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PERIODIC PARABOLIC PROBLEMS WITH
NONLINEARITIES INDEFINITE IN SIGN

T. Gopoy AND U. KAUFMANN

Abstract

Let @ C RY be a smooth bounded domain. We give suffi-
cient conditions (which are also necessary in many cases) on two
nonnegative functions a, b that are possibly discontinuous and
unbounded for the existence of nonnegative solutions for semi-
linear Dirichlet periodic parabolic problems of the form Lu =
Aa (z,t) uP — b (z,t)u? in Q X R, where 0 < p,¢g < 1 and A > 0.
In some cases we also show the existence of solutions u)y in the
interior of the positive cone and that u) can be chosen such
that A — u) is differentiable and increasing. A uniqueness theo-
rem is also given in the case p < q. All results remain valid for
the corresponding elliptic problems.

1. Introduction

Let Q be a C?*? bounded domain in RV, N > 2,6 € (0,1). For T > 0
and 1 < p < oo, let L% be the Banach space of T-periodic functions f
on Q x R (i.e. satisfying f(z,t) = f(z,t+7T) ae. (z,t) € Q x R)
such that fiox 0,7y € LP (22 x (0,T)), equipped with the norm HfHLg =
HfIQX (0,T) HLP(QX (0.1))" Let C'r be the space of continuous and T-periodic
functions on € x R provided with the L® norm, and let C’;HMHQ)/Q be
the space of T-periodic functions belonging to C1+¢:(1+9)/2 ({y x R).

Let {a;;}, {b;}, 1 <i,5 <N, be two families of T-periodic functions
satisfying a;; € C%' (2 x R) , a;; = aj; and b; € L, and assume that

Zaij (x,t) &&5 > ao €|?

for some ap > 0 and all (z,t) € QxR, £ € RV, Let A be the NxN matrix
whose 4, j entry is a;;, let b= (by,...,bn), let 0 < co € L, r > N + 2,
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and let L be the parabolic operator given by
Lu = uy — div (AVu) + (b, Vu) + cou.

Let W = {ue L?((0,T),H} () :uy € L* ((0,T),H*())}. For a
given f € L%, we will say that u is a (weak) solution of the periodic
problem

Lu=f in 2 xR
(1.1) u=0 on 00 x R

u T-periodic

if u is T-periodic, ujgx 0,7) € W and

oh —
/ —uzy + (AVu, Vh) + (b, Vu) h + couh| = / fh
x(0,T) Qx(0,7)

for all h € C2° (2 x (0,T)). For w € W, the inequality Lu > f (resp. <)
in 2 xR, u=0in 92 x R will be understood in the analogous weak
sense.

For 1 < r < oo let W21 (Q x (tg,t1)) be the Sobolev space of the
functions u € L" (2 X (to,t1)), u = u(x,t), = (x1,...,xN5) such
that wus, uz; and wug,.; belong to L™ (2 x (to,t1)) for 1 < 4,5 < N,
and let VVT2 Tl be the space of T-periodic functions such that ujox o) €
W2 (Q x (0,T)). For f € L%, r > 1, we say that u is a strong solution
of (1.1)ifu € WTQT1 (€ x R) and the equation holds a.e. in the pointwise
sense.

The existence of positive solutions for periodic parabolic problems of
the form

Lu=g(z,t,u) in QxR
(1.2) u=0 on 90 x R

u T-periodic

has been widely studied (see e.g. [15] and the references therein). For
applications we refer to [15], [5]. In [11] and [13], bifurcation of pos-
itive solutions for (1.2) was proved assuming that £ — g (z,t,¢) /€ is
nonincreasing in (0,00) and that ge (z,¢,0) belongs to L% for some
r > (N 4 2) /2. On the other hand, in [12], existence results of positive
solutions for (1.2) were given without monotonicity conditions on g and
allowing g¢ (z,t,0) = 400, but assuming that info<,<¢ (g (x,¢,0) /o) be-
longs to LY. for some r > (N + 2) /2. However, in many cases of interest
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neither of the above conditions hold. A typical example of this situation
is the problem

Lu=Xa(z,t)uP —b(z,t)u? in QxR
(1.3) u=0 on 90 x R

u T-periodic

where a, b are two nonnegative functions, 0 < p,g < 1 and A > 0.

Our aim in this paper is to study (1.3), where a, b belong to L%
with » > N + 2. Concerning this problem, we will show existence of
nonnegative solutions for all A > 0 under weak conditions on a and b
(see Theorem 3.2 and also Remark 3.3), using iterative and fixed point
methods combined with some facts about linear problems with weight.
Also, under different assumptions on a and b, we will prove existence of
solutions in the interior of the positive cone of C:1F+0’(1+0)/ % for A large
enough and, for p < ¢, that u can be chosen such that A — wuy is
differentiable and increasing (see Theorem 3.4). These last results will
follow from a sub and supersolution approach together with the implicit
function theorem. Finally, a uniqueness theorem for the solutions in the
interior of the positive cone is given in Theorem 3.5 for the case p < g.

To avoid unnecessary complexity, we restrict ourselves to (1.3), but
one can see that most of the results are still valid for increasing non-
linearities that behave like uP near the origin and infinity. We mention
also that as a consequence of our proofs all results remain true for the
analogous elliptic problem.

In order to relate our results to others in the literature, let us men-
tion that similar elliptic problems have been studied for example in [20]
for L=—-Aand a,beC (ﬁ) using a variational approach, and recently
for a,b € C' () and allowing these functions to have a singularity in
the boundary in [14, Section 3] (see also the references therein). The
particular case Lu = muP in , with 0 < p < 1 and m changing sign,
was treated in detail in [2] for L = —A and m € C? (Q), 6 € (0,1),
using sub and supersolutions to construct nonnegative solutions, and
there is also a result for the associated parabolic initial boundary value
problem there. For the one dimensional elliptic problem (1.3), a precise
description of the solution set when p > ¢ and a = b = 1 was given in [8]

!/
for the operator Lu = — (|u’|s_2 u’) , § > 1. On the other hand, in the

periodic parabolic case, a similar problem to (1.3) with p = ¢ was consid-
ered extensively in [16] for the heat operator with Neumann boundary
condition, and it is also shown there that the nonnegative solutions are
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not necessarily unique. Existence and multiplicity of changing sign solu-
tions for similar periodic parabolic problems were also considered in [17].
We finally mention that related elliptic superlinear problems have been
widely studied too, see e.g. [1] and references therein.

2. Preliminaries and auxiliary results

We start collecting some known facts about the (weak) solution op-
erator (denoted by L~1) and strong solutions for problem (1.1).

Remark 2.1. (i) For r > (N +2) /2 it holds that L= (L%.) C Cr and

(i)

L=': L% — Cr is a compact and positive operator (see e.g. [4,
Section 5], also [11, Remarks 2.1 and 2.2]).

Given f € L7, r > N + 2, there exists a unique solution u € Wf%
of (1.1) and the operator L™': L. — VVTQT1 is continuous (see
e.g. [19, Section 4]). Moreover, from the Sobolev imbedding theo-
rems (e.g. [18, Lemma 3.3, p. 80]) it follows that u € O}+0’(1+9)/2
and if f > 0, the strong maximum principle (e.g. [5, Theorem 13.5])

gives that «w > 0 in 2 x R and % < 0 on 09 x R, where v denotes
the outward unit normal to 0€2.

)

We recall also some necessary facts about periodic parabolic problems
with weight.

Remark 2.2. (i) Let m € L%, r > (N +2) /2, and let

T
P(m):= /0 esssup,cq m (x,t) dt.

Then P (m) > 0 is necessary and sufficient for the existence of a
(unique) positive principal eigenvalue A1 (m) for the periodic prob-
lem Lu = Amu in Q@ xR, u =0 on 9Q x R (cf. [10, Theorem 3.6]).

For A € R, let py, (A) be defined as the unique p € R such that
the Dirichlet periodic problem Lu = Amu + piy, (A) u in Q X R has
a positive solution u. Then g, (A) is well defined, un, (0) > 0,
Lm 18 concave and continuous, and a given A € R is a principal
eigenvalue associated to the weight m if and only if u,, (A\) = 0
(cf. [10, Lemma 3.2]). Also, if A (m) exists, then for A > 0,
tm (A) > 0 if and only if A < Ay (m), and if Ay (m) does not exist,
tm (A) > 0 for all A > 0.
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(iii) If o (A) > O then for all h € L. the T-periodic problem

Lu=Mu+h In QxR
(2.1) u=0 on 002 x R

u T-periodic

has a unique solution u &€ Wf %, which is positive if h > 0, and
the solution operator h — wu for this problem is continuous from
LT into Cp (cf. [11, Lemma 2.9]). In particular, these conclusions
apply for all A > 0 if A; (m) does not exist and for 0 < A < Ay (m)
when Ay (m) exists.

Conversely, if (2.1) has a positive solution h and Ay (m) exists,
then A < A1 (m) (cf. [13, Remark 2.1 (e)]).

(iv) The following comparison principle holds: if mq, mo € L%, P (mq) >
0 and my < mg in QxR then A\; (m1) > A1 (m2) and, if in addition
my < mg in a set of positive measure, then A\; (m1) > A1 (ma2)
(cf. [10, Remark 3.7]).

The following lemma states a maximum principle for noncylindrical
domains.

Lemma 2.3. Let D C QxR be a domain, let0 < g€ L" (D), r > N+2,
and let u € Wfl} (@ x R) such that

Lu=g D
u>0 on 0D.

Then uw >0 in D.

Proof: Since u € C (ﬁ), there exists ¢ := minu. Suppose ¢ < 0, and
let (wg,t0) € D such that u (xg,tg) = c¢. Then (zq,t9) € D. Let Q C D
be a smooth bounded cylinder of the form @ = Qg X (to — 0,t0 + 9),
0 > 0, such that xg € 9Qp. Taking into account that Vu (xg,to) =
0, the maximum principle in Proposition 13.2 in [5] says that u = ¢
in Q. Now, choosing adequately such @’s (for example, taking 9y “pla-
nar” around zg) we can cover a neighborhood B, (x¢) x (to — d,t0 + 0)
with a finite number of them, and hence it follows that the set C :=
{(z,t) € D :u(x,t) = c} is open. Since it is also closed we have C' = D.
But then u < 0 on dD. Contradiction. O

Remark 2.4. In Lemma 2.3, the regularity assumptions on the coeffi-
cients of L can be weakened. In fact, it is clear from the proof that it
suffices that they hold in each compact subset of D.
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3. The main results

Lemma 3.1. Letb,f € L, r > N +2, b > 0. Then, there exists a
1

unique u € WZT solution of
Lu+blu 'u=f inQxR
(3.1) u=0 on 002 x R

u T'-periodic.

Moreover, the solution operator S: Cp — Crp is compact and increasing.
In particular, f > 0 implies Sf > 0.

Proof: Let v € Cp. From Remark 2.1 (ii) we have that there exists a
unique solution u € Wf r} of the Dirichlet periodic problem

(3.2) Lu+bp/ 'v=f in QxR

We note that the solution operator Sy: Cr — Cr is compact. Indeed,
Lebesgue’s dominated convergence theorem gives that the map v —
[v|? ' v is continuous from Cr into L5 for all s > 1, and therefore
v — —bv|" ' v+ f is continuous from Cr into Lk, for [ > N 4 2. Thus,
the compactness follows from Remark 2.1 i).

For R > 0, let FgT be the closed ball in Cr with center at 0 and

radius R. We claim that Sg: FgT — FgT for R large enough. Indeed,
from (3.2) we have |Lu| < |f| + R%b and thus

— (L7 +RIL7Y) <u< L7'|f|+ RIL™ .

Hence, |u| < ¢1 + c2R? where ¢1, ¢o do not depend on u and the claim
follows. So, the Schauder fixed point theorem (e.g. [9, Corollary 11.2])
gives a solution for (3.1).

Suppose now there exist two solutions u,w € Wf Tl for (3.1). Then

Lu—w)=b (|w|q_1 w— |u]?! u) in Q x R.

Since (|w|q*1 w— |ul!™ u) / (w — u) is always positive when u # w, the
maximum principle in Lemma 2.3 implies v = w.

To end the lemma, we note that the compactness of S follows reason-
ing as in the beginning of the proof, and the fact that .S is increasing
follows by Lemma 2.3 in a similar way as above. O
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Theorem 3.2. Let 0 <p,q <1, and let 0 < a,b e L}, r > N +2, such
that the following condition holds

(H1) There exists an open set B := Qy x (to,t1) C Q x R such that
a(z,t) > 0 in a subset of B of positive measure and b= 0 in B.

Then, for all X\ > 0 there exists a (nontrivial) nonnegative solution

u€ Wf)% of (1.3).

Proof: Let 0 < v € Cp and A > 0. By the above lemma there exists a
unique positive solution u € Wle of (3.1) with f := AavP. Let Sy be the
operator defined by Syv = S (Aav?) where S is the solution operator of
Lemma 3.1. Then S is compact and nondecreasing. Note that if v = ¢
for some constant c large enough, then Syv < v. Indeed, let u = Syv.
From (3.1) it follows that Lu < Aav? and so |ul|,, < KcP for some K
independent of c.

and

. o0
Take v = ¢ > 0, consider the nonincreasing sequence {S}v} ‘

let us > 0 be its limit. We have

Jj=0

Luji1 = dauf —buf,; in QxR
(3.3) Ujr1 =0 on 90 x R
u;41 T-periodic,

where u; = S}v. Now, by Lebesgue’s theorem the right side of (3.3)
converges in L7, thus {UjJrl};il converges in WTQT1 (and so also in Cr).

Then us € Wfr} and us = 0 on 90 x R. Going to the limit in (3.3) we
find that Lus, = Aaub, — bud, in  x R. It remains to see that us # 0.
We proceed by contradiction. Suppose that u., = 0. Since u; converges
to uso in Cr, there exists jo such that u; <1 for j > jg. Observe also
that

(3.4) ug (x,t) >0 for (x,t) € B, ke NU{0}.
Indeed, (3.4) clearly holds for £ = 0 and if it holds for k = j, since

Lujii = /\aué) >0 inB
Uj+1 Z 0 on 8PB
u;j4+1 T-periodic,

where

(3.5) dpB := (090 x (to,t1)) U (R0 x {to}),
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the maximum principle gives (3.4) for k¥ = j + 1. Taking into account
(3.4) and that u; 1 < uj, a computation gives, for p < s < 1 and j > jo,

L(ujiy) = (1= s)uif L (ujia)

+s(1—9) u;ffl<AVuj+1, VUj+1>+SCQ’U/;-;f

—
&
D

=
\Y

> (1 —s)uj ) dauf

> (1—s)Aau}™*

>(1-s)ha in B.
Also,
(3.7) uj+1 > 0 on OpB.

From (3.6) and (3.7), the maximum principle implies u]1+f > zon B
for j > jo where z € W2 (B) is the (nonnegative and nontrivial) solu-
tion of

Lz=(1-s)Aa in B,
z=0 on OpB.

Thus ul;* > 2z and s0 us = 0 is impossible. O

Remark 3.3. Let us make some comments on the condition (H1). Let
m € L, r > N+2,m =m" —m™, where as usual m™ = max (m, 0) and
m~ = max (—m,0). By the above theorem there exists a nonnegative
solution of the Dirichlet periodic problem

Lu=> nT™uw? —m u? in QxR

for all A > 0 provided that (H1) holds. Moreover, if m € Cp, (HI) is
also necessary by the maximum principle. In particular, taking A = 1
and p = q it follows that Lu = mu? in 2 X R has a nonnegative solution
if and only if m > 0 at some point. This generalizes (and gives a different
proof of) the existence results known in the elliptic case (e.g. [2]) as well
as in the periodic parabolic case.

We focus now on the existence of strictly positive solutions for (1.3).
We note that, for general p,q € (0,1), the only information available
from the proof of Theorem 3.2 about the solution u provided there is
that w (z,t) > 0 for each B satisfying (H1) which, in general, does not
implies that u (z,t) > 0 for all (x,t) € Q x R.
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Let
Q. ={xeQ:6(x) >e},
A, =Q—-Q..
d (x) := dist (z,09)

P° := interior of the positive cone of O;+9,(1+9)/2'

Theorem 3.4. Let 0 < p,q < 1, and let 0 < a,b € L,, r > N + 2.
Assume
(H2) Fither there exist e, K > 0 and v > 1—q —1/(N +2) such that
b< Ké§ ae (z,t) € Ac xR, orq>1+1/r—1/(N +2).
Then, there exists Ao > 0 such that for all A > Ao problem (1.3)
has a solution u € Wle n Pe.
Assume in addition that
(H3) p < q, and either there exist e, K >0 andy>1—-p—1/(N +2)
such that a < K67 a.e. (z,t) € Ac xR, orp>1+1/r—1/(N + 2).
Then, there exists Ao > 0 such that a solution uw = uy of (1.3)
can be chosen such that \—uy is a C' increasing map from (g, 00)
mto Wle npPe.
Proof: Assume in (H1) that e, K and « exist and let v € Cp such
that v > ¢d for some ¢ > 0. Since 1 — ¢ < v+ 1/ (N + 2) we can pick «
and o with 0 > N + 2 such that 1 — ¢ < a < v+ 1/0. Now,

||b/v°‘||‘zo(AEx(o,T)):/

ba’/vaa' < C*OCUKG’/ 50(7704) < 00
A% (0,T)

A% (0,T)

the last inequality because o (y —a) > —1. So, b/v® € L% for s :=
min (o,r) > N +2. If in (H1) it holds that ¢ > 1+1/r—1/ (N + 2) then
1-¢<1/s—1/r for some s > N + 2 and so we can pick a such that
1—¢g<a<1/s—1/r. Now, by Holder’s inequality,

r—s

S r
< Bl o= ey < e B, / o <o
L, L HLS) b Qx(0,T) ’

the last inequality because o= < 1. Thus in any case we have b/v® €
L for some a > 1 — ¢ and s > N + 2. Then Theorem 3.4 in [12] gives
a positive solution uy € L for the problem

(L+b/v*)uy = Aau} in QxR
(3.8) uy =0 on 90 x R

u) T-periodic,

b

‘ v

(e
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for all A > 0. Recalling Remark 2.1 (ii) we have that uy € P°, and,
due to the homogeneity, it holds that uy = AY1=P)U for some U € P°
solution of (L + b/v*)U = aUP in @ xR, U = 0 on 99 x R. Hence, since
a > 1 — q, there exists A\g > 0 such that uy > /(=9 for all A > \.
Therefore, from (3.8) we get Luy < Aauf —buf in Q x R.

On the other hand, since we can construct supersolutions wy of (1.3)
such that wy > ¢ in @ x R for all ¢ > 0 and all A > 0 (see [12,
Lemma 2.3]), Theorem 1 in [7] applies and thus the first assertion of
the theorem is proved.

Let A > )Xo, let uy be the solution of (1.3) found above, and let
my = )\pauifl — qbu?\*l, my = )\auf\fl — bu?\*l. Note that (H2) and
(H3) imply that my and m belong to L% for some s > N + 2. We claim
that the implicit function theorem can be applied in the point (A, uy).
Indeed, to see this it suffices to show that for a given g € L7, there is a
unique solution h € Wf :,{ of the problem

(L—my)h=¢g inQxR
(3.9) h=0 on 02 x R
h T-periodic,

and that the solution operator S for this problem is continuous. Con-
sider first the case when A; (m)) exists. From (1.3) it follows that

A1 (my) = 1. Since my > my/q, recalling the comparison principle
in Remark 2.2 (iv) we obtain
(3.10) 1 < g1 (my) < A1 (my)

and so fim,, (1) > 0. If A (m)) does not exist the same conclusion holds.
Hence, by the results in Remark 2.2 (iii) and Remark 2.1 (ii) in both
cases Sy is well defined and continuous on Wf %

Let (a,3) be a maximal interval in which A — wuy is a C' map
into Wf :,{ N P°. Observe that A — wu) is increasing. Indeed, differ-
entiating (1.3) with respect to A\ gives

ou
ox
If A1 (my) exists, Remark 2.2 (iii) and (3.10) imply g% > 0. If Ay (my)
does not exist, then p,y,, is positive everywhere, thus i, (1) > 0 and
so, again by Remark 2.2 (iii) we get % > 0 also in this case.

Now, suppose 8 < oo, and let u; € P° be the solutions of (1.3
corresponding to some sequence A; — 3. Recalling Remark 2.1 (i), a
standard compactness argument gives some ug solution of (1.3) for A=g4.

(L —my) buf >0 in QxR
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Moreover, since A — uy is increasing we have ug € P°. But then
reasoning as above we can apply the implicit function theorem in the
point (3, ug), contradicting the maximality of (e, 3). O

Concerning the matter of uniqueness or multiplicity of positive solu-
tions, there are examples of different nonnegative solutions for similar
problems to (1.3) with p = ¢ both in the elliptic and the periodic para-
bolic case (cf. [2], [16]), so we cannot expect uniqueness here. Moreover,
whenp >gq,a=b=1, L =—-A, and N =1, it is shown in [8] that for
some A there are exactly two solutions in the interior of the positive cone
for (1.3), and therefore we cannot expect a general uniqueness theorem
for the case p > ¢ neither. However, when p < ¢ the solution in the
interior of the positive cone for (1.3) (if such a solution exists) turns out
to be unique as the following theorem shows. Its proof is inspired in the
proof of Proposition 2.2 in [6] and uses a change of variable introduced
(for the elliptic case and b = 0) by L. Nirenberg (see [3, Appendix II,
Method IV)).

Theorem 3.5. Let 0 < p < ¢ <1, A >0, and let 0 < a,b € L7,
r > N 4 2. Then there exists at most one solution u € Wf)% n P°
of (1.3).
Proof: Suppose that there exist u,v € VVTQT1 N P° solutions of (1.3), and
let C:={(z,t) € A x R:u(x,t) > v(x,t)}. Let s besuch that p<s<gq.
A simple computation gives that h(§) = (Aa(z,t) &P —b(z,t)£2) /&°
is nonincreasing in (0,00) a.e. (z,t) € Q x R. For (z,t) € C, define
w(z,t) = f:(ftt)) £ 5dE. Then clearly w = 0 on 9C and taking into
account that u,v € P° it also follows that w is continuous in C. Now,
since h (€) and €71 are nonincreasing, a computation shows that, in C,
Lw — cow = u *Lu — v *Lv + su™ " (AVu, Vu)
— 505 AV, Vo) — ¢ (u' 7% —0'7?)

<h(u) —h )+ su AV, Vu) — su* o2 (AVo, Vo)

< sutTH (Vu/u® + Vo /vs, AVw) .
Thus, recalling the maximum principle in Lemma 2.3 and Remark 2.4,
the theorem follows. O
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