∫ T

0

∫

Ω

j(u)∆+
τ φdx dt =

∫ T

0

∫

Ω

∆−
τ j(u)φdx dt

≤
∫ T

0

∫

Ω

p(u)∆−
τ uφdx dt

= lim
n

∫ T

0

∫

Ω

(ρ̃n ∗ p(u))∆−
τ uφdx dt

= − lim
n

∫ T

0

∫

Ω

z−τ · ∇(ρ̃n ∗ p(u))φdx dt

− lim
n

∫ T

0

∫

Ω

z−τ · ∇φ(ρ̃n ∗ p(u)) dx dt

= −
∫ T

0

∫

Ω

z−τ · ∇p(u)φdx dt

−
∫ T

0

∫

Ω

z−τ · ∇φp(u) dx dt.

Letting τ → 0+, we obtain that

(3.27) −
∫ T

0

∫

Ω

j(u)φt dx dt+

∫ T

0

∫

Ω

z·∇p(u)φdx dt+

∫ T

0

∫

Ω

z·∇φp(u) dx dt≤0

and this holds for any φ ∈ C1
ct((0, T ) × Ω), φ ≥ 0.
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Similarly, we deduce that

(3.28) ∆+
τ u = div z+

τ in (0, T − τ) × Ω

and

(3.29) z+
τ · νΩ = 0 on (0, T − τ) × ∂Ω,

using test functions in C1
ct((0, T − τ) × Ω). From the convexity of j we

have that

∆+
τ j(u) ≥ p(u)∆+

τ u for t ≤ T − τ.

With a similar argument as above we deduce that

(3.30) −
∫ T

0

∫

Ω

j(u)φt dx dt+

∫ T

0

∫

Ω

z·∇p(u)φdx dt+

∫ T

0

∫

Ω

z·∇φp(u) dx dt≥0

holds for any φ ∈ C1
ct((0, T ) × Ω), φ ≥ 0. Thus, (3.24) holds for such φ.

Since any function φ ∈ C1
ct((0, T )×Ω) can be written as φ = max(φ, 0)−

max(−φ, 0) = limn ρ̃n∗max(φ, 0)−limn ρ̃n∗max(−φ, 0), the integrability
properties of u and ∇u permit to prove that (3.24) holds for any φ ∈
C1

ct((0, T ) × Ω).

We will use the entropy inequalities for (3.3) in the proof of Propo-
sition 3.2. For that, we consider the truncature functions of the form
T l

a,b(r) := Ta,b(r) − l (l ∈ R) and we denote

T + := {T l
a,b : 0 < a < b, l ∈ R, T l

a,b ≥ 0}.

Proof of Proposition 3.2:

Step 1. Assume that η ∈ (0, 1]. Let us prove that there is some γ > 0
such that

(3.31) |uR
η,n(t, x) − uR

η,n(s, x)| ≤ C|t − s|γ ∀ 0 ≤ s, t ≤ T, ∀ x ∈ R
N ,

where C > 0 is a positive constant which does not depend on η. Using
its symmetry properties, we consider uR

η,n as a solution of (3.6) in [0, T ]×
R

N . Now, observe that we may write (3.6) as

ut = div(aR
η,n(t, x)∇u),

where

aR
η,n(t, x) =

uR
η,n

√

(uR
η,n)2 + |∇uR

η,n|2
+ η.

Since

aR
η,n(t, x) =

1
√

1 +
(

|∇uR
η,n|

uR
η,n

)2
+ η
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we have that

1
√

1 + M2
n

+ η ≤ aR
η,n(t, x) ≤ 1 + η,

where Mn is the constant in the right hand side of (3.19). Hence the
assumptions of Theorem 10.1 of Chapter 3 in [14] are satisfied and (3.31)
holds.

Step 2. We let η → 0+. The estimates (3.8), (3.19) and (3.31) imply
the pre-compactness of {uR

η,n}η in C([0, T ] × [0, 2R]N). Any limit uR
n

satisfies the bounds (3.8), (3.19) and (3.31). Moreover, by extraction of
a subsequence, we may assume that uR

η,n → uR
n in C([0, T ] × [0, 2R]N)

and

(3.32) Aη(uR
η,n,∇uR

η,n) → zR
n (t, x) weakly∗ in L∞([0, T ]× [0, 2R]).

Using Lemma 3.6 and the techniques in [2] one can prove the following
facts:

(3.33)

∂uR
n

∂t
= div zR

n in (0, T ) × (0, 2R)N

zR
n · ν[0,2R]N = 0 on (0, T )× ∂[0, 2R]N ,

with test functions in C1
ct((0, T )× [0, 2R]N) and

(3.34) zR
n =

uR
n∇uR

n
√

(uR
n )2 + |∇uR

n |2
.

By Lemma 3.7, the entropy inequalities are satisfied (see [2]). Indeed, let
S, T ∈ T + and JST be the primitive of ST , i.e., JST (r) =

∫ r

0
T (s)S(s) ds,

let

A(w, p) :=
wp

√

w2 + |p|2
w ∈ [0,∞), p ∈ R

N ,

h(w, p) = A(w, p) · p =
w|p|2

√

w2 + |p|2
w ∈ [0,∞), p ∈ R

N ,

and

hS(u,∇T (u)) = S(u)h(u,∇T (u)).
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Replacing j by JST , u by uR
n and z by zR

n in (3.24), using only the
inequality ≤, we obtain the entropy inequalities [2], [4]

∫ T

0

∫

[0,2R]N
φhS(uR

n ,∇T (uR
n )) dx dt

+

∫ T

0

∫

[0,2R]N
φhT (uR

n ,∇S(uR
n )) dx dt

≤
∫ T

0

∫

[0,2R]N
JTS(uR

n (t))φ′(t) dx dt

−
∫ T

0

∫

[0,2R]N
A(uR

n (t),∇uR
n (t)) · ∇φT (uR

n (t))S(uR
n (t)) dx dt

for any truncatures S, T ∈ T + and any smooth function φ ∈ C1
ct((0, T )×

[0, 2R])N , φ ≥ 0.
Let us mention that the concept of entropy solution for the prob-

lem (3.3) defined in [2], [4] requires that the equation (3.33) holds with
more general test functions and using the techniques in [2], [4] it can be
proved that uR

n is an entropy solution of (3.3). On the other hand, the
concept of entropy solution for (3.3) implies that the equation in (3.3)
holds with test functions in C1

ct((0, T )× [0, 2R]), that truncatures of the
solution are functions of bounded variation in x, and the entropy condi-
tions are satisfied. The last two conditions are enough to prove unique-
ness using the method in [2], [4]. In the present context, this amounts
to say that using the uniqueness proof in [2], [4] we can prove: a) any
entropy solution of (3.3) coincides with uR

n and b) any two functions
with the regularity of uR

n satisfying the entropy conditions above must
coincide. In particular, this implies that the whole sequence uR

η,n → uR
n

as η → 0 in C([0, T ] × [0, 2R]N). Finally observe that, letting η → 0+

in (3.19) we obtain

(3.35) sup
[0,T ]×[0,2R]N

|∇uR
n (t, x)|

|uR
n (t, x)| ≤ sup

x∈[0,2R]N

|∇ũR
0n(x)|

|ũR
0n(x)| .

Step 3. Let us prove that

(3.36) sup
x∈[0,2R]N

|∇ũR
0n(x)|

|ũR
0n(x)| → sup

x∈[0,2R]N

|∇ũR
0 (x)|

|ũR
0 (x)| as n → ∞.
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Since ∇ũR
0n → ∇ũR

0 weakly∗ in L∞([0, 2R]N , RN ) and ũR
0n → ũR

0 uni-
formly in [0, 2R]N we deduce that

(3.37) sup
x∈[0,2R]N

|∇ũR
0n(x)|

|ũR
0n(x)| ≤ lim inf

n
sup

x∈[0,2R]N

|∇ũR
0 (x)|

|ũR
0 (x)| .

On the other hand, we observe that

|∇ũR
0n(x)| ≤

∫

RN

ρn(x − y)|∇ũR
0 (y)| dy

≤
∫

RN

ρn(x − y) sup
y′∈B(x, 1

n )∩[0,2R]N
|∇ũR

0 (y′)| dy

= sup
y′∈B(x, 1

n )∩[0,2R]N
|∇ũR

0 (y′)|≤|∇ũR
0 (x)|+

‖D2ũR
0 ‖L∞([0,2R]N )

n
.

Together with (3.37), this inequality and the uniform convergence of ũR
0n

to ũR
0 as n → ∞ imply (3.36).

Step 4. We let n → ∞. Indeed, since ũR
0n → ũR

0 in L1([0, 2R]N) and the
entropy solution of (3.3) gives a contractive semigroup in L1([0, 2R]N) [2],
then uR

n (t, x) converges as n → ∞ to the entropy solution uR(t, x)
of (3.3) with initial datum ũR

0 . Let us observe that the estimates we
have permit to obtain easily the same conclusion. The estimate analo-
gous to (3.8) for uR

n , the estimate (3.35) and the boundedness of its right

hand side prove that sup[0,T ]×[0,2R]N
|∇uR

n (t,x)|
|uR

n (t,x)| , hence also, ‖∇uR
n ‖∞,

is bounded independently of n. Now, the argument in Step 1 proves
that the Hölder bound (3.31) holds for uR

n with a bound independent
of n. Hence, after extraction of a subsequence if necessary, we have
that uR

n → uR uniformly in [0, T ] × [0, 2R]N as n → ∞ for some
uR ∈ C([0, T ] × [0, 2R]N). Now, by Step 3, we may pass to the limit
in (3.35) and we obtain

(3.38) sup
[0,T ]×[0,2R]N

|∇uR(t, x)|
|uR(t, x)|

≤ sup
x∈[0,2R]N

|∇ũR
0 (x)|

|ũR
0 (x)| .

Moreover, by extraction of a subsequence, we may assume that

(3.39) A(uR
n ,∇uR

n )→zR(t, x) weakly∗ in L∞([0, T ]×[0, 2R]) as n→∞.
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Using Lemma 3.6 and the techniques in [2] one can prove the following
facts:

(3.40)

∂uR

∂t
= div zR in (0, T ) × (0, 2R)N

zR · ν[0,2R]N = 0 in (0, T ) × ∂(0, 2R)N ,

with test functions φ ∈ C1
ct([0, T ]× R

N ) and

zR =
uR∇uR

√

(uR)2 + |∇uR|2
.

As in Step 2, by Lemma 3.7, the entropy inequalities are satisfied (see [2]).
The same observations made in Step 2 can be done in this case. Let
us only mention that it can be proved that uR is an entropy solution
of (3.3) in the sense of [4] (see also [2]). But we only need to observe
that solutions of (3.3) satisfying the same regularity conditions as uR

and the entropy inequalities are unique. This implies that the whole
sequence uR

n → uR as n → ∞ in C([0, T ] × [0, 2R]N). The entropy
solution of (3.3) is obtained by a suitable translation of uR, i.e., uR(x) =
uR(x + R(1, . . . , 1)).

Remark 3.8. Observe that the regularity of uR
η,n permits to obtain the

estimate

‖uR
η,n(t) − uR

η,m(t)‖L1([0,2R]N ) ≤ ‖ũR
0n − ũR

0m‖L1([0,2R]N )

∀ t ≥ 0, ∀ n, m ≥ 1,

in the standard way. Letting η → 0+ we obtain

‖uR
n (t) − uR

m(t)‖L1([0,2R]N ) ≤ ‖ũR
0n − ũR

0m‖L1([0,2R]N )

∀ t ≥ 0, ∀ n, m ≥ 1.

This implies the convergence of uR
n (t) to some uR(t, x) in

C([0, T ], L1([0, 2R]N)).

Lemma 3.9. Assume that u0 ∈ S(RN ) and u0(x) ≥ λ0e
−β

|x|2

2 for
some λ0, β > 0. Let u be the entropy solution of (3.2) with u(0, x) =

u0(x). Then u(t, x) ≥ λ0e
−αt−β |x|2

2 for any α ≥ β(2N − 1).
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Proof: Let us prove that if α ≥ 2N − 1, then U(t, x) = e−αt−β |x|2

2 is a
subsolution of (3.2). This follows from Ut = −αU and the inequality

div

(

U∇U
√

U2 + |∇U |2

)

=

[

−Nβ + (N − 1)β3|x|2
(1 + β2|x|2)3/2

+
β2|x|2

(1 + β2|x|2)1/2

]

U

≥ (−2N + 1)βU.

Since the equation (3.2) is homogeneous of degree 1, then λe−αt−β
|x|2

2 is
also a subsolution of (3.2) for any λ ≥ 0. By comparison with this

type of subsolution, we deduce that u(t, x) ≥ λ0e
−αt−β |x|2

2 when α ≥
β(2N − 1).

Remark 3.10. If u is the entropy solution of (2.2) then u(t, x) ≥
λ0e

−c2αt−β |x|2

2 for any α ≥ β
c2 (2N − 1).

Proof of Proposition 3.1:

Step 1. Estimates on uR. Fix a compact set Q ⊆ R
N and let R > 0 be

such that Q ⊆ (−R, R)N . Since the right hand side of estimate (3.38)
is uniformly bounded, as in Step 2 of the proof of Proposition 3.2, the
estimate (3.38) implies that there is some γ > 0 such that

|uR(t, x) − uR(s, x)| ≤ C|t − s|γ ∀ 0 ≤ s ≤ t ≤ T, ∀ x ∈ Q

where C > 0 depends on Q but it does not depend on R. Now, we
observe that letting η → 0+, n → ∞ in this order in the estimate (3.8)
we obtain that

(3.41) ‖uR(t, x)‖Lq([−R,R]N ) ≤ ‖u0‖Lq(RN ) ∀ q ∈ [1,∞].

Combining (3.41) with (3.38) we have that

‖∇uR(t)‖L∞([−R,R]N ) ≤
∥

∥

∥

∥

∇u0(x)

u0(x)

∥

∥

∥

∥

L∞([−R,R]N )

‖uR(t)‖L∞([−R,R]N )

≤
∥

∥

∥

∥

∇u0(x)

u0(x)

∥

∥

∥

∥

L∞(RN )

‖u0‖L∞(RN ).

These estimates imply that, by extracting a subsequence, if necessary,
we may assume that uR(t, x) → u(t, x) locally uniformly in [0, T ] × R

N

for some function u(t, x) ∈ C([0, T ]× R
N ). Letting R → ∞ we obtain

(3.42) ‖u(t, x)‖Lq(RN ) ≤ ‖u0‖Lq(RN ) ∀ q ∈ [1,∞],

and

‖∇u(t)‖L∞(RN ) ≤
∥

∥

∥

∥

∇u0(x)

u0(x)

∥

∥

∥

∥

L∞(RN )

‖u0‖L∞(RN ).
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We may also assume that

A(uR,∇uR) → z weakly∗ in L∞([0, T ]× R
N , RN )

for some vector field z ∈ L∞([0, T ] × R
N , RN ). Letting R → ∞ in the

PDE satisfied by uR (see (3.40) and the last lines of Step 4 of the proof
of Proposition 3.2) we have that

(3.43)
∂u

∂t
= div z in (0, T )× R

N

with test functions φ ∈ C1
ct((0, T )× R

N ).

Step 2. Identification of z. Let us prove that

(3.44) z = A(u,∇u) a.e. in (0, T ) × R
N .

For that, following [2], [4], we prove that

(3.45)

∫ T

0

∫

RN

φ(z − A(u,∇g)) · (∇u −∇g) dx dt ≥ 0,

for any φ(t, x) ∈ C∞
0 ((0, T )× R

N ), φ ≥ 0, and any g ∈ C1([0, T ]× R
N ).

Let us fix a function φ and a function g in the previous classes. For each
R > 0 such that suppφ ⊆ (0, T ) × (−R, R)N , we write the inequalities

∫ T

0

∫

RN

φ(A(uR,∇uR) − A(uR,∇g)) · (∇uR −∇g) dx dt ≥ 0

where the domain of integration is considered to be R
N by our choice

of R > 0.

Observe that, since uR → u as R → ∞ locally uniformly in [0, T ]×R
N

and ∇uR → ∇u weakly∗ in L∞([0, T ]× R
N , RN ), we have

∫ T

0

∫

RN

φA(uR,∇g) · ∇uR dx dt →
∫ T

0

∫

RN

φA(u,∇g) · ∇u dx dt,(3.46)

∫ T

0

∫

RN

φA(uR,∇g) · ∇g dxdt →
∫ T

0

∫

RN

φA(u,∇g) · ∇g dxdt(3.47)

and

∫ T

0

∫

RN

φA(uR,∇uR) · ∇g dx dt →
∫ T

0

∫

RN

φz · ∇g dx dt.(3.48)
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Finally, using the PDE satisfied by uR (see (3.40)), (3.43) and Lemma 3.7
we have

∫ T

0

∫

RN

φA(uR,∇uR) · ∇uR dx dt

= −
∫ T

0

∫

RN

∇φ · A(uR,∇uR)uR dx dt +
1

2

∫ T

0

∫

RN

φt(u
R)2 dx dt

→ −
∫ T

0

∫

RN

∇φ · zu dx dt+
1

2

∫ T

0

∫

RN

φtu
2 dx dt=

∫ T

0

∫

RN

φz · ∇u dx dt.

Collecting all the above inequalities, we obtain (3.45).

In particular, the inequalities (3.45) imply that

[z(t, x)−A(u(t, x),∇g(t, x))]·(∇u(t, x)−∇g(t, x))≥0 a.e. in (0, T )×R
N.

Since we may take a countable set of functions in C1([0, T ]×R
N ) dense

in C1([0, T ]×Bk) for any ball Bk centered at 0 of radius k ∈ N, we have
that the above inequality holds for all (t, x) ∈ S where S ⊆ (0, T )× R

N

is such that LN ((0, T ) × R
N \ S) = 0, and all g ∈ ∪kC1([0, T ] × Bk).

Now, fixed (t, x) ∈ S, and given y ∈ R
N , there is g ∈ ∪kC1([0, T ] × Bk)

such that ∇g(t, x) = y. Then

(z(t, x) − A(u(t, x), y)) · (∇u(t, x) − y) ≥ 0 ∀ y ∈ R
N and ∀ (t, x) ∈ S,

and, by an application of the Minty-Browder method in R
N , it follows

that

z(t, x) = A(u(t, x),∇u(t, x)) a.e. (t, x) ∈ QT ,

and (3.44) follows.

Step 3. Concluding the proof. By Steps 1 and 2 we have that

(3.49)
∂u

∂t
= div A(u,∇u) in (0, T ) × R

N

with test functions φ ∈ C1
ct((0, T ) × R

N ). Since ∇u ∈ L1
loc((0, T ) ×

R
N , RN ), with the same proof of Lemma 3.7, we have that the entropy

inequalities hold for u. Moreover, letting η → 0, n → ∞ and R → ∞ in
this order, we obtain that

(3.50)

∫ T

0

∫

RN

|∇Ta,b(u(t))| dx dt ≤ C

for some constant C > 0. This estimate, together with the entropy
inequalities, permit to prove that if u is the entropy solution of (3.2)
with initial datum u(0, x) = u0, then u = u. In other words, u is the
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entropy solution of (3.2). Since u0 ∈ Ae, then u0(x) ≥ λ0e
−β |x|2

2 for

some λ0, β > 0 and, by Lemma 3.9 we have that u(t, x) ≥ λ0e
−αt−β |x|2

2

for any α ≥ β(2N − 1). Thus, given R0, uR is bounded away from zero
in [0, T ]× [−R0, R0]

N for R large enough, and 1
uR → 1

u locally uniformly

in [0, T ] × R
N . This implies that ∇uR(t,x)

uR(t,x)
converges weakly∗ in L∞

to ∇u(t,x)
u(t,x) and, hence

∥

∥

∥

∥

∇u(t)

u(t)

∥

∥

∥

∥

∞

≤
∥

∥

∥

∥

∇u0

u0

∥

∥

∥

∥

∞

.

We conclude the proof of Theorem 2.2 with the following lemma.

Lemma 3.11. Assume that u0 ∈ Ae. Let uc be the solution of (2.2).
As c → ∞, uc converges to the solution U ∈ C([0, T ], L1(RN )) of the
heat equation ut = ∆u with U(0, x) = u0(x).

Proof: As in Step 2 of the proof of Proposition 3.2, let us prove that
there is some γ > 0 such that for any compact subset Q ⊆ R

N we have

(3.51) |uc(t, x) − uc(s, x)| ≤ C|t − s|γ ∀ 0 ≤ s, t ≤ T, ∀ x ∈ Q,

where C > 0 is a positive constant depending on Q which does not
depend on c. For that, observe that we may write (2.2) as

ut = div(ac(t, x)∇u),

where

ac(t, x) =
1

√

1 + 1
c2

(

|∇u|
u

)2
.

Observe that
1

√

1 + M2

c2

≤ ac(t, x) ≤ 1

where M is the constant in the right hand side of (3.1). Hence the
assumptions of Theorem 10.1 of Chapter 3 in [14] are satisfied and
(3.51) holds. The estimates (3.42), (3.1), (3.51) for uc and the con-
vergence ac(t, x) → 1 uniformly as c → ∞, imply that uc converges
as c → ∞ to the solution U ∈ C([0, T ], L1(RN )) of the heat equation
with U(0, x) = u0(x).
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