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OPTIMALITY OF EMBEDDINGS OF

BESSEL-POTENTIAL-TYPE SPACES INTO

GENERALIZED HÖLDER SPACES

Amiran Gogatishvili1, Júlio S. Neves2 and Bohuḿır Opic1

Abstract

We establish the sharpness of embedding theorems for Bessel-
potential spaces modelled upon Lorentz-Karamata spaces and we
prove the non-compactness of such embeddings. Target spaces in
our embeddings are generalized Hölder spaces. As consequences of
our results, we get continuous envelopes of Bessel-potential spaces
modelled upon Lorentz-Karamata spaces.

1. Introduction

In a series of recent papers [7]–[10] a systematic research of em-
beddings of Bessel potential spaces modelled upon generalized Lorentz-
Zygmund (GLZ) spaces was carried out. For a survey of these results
we refer to [20]. The authors of those papers established embeddings of
such spaces either into GLZ spaces or into Hölder-type spaces C0,λ(·)(Ω)
and showed that their results are sharp (within the given scale of tar-
get spaces) and fail to be compact. They also clarified the role of the
logarithmic terms involved in the quasi-norms of the spaces mentioned.
This role proved to be important especially in limiting cases. In par-
ticular, they obtained refinements of the Sobolev embedding theorems,
Trudinger’s limiting embedding as well as embeddings of Sobolev spaces
into λ(·)-Hölder continuous functions including the result of Brézis and
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Wainger about almost Lipschitz continuity of elements of the (fractional)

Sobolev space H
1+n/p
p (Rn) (cf. [4]).

Although GLZ-spaces form an important scale of spaces contain-
ing, for example, Zygmund classes Lp(logL)α, Orlicz spaces of mul-
tiple exponential type, Lorentz spaces Lp,q, Lebesgue spaces Lp, etc.,
GLZ-spaces are a particular case of more general spaces, namely the
Lorentz-Karamata (LK) spaces.

The embeddings mentioned above were extended in [17]–[18] to the
case when Bessel-potential spaces are modelled upon LK-spaces. Since
Neves considered more general targets (besides LK-spaces and Hölder-
type spaces also generalized Hölder spaces), in several cases he obtained
improvements of embeddings from [7]–[10]. On the other hand, there is
a problem to prove the sharpness and the non-compactness of these em-
beddings. This problem was solved in [12] for embeddings with Lorentz-
Karamata spaces as target spaces. The main aim of this paper is to
establish the sharpness and the non-compactness when the target spaces
are generalized Hölder spaces. Moreover, we also extend the results
of [18] since our definition of LK-spaces (see Section 2) is more general
than that given in [18]. As in [13], we do not assume any symmetry of
slowly varying functions involved in the quasi-norms of LK-spaces. We
also improve (cf. Remark 3.1 below) embeddings of Bessel spaces mod-
elled upon LK-spaces into spaces of λ(·)-Hölder continuous functions in
the sublimiting case proved in [18] since here we consider embeddings
into the scale of spaces which can be more finely tuned, namely into the

scale of generalized Hölder spaces Λ
λ(·)
∞,r. As a consequence of our em-

bedding results, we get continuity envelopes of Bessel-potential spaces
modelled upon LK-spaces. For basic facts about these notions we refer
to [14] and [22].

Our method of proving the sharpness and the non-compactness of the
given embeddings is based on those of [8] and [10]. In contrast to [22],
we do not use atomic decompositions.

The paper is organised as follows. Section 2 contains notation and
basic definitions, while the main results are stated in Section 3. After
some preliminary in the next section, the final Section 5 gives the proofs
of the promised theorems.

2. Notation and basic definitions

As usual, R
n denotes Euclidean n-dimensional space. Let µn be the

n-dimensional Lebesgue measure in R
n and let Ω be a µn-measurable

subset of R
n. We denote by χΩ the characteristic function of Ω and write
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|Ω|n = µn(Ω). The family of all extended scalar-valued (real or complex)
µn-measurable functions on Ω will be denoted by M(Ω), and M+(Ω) will
stand for the subset of M(Ω) consisting of all those functions which are
non-negative a.e. By W(Ω) (or by W(a, b)) we mean the class of weighted
functions on Ω (or on (a, b)) consisting of all measurable functions which
are positive a.e. on Ω (or on (a, b)). Let f ∈ M(Ω). The non-increasing
rearrangement of f is the function f∗ defined on [0,+∞) by f∗(t) =
inf {λ ≥ 0 : |{x ∈ Ω : |f(x)| > λ}|n ≤ t} for all t ≥ 0. We shall also use

the maximal function f∗∗ of f∗ defined by f∗∗(t) = t−1
∫ t

0 f
∗(τ) dτ ,

t > 0. Clearly, f∗(t) ≤ f∗∗(t), t > 0, and we also have the inequality

(2.1) (f + g)∗∗(t) ≤ f∗∗(t) + g∗∗(t) for all t > 0,

cf. [2, p. 55]. For general facts about (rearrangement-invariant) Banach
function spaces we refer to [2, Chapter 1, Chapter 2].

Now let m ∈ N and α = (α1, . . . , αm) ∈ R
m. We denote by `α

the function defined by `α(t) =
∏m

i=1 `
αi

i (t) for all t ∈ (0,+∞), where
`1, . . . , `m are positive functions defined on (0,+∞) by `1(t) = 1+| log t|,
and, if m ≥ 2, `i(t) = 1 + log `i−1(t), i ∈ {2, . . . ,m}.

For two non-negative expressions (i.e. functions or functionals) A, B,
the symbol A - B means that A ≤ cB, for some positive constant c
independent of the variables in the expressions A and B. If A - B
and B - A, we write A ≈ B and say that A and B are equivalent. We
adopt the convention that a/(+∞) = 0 and a/0 = +∞ for all a > 0.
If p ∈ [1,+∞], the conjugate number p′ is given by 1/p+ 1/p′ = 1.

Following [13], we say that a positive and Lebesgue-measurable func-
tion b is slowly varying on (0,+∞), and write b ∈ SV (0,+∞), if, for
each ε > 0, tεb(t) is equivalent to a non-decreasing function on (0,+∞)
and t−εb(t) is equivalent to a non-increasing function on (0,+∞).

Properties and examples of slowly varying functions can be found
in [23, Chapter V, p. 186], [3], [11], [15], [17] and [13]. The following
functions are slowly varying on (0,+∞):

(i) b(t) = `α(t), α ∈ R
m;

(ii) b(t) = `α(t)χ(0,1)(t) + `β(t)χ[1,+∞)(t), α,β ∈ R
m;

(iii) b(t) = exp(| log t|α), 0 < α < 1;

(iv) bm(t) = exp(`αm(t)), 0 < α < 1 and m ∈ N.

Note that if m ≥ 2, we may consider α = 1 in the last example. In
such a case bm ≈ `m−1.

It can be shown (cf. [13]) that any b ∈ SV (0,+∞) is equivalent to

a b̃ ∈ SV (0,+∞) which is continuous in (0,+∞). Consequently, without
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loss of generality, we shall assume that all slowly varying functions in
question are continuous functions in (0,+∞).

Let p, q ∈ (0,+∞] and b ∈ SV (0,+∞). The Lorentz-Karamata (LK)
space Lp,q;b(Ω) is defined to be the set of all functions f ∈ M(Ω) such
that

(2.2) ‖f‖p,q;b;Ω := ‖t1/p−1/q b(t) f∗(t)‖q;(0,+∞)

is finite. Here ‖.‖q;(a,b) stands for the usual Lq (quasi-)norm over an
interval (a, b) ⊆ R.

When 0 < p < +∞, the Lorentz-Karamata space Lp,q;b(Ω) contains
the characteristic function of every measurable subset of Ω with finite
measure and hence, by linearity, every µn-simple function f satisfying
|supp f |n < +∞. When p = +∞, the Lorentz-Karamata space Lp,q;b(Ω)

is different from the trivial space if, and only if, ‖t1/p−1/qb(t)‖q;(0,1) <
+∞.

If m ∈ N, α = (α1, . . . , αm) ∈ R
m and b = `

α, then Lp,q;b(Ω) is
precisely the generalized Lorentz-Zygmund (GLZ) space Lp,q;α(Ω) in-
troduced in [9] and endowed with the (quasi-)norm ‖f‖p,q;α;Ω. When
α = (0, . . . , 0), we obtain the Lorentz space Lp,q(Ω) endowed with the
(quasi-)norm ‖.‖p,q;Ω, which is just the Lebesgue space Lp(Ω) equipped
with the (quasi-)norm ‖.‖p;Ω when p = q; if p = q and m = 1, we ob-
tain the Zygmund space Lp(logL)α1(Ω) endowed with the (quasi-)norm
‖.‖p;α1;Ω.

The Bessel kernel gσ, σ > 0, is defined as that function on R
n whose

Fourier transform is ĝσ(ξ)=(2π)−n/2(1+|ξ|2)−σ/2, ξ∈R
n, where the Fou-

rier transform f̂ of a function f is given by f̂(ξ)=(2π)−n/2
∫

Rne
−iξ·xf(x) dx.

It is known that gσ is a positive, integrable function which is analytic
except at the origin.

Let σ > 0, p ∈ (1,+∞), q ∈ [1,+∞], and b ∈ SV (0,+∞). The
Lorentz-Karamata-Bessel potential space HσLp,q;b(R

n) is defined to be

{u : u = gσ ∗ f, f ∈ Lp,q;b(R
n)}

and is equipped with the (quasi-)norm ‖u‖σ;p,q;b := ‖f‖p,q;b.
For σ = 0, we put

(2.3) g0 ∗ f = f and HσLp,q;b(R
n) = Lp,q;b(R

n).

When m ∈ N, α = (α1, . . . , αm) ∈ R
m and b = `α, we obtain the

logarithmic Bessel potential space HσLp,q;α(Rn), endowed with the
(quasi-)norm ‖u‖σ;p,q;α and considered in [9]. Note that if α = (0, . . . , 0),
HσLp,p;α(Rn) is simply the (fractional) Sobolev space Hσ

p (Rn) of the or-
der σ.
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When k ∈ N, p, q ∈ (1,+∞) and b ∈ SV (0,+∞), then

HkLp,q;b(R
n) = {u : Dαu ∈ Lp,q;b(R

n), if |α| ≤ k},

and

‖u‖k;p,q;b ≈
∑

|α|≤k

‖Dαu‖p,q;b, u ∈ HkLp,q;b(R
n),

according to Lemma 4.5 below and [18, Theorem 5.3].
Let Ω be a domain in R

n. The space of all scalar-valued (real or
complex), bounded and continuous functions on Ω is denoted by CB(Ω)
and it is equipped with the L∞(Ω) norm. For each h ∈ R

n, let Ωh =
{x ∈ Ω : x + h ∈ Ω} and let ∆h be the difference operator defined on
scalar functions f on Ω by (∆hf)(x) = f(x + h) − f(x) for all x ∈ Ωh.
The modulus of smoothness of a function f in CB(Ω) is defined by

ω(f, t) := sup
|h|≤t

‖∆hf |L∞(Ωh)‖ for all t ≥ 0.

If

ω̃(f, t) := ω(f, t)/t for each t > 0,

then ω̃(f, .) is equivalent to a non-increasing function on (0,+∞). We
refer to [2, pp. 331–333] and to [5, pp. 40–50] for more details.

Let q ∈ (0,+∞] and let Lq be the class of all continuous func-
tions λ : (0, 1] → (0,+∞) which are increasing on some interval (0, δ),
with δ = δλ ∈ (0, 1], and satisfy

lim
t→0+

λ(t) = 0

and

(2.4)

∥∥∥∥t−1/q t

λ(t)

∥∥∥∥
q;(0,δ)

< +∞.

When q = +∞, we simply write L instead of Lq .
Let q ∈ (0,+∞], λ ∈ Lq and let Ω be a domain in R

n. The generalized

Hölder space Λ
λ(·)
∞,q(Ω) consists of all those functions f ∈ CB(Ω) for which

the norm

‖f |Λλ(.)
∞,q(Ω)‖ := ‖f |L∞(Ω)‖ +

∥∥∥∥t−1/q ω(f, t)

λ(t)

∥∥∥∥
q;(0,1)

is finite. The space Λ
λ(·)
∞,∞(Ω) coincides (cf. [16, Proposition 3.5]) with

the space C0,λ(·)(Ω) defined by

‖f |C0,λ(·)(Ω)‖ := sup
x∈Ω

|f(x)| + sup
x,y∈Ω

0<|x−y|≤1

|f(x) − f(y)|

λ(|x − y|)
< +∞.
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If λ(t) = t, t ∈ (0, 1], and Ω = R
n, then Λ

λ(·)
∞,∞(Ω) coincides with the

space Lip(Rn) of the Lipschitz functions. Note also that if (2.4) does

not hold, then Λ
λ(·)
∞,q(Ω) consists only of constant functions on Ω.

Remark 2.1. If Ω = R
n, then the space Λ

λ(·)
∞,q(Ω) is a particular case

of the Besov-Hölder-Lipschitz space Λλ
p,q(R

n) with p = ∞ from [16].
If, moreover, λ ∈ (0, 1], b is a slowly varying function on [1,+∞) (for
definition see [18]) and the function λ(t) := tλb(1/t), t ∈ (0, 1], then

the space Λ
λ(·)
∞,q(Ω) coincides with the Besov-Lipschitz-Karamata space

Λλ,b
p,q(R

n) with p = ∞ from [18].

On the other hand, if Ω is a domain in R
n, λ ∈ (0, 1] and λ(t) := tλ,

t ∈ (0, 1], then the space Λ
λ(·)
∞,q(Ω) coincides with the generalized space

of Hölder continuous functions C0,λ,q(Ω) introduced in [1, p. 232].

For ρ ∈ (0,+∞) and x ∈ R
n, Bn(x, ρ) stands for the open ball in R

n

of radius ρ and centre x, whilst Bn(x, ρ) means its closure in R
n. By ωn

we denote the volume of the unit ball in R
n.

Given two (quasi-)Banach spacesX and Y , we writeX ↪→ Y ifX ⊂ Y
and the natural embedding of X in Y is continuous.

3. Statement of the results

In this section we present embeddings of Bessel-potential-type spaces
into generalized Hölder spaces, which extend and improve those of [10]
and [18]. Our main results state that such embeddings are sharp and
fail to be compact.

Part (i) of the following theorem improves and extends [10, Theo-
rem 3.2] and [18, Theorem 5.10] and discusses embeddings of Bessel
potential spaces modelled upon Lorentz-Karamata spaces into general-
ized Hölder spaces in the sublimiting case. Parts (ii)–(iii) of this theorem
imply that the embedding of part (i) is sharp while part (iv) shows that
such an embedding fails to be compact.

Theorem 3.1. Let σ ∈ [1, n + 1), max{1, n/σ} < p < n/(σ − 1), q ∈
(1,+∞), r ∈ [q,+∞] and let b ∈ SV (0,+∞). Suppose that Ω ⊂ R

n is
a nonempty domain. Let λ : (0, 1] → (0,+∞) be defined by

(3.1) λ(t) = tσ−n/p[b(tn)]−1, t ∈ (0, 1].

(Note that λ ∈ Lr for any r ∈ [1,+∞].)

(i) Then

(3.2) HσLp,q;b(R
n) ↪→ Λλ(·)

∞,r(R
n).
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(ii) If a function µ ∈ Lr satisfies

(3.3) lim
t→0+

t
λ(t)∥∥∥τ−1/r τ
µ(τ)

∥∥∥
r;(0,t)

= 0,

then the embedding

(3.4) HσLp,q;b(R
n) ↪→ Λµ(.)

∞,r(Ω)

does not hold.

(iii) Let q ∈ (0, q). Then the embedding

(3.5) HσLp,q;b(R
n) ↪→ Λ

λ(·)
∞,q(Ω).

fails.

(iv) The embedding

HσLp,q;b(R
n) ↪→ Λλ(·)

∞,r(Ω)

is not compact.

Remark 3.1. (i) If r = +∞, then (3.2) yields

HσLp,q;b(R
n) ↪→ Cλ(·)(Rn),

cf. [18, Theorem 5.10].

(ii) As

(3.6) Λλ(·)
∞,r(R

n) ↪→ Λλ(·)
∞,s(R

n) if 0 < r < s ≤ +∞,

among embeddings (3.2) the embedding

(3.7) HσLp,q;b(R
n) ↪→ Λλ(·)

∞,q(R
n)

is optimal. (Note that embedding (3.6) can be proved analogously as [12,
(3.6)] if one replaces the role of f∗(t) by the role of ω̃(f, t).)

(iii) By part (i) of Theorem 3.1, embedding (3.7) is continuous and,
by part (iv) of Theorem 3.1, this embedding is not compact. Moreover,
part (iv) of Theorem 3.1 also shows that we cannot arrive to a compact

embedding if we replace the target space Λ
λ(·)
∞,q(Rn) in (3.7) by a larger

space Λ
λ(·)
∞,r(Ω) with r > q.

(iv) Put X = HσLp,q;b(R
n) and r = +∞. By Theorem 3.1 (i),

sup
t∈(0,1)

ω̃(f, t)

λ(t)/t
- ‖f‖X for all f ∈ X,
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and, by Theorem 3.1 (i) and (ii) (cf. also part (v) of this remark), the
inequality

sup
t∈(0,1)

ω̃(f, t)

µ(t)/t
- ‖f‖X

does not hold for all f ∈ X if µ ∈ L satisfies

lim
t→0+

t
λ(t)

t
µ(t)

= lim
t→0+

µ(t)

λ(t)
= 0.

If we use an analogue of terminology from [22], this means that the

function λ(t)
t = tσ−n/p−1[b(tn)]−1, t ∈ (0, 1], is the continuous envelope

function of the space HσLp,q;b(R
n). Using also part (iii) of Theorem 3.1,

we can see that the couple

(tσ−n/p−1[b(tn)]−1, q)

is the continuous envelope of the space HσLp,q;b(R
n).

(v) Let r ∈ [q,+∞]. Using (3.1), we obtain
∥∥∥∥τ−1/r τ

λ(τ)

∥∥∥∥
r;(0,t)

≈
t

λ(t)
for all t ∈ (0, 1).

This implies that

(3.8) lim
t→0+

t
λ(t)∥∥∥τ−1/r τ
µ(τ)

∥∥∥
r;(0,t)

≈ lim
t→0+

∥∥∥τ−1/r τ
λ(τ)

∥∥∥
r;(0,t)∥∥∥τ−1/r τ

µ(τ)

∥∥∥
r;(0,t)

.

On the other hand, the estimate

(3.9)

∥∥∥∥τ−1/r τ

µ(τ)

∥∥∥∥
r;(0,t)

≥
1

µ(t)
‖τ1−1/r‖r;(0,t) ≈

t

µ(t)

(which holds for all t from an interval (0, δ) since µ ∈ Lr and so µ is
increasing in some interval (0, δ) ⊂ (0, 1)), shows that condition (3.3) is
satisfied if

(3.10) lim
t→0+

µ(t)

λ(t)
= 0.

(vi) Let r = +∞ and let the function t 7→ t/µ(t) be equivalent to
a non-decreasing function on some interval (0, δ) ⊂ (0, 1). Then, for
all t ∈ (0, δ),

(3.11)

∥∥∥∥τ−1/r τ

µ(τ)

∥∥∥∥
r;(0,t)

=

∥∥∥∥
τ

µ(τ)

∥∥∥∥
∞;(0,t)

≈
t

µ(t)
.
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Applying this estimate in (3.8), we can see that (3.3) is now equivalent
to (3.10).

The next result is an analogue of Theorem 3.1 and concerns the lim-
iting case when p = n/(σ − 1). Part (i) of this theorem is an extention
of [10, Theorem 3.3].

Theorem 3.2. Let σ ∈ (1, n + 1), p = n/(σ − 1), q ∈ (1,+∞), r ∈
[q,+∞] and let b ∈ SV (0,+∞) be such that

(3.12) ‖t−1/q′

[b(t)]−1‖q′;(0,1) = +∞.

Suppose that Ω ⊂ R
n is a nonempty domain and that λr ∈ Lr is defined

by

(3.13) λr(t) = t[b(tn)]q
′/r

(∫ 2

tn

τ−1[b(τ)]−q′

dτ

)1/q′+1/r

, t ∈ (0, 1].

(i) Then

(3.14) HσLn/(σ−1),q;b(R
n) ↪→ Λλr(.)

∞,r (Rn).

(ii) If a function µ ∈ Lr satisfies

(3.15) lim
t→0+

∥∥∥τ−1/r τ
λr(τ)

∥∥∥
r;(0,t)∥∥∥τ−1/r τ

µ(τ)

∥∥∥
r;(0,t)

= 0,

then the embedding

(3.16) HσLn/(σ−1),q;b(R
n) ↪→ Λµ(.)

∞,r(Ω)

does not hold.

(iii) Let q ∈ (0, q). Then the embedding

(3.17) HσLn/(σ−1),q;b(R
n) ↪→ Λ

λq(.)
∞,q (Ω)

fails, where λq is again defined by (3.13) with r replaced by q.

(iv) The embedding

HσLn/(σ−1),q;b(R
n) ↪→ Λλr(.)

∞,r (Ω)

is not compact.
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Remark 3.2. (i) Part (i) of Theorem 3.2 holds without assumption (3.12).

However, if ‖t−1/q′

[b(t)]−1‖q′;(0,1) < +∞, then

HσLn/(σ−1),q;b(R
n) ↪→ Lip(Rn),

cf. [18, Theorem 5.12].

(ii) The target spaces in (3.14) form a scale {Λ
λr(.)
∞,r (Rn)}+∞

r=q whose
endpoint spaces with r = +∞ and r = q are of particular interest. The

former endpoint space Λ
λ∞(.)
∞,∞ (Rn) corresponds to the target space in the

Brézis-Wainger-type embedding while the latter endpoint space Λ
λq(.)
∞,q(Rn)

corresponds to the target space in the Triebel-type embedding. Since the

spaces {Λ
λr(.)
∞,r (Rn)}+∞

r=q satisfy

(3.18) Λλr(.)
∞,r (Rn) ↪→ Λλs(.)

∞,s (Rn) if q ≤ r ≤ s ≤ +∞,

the embedding (3.14) with r = q, that is,

(3.19) HσLn/(σ−1),q;b(R
n) ↪→ Λλq(.)

∞,q (Rn)

is optimal. (The proof of (3.18) is analogous to the proof of [12, (3.14)]
if one replaces the role of f∗(t) by the role of ω̃(f, t).)

(iii) By part (i) of Theorem 3.2, embedding (3.19) is continuous and,
by part (iv) of Theorem 3.2, this embedding is not compact. Moreover,
part (iv) of Theorem 3.2 also shows that we cannot arrive to a compact

embedding if we replace the target space Λ
λq(.)
∞,q (Rn) in (3.19) by a larger

space Λ
λr(.)
∞,r (Ω) with r > q.

(iv) Put X = HσLn/(σ−1),q;b(R
n) and r = +∞. By Theorem 3.2 (i),

sup
t∈(0,1)

ω̃(f, t)

λ∞(t)/t
- ‖f‖X for all f ∈ X,

and, by Theorem 3.2 (i) and (ii) (cf. also part (v) of this remark), the
inequality

sup
t∈(0,1)

ω̃(f, t)

µ(t)/t
- ‖f‖X

does not hold for all f ∈ X if µ ∈ L satisfies

lim
t→0+

t
λ∞(t)

t
µ(t)

= lim
t→0+

µ(t)

λ∞(t)
= 0.

If we use an analogue of terminology from [22], this means that the

function λ∞(t)
t =

(∫ 2

tn τ
−1[b(τ)]−q′

dτ
)1/q′

, t ∈ (0, 1], is the continuous
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envelope function of the space HσLn/(σ−1),q;b(R
n). Using also part (iii)

of Theorem 3.2, we can see that the couple
((∫ 2

tn

τ−1[b(τ)]−q′

dτ

)1/q′

, q

)

is the continuous envelope of the space HσLn/(σ−1),q;b(R
n).

(v) Let r ∈ [q,+∞]. Using (3.13) and (3.12), we arrive at

(3.20)

∥∥∥∥τ−1/r τ

λr(τ)

∥∥∥∥
r;(0,t)

≈
t

λ∞(t)
for all t ∈ (0, 1).

This implies that

(3.21) lim
t→0+

∥∥∥τ−1/r τ
λr(τ)

∥∥∥
r;(0,t)∥∥∥τ−1/r τ

µ(τ)

∥∥∥
r;(0,t)

≈ lim
t→0+

t
λ∞(t)∥∥∥τ−1/r τ
µ(τ)

∥∥∥
r;(0,t)

.

Together with estimate (3.9), this shows that condition (3.15) is satisfied
if

(3.22) lim
t→0+

µ(t)

λ∞(t)
= 0.

(vi) Let r = +∞ and let the function t 7→ t/µ(t) be equivalent to
a non-decreasing function on some interval (0, δ) ⊂ (0, 1). Then, by ap-
plying estimate (3.11) in (3.21), we can see that (3.15) is now equivalent
to (3.22).

(vii) Let r ∈ [q,+∞). Since any function ρ ∈ Lr satisfies∥∥∥τ−1/r τ
ρ(τ)

∥∥∥
r;(0,δ)

< +∞ (cf. (2.4)), we have
∥∥∥τ−1/r τ

ρ(τ)

∥∥∥
r;(0,t)

→ 0

as t → 0+. In particular, this holds with ρ = µ and ρ = λr. Thus,
L’Hospital’s rule gives

(3.23) lim
t→0+

∥∥∥τ−1/r τ
λr(τ)

∥∥∥
r;(0,t)∥∥∥τ−1/r τ

µ(τ)

∥∥∥
r;(0,t)

= lim
t→0+

µ(t)

λr(t)

provided that the last limit exists.

(viii) Let q ∈ (1,+∞), r ∈ [q,+∞], b ∈ SV (0,+∞), b 6≡ 0 and let
(3.12) hold. Then (3.15) is satisfied when

(3.24) lim
t→0+

µ(t)

λs(t)
= 0 for some s ∈ [r,+∞].
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Indeed, if s = +∞, then the result follows from part (v). If s < +∞,
then the assertion is a consequence of (3.23), the identity

(3.25) λr(t) = λs(t)

(∫ 2

tn τ
−1[b(τ)]−q′

dτ

[b(tn)]−q′

)1/r−1/s

, t ∈ (0, 1],

(which follows from (3.13)) and the fact that the function

(3.26) t 7→
[b(t)]−q′

∫ 2

t
τ−1[b(τ)]−q′ dτ

is bounded for t ∈ (0, 1), for any b ∈ SV (0,+∞), b 6≡ 0, b 6≡ +∞.

4. Preliminaries

We shall need weighted Hardy inequalities, where the weights are
slowly varying functions.

Lemma 4.1 ([12, Lemma 4.1]). Let 1 ≤ q ≤ r ≤ +∞, ν ∈ R\{0} and

let b, b̃ ∈ SV (0,+∞).

(i) The inequality

(4.1)

∥∥∥∥tν−1/r b̃(t)

∫ t

0

g(u) du

∥∥∥∥
r;(0,+∞)

-
∥∥∥tν+1/q′

b(t) g(t)
∥∥∥

q;(0,+∞)

holds for all g ∈ M+(0,+∞) if, and only if,

(4.2) ν < 0 and b̃ - b on (0,+∞).

(ii) The inequality

(4.3)

∥∥∥∥tν−1/r b̃(t)

∫ +∞

t

g(u) du

∥∥∥∥
r;(0,+∞)

-
∥∥∥tν+1/q′

b(t) g(t)
∥∥∥

q;(0,+∞)

holds for all g ∈ M+(0,+∞) if, and only if,

(4.4) ν > 0 and b̃ - b on (0,+∞).
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Throughout this section we shall assume that G is a function on (0, 1]
with the following properties:

G is positive and continuous on (0, 1];(4.5)

G is non-increasing on (0, s0], where s0 ∈ (0, 1] is a fixed number;(4.6)

G(t/2) - G(t), t ∈ (0, 1].(4.7)

Let ϕ ∈ C∞
0 (R) be a non-negative function such that

∫
R
ϕ(t) dt = 1

and suppϕ = [−1, 1]. Then the function ϕε, with ε > 0, defined by
ϕε(t) := 1

εϕ
(

t
ε

)
for all t ∈ R, satisfies

(4.8) ϕε ∈ C∞
0 (R), suppϕε = [−ε, ε] and

∫

R

ϕε(t) dt = 1.

We now use ϕ to assign to the function G a family of functions {Gs}
as in [10]. Let us extend G by zero outside the interval (0, 1], and for
each s ∈ (0, 1) define the function Gs by

(4.9) Gs(t) := (χ[s,+∞) ψ G) ∗ ϕ s
4
(t), t ∈ R,

with ψ ∈ C∞
0 (R) defined by ψ = χ[−2+ 1

16
, 3
4
− 1

16
] ∗ ϕ 1

16
.

Some properties of Gs, s ∈
(
0, 1

4

)
, are summarised in the next lemma

due to Edmunds, Gurka and Opic [10, Lemma 4.1].

Lemma 4.2. If s ∈
(
0, 1

4

)
and the functions Gs are defined by (4.9)

(with G satisfying (4.5)–(4.7)), then

(4.10) Gs ∈ C∞
0 (R), suppGs ⊂

[ s
2
, 1
]

and Gs ≥ 0.

Moreover, there are positive constants C1, C2 and C3 (independent of s
and t) such that

Gs(t) ≤ C1 G(t)χ[ s
2
,1](t), t ∈ (0, 1],(4.11)

∣∣∣∣
d

dt
Gs(t)

∣∣∣∣ ≤ C2 s
−1 G(t)χ[ s

2
,1](t), t ∈ (0, 1],(4.12)

Gs(t) ≥ C3G(t), t ∈

[
2s,

1

2

]
.(4.13)

In addition, if

(4.14) G ∈ C1(0, 1) and

∣∣∣∣
d

dt
G(t)

∣∣∣∣ - t−1G(t), t ∈ (0, 1),

then there is a positive constant C4 (independent of s and t) such that

(4.15)

∣∣∣∣
d

dt
Gs(t)

∣∣∣∣ ≤ C4 t
−1G(t), t ∈ [2s, 1].
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Now, as in [10], we use the family {Gs} to define another family {hs},
hs : R

n → R, which are important to prove our main results. For any
s ∈

(
0, 1

4

)
, let as be a positive number and let Gs be the function given

by (4.9); we define the function hs by

(4.16) hs(x) := as Gs(|x|) for all x ∈ R
n.

It follows from (4.10) that

(4.17) hs ∈ C∞
0 (R), supphs ⊂ Bn(0, 1)\Bn(0, s/2).

Let σ ∈ [1, n+ 1) and s ∈
(
0, 1

4

)
. To prove Theorems 3.1 and 3.2, we

define functions us as in [10] by

(4.18) us(x) := x1(gσ−1 ∗ hs)(x), x = (x1, . . . , xn) ∈ R
n,

with hs from (4.16). Some properties of these functions are summarised
in the following lemma. Parts (i) and (ii) are an extention of [10,
Lemma 4.7 (i) and (ii)] and part (iii) is due to Edmunds, Gurka and
Opic [10, Lemma 4.7 (iii)].

Lemma 4.3. Let σ ∈ [1, n+ 1), p, q ∈ (1,+∞) and b ∈ SV (0,+∞).

(i) Suppose (in addition to (4.5)–(4.7)) that the function G satis-
fies (4.14). Then us ∈ HσLp,q;b(R

n), s ∈
(
0, 1

4

)
, and there exists

a positive constant c such that, for all s ∈
(
0, 1

4

)
,

‖us‖σ;p,q;b ≤ c as (V1(s) + V2(s)) ,

where V1 and V2 are defined by

(4.19) V1(s)=

(∫ 1

s

[
G(t)tn/p b(tn)

]q dt
t

)1/q

and V2(s)=G(s)sn/pb(sn).

(ii) If σ ∈ (1, n+ 1), then there exists a positive constant c such that
for every s ∈

(
0, 1

4

)
and x = (t, 0, . . . , 0) ∈ R

n, t ∈
[
2s, 1

2

]
,

|us(x) − us(0)| ≥ c t as

∫ 1/2

t

τσ−2G(τ) dτ.

(iii) Let σ ∈ (1, n + 1), S ∈
(
0, 1

4

)
. Suppose that the numbers as

from (4.16) are bounded, i.e.,

(4.20) as ≤ c for all s ∈

(
0,

1

4

)
with some c ∈ (0,+∞).
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Moreover, assume (in addition to (4.5)–(4.7)) that the function G and
the numbers as satisfy

(4.21) as

∫ S/2

2s

tσ−2 G(t) dt → +∞ as s→ 0+.

Then there exist ε = ε(σ) ∈
(
0, 1

2

)
, s1 = s1(S) ∈

(
0, S

4

)
and a positive

constant c (independent of S and s1) such that

|[us(x) − uS(x)] − [us(0) − uS(0)]| ≥ c s as

∫ S/2

2s

tσ−2G(t) dt

for every s ∈ (0, s1) and x = (ε s, 0, . . . , 0) ∈ R
n.

We just need to prove parts (i) and (ii), because part (iii) is proved
in [10]. To prove part (i) of Lemma 4.3, we use some auxiliary results.

Lemma 4.4. Let T be a quasi-linear operator such that, for all q ∈
(1,+∞),

(4.22) T : Lq(R
n) → Lq(R

n)

is bounded. Let 1 < p < +∞, 1 ≤ r ≤ +∞ and let b ∈ SV (0,+∞).
Then

(4.23) T : Lp,r;b(R
n) → Lp,r;b(R

n)

is bounded.

Proof: The proof is analogous to the proofs of [9, Corollary 3.15] and [18,
Corollary 3.4].

The next lemma extends [21, Chapter V, Lemma 3], [9, Lemma 4.1]
and [18, Lemma 5.2].

Lemma 4.5. Let σ ∈ [1,+∞), p ∈ (1,+∞), q ∈ (1,+∞) and b ∈
SV (0,+∞). Then f ∈ HσLp,q;b(R

n) if, and only if, f ∈ Hσ−1Lp,q;b(R
n)

and the distributional derivatives ∂f
∂xj

belong to Hσ−1Lp,q;b(R
n) (j =

1, . . . , n). Moreover, the (quasi-)norms ‖f‖σ;p,q;b and ‖f‖σ−1;p,q;b +
∑n

j=1

∥∥∥ ∂f
∂xj

∥∥∥
σ−1;p,q;b

are equivalent on HσLp,q;b(R
n).

Proof: See [21, Chapter V, Lemma 3], [9, Lemma 4.1] and [18, Lem-
ma 5.2].
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Proof of Lemma 4.3: (i) Taking into account [12, Lemma 4.3], Lem-
mas 4.4 and 4.5, the proof is similar to the proof of [10, Lemma 4.7 (i)].

(ii) Let s ∈
(
0, 1

4

)
. Since, by (4.17), supphs ⊂ Bn(0, 1),

(gσ−1 ∗ hs)(x) ≈ (Iσ−1 ∗ hs)(x) for all x ∈ Bn(0, 1).

Therefore, for x = (t, 0, . . . , 0), t ∈
[
2s, 1

2

]
, we have

|us(x) − us(0)| = us(x) = t (gσ−1 ∗ hs)(x)

≈ t(Iσ−1 ∗ hs)(x) % t

∫

|y|>t

hs(y)

|y|n−σ+1
dy,

(4.24)

see details in [6, (3.12)]. Using spherical coordinates and (4.16), we
obtain

∫

|y|>t

hs(y)

|y|n−σ+1
dy =

∫ +∞

t

∫

{|y|=ρ}

asGs(|y|)

|y|n−σ+1
dϑ dρ

= as

∫ +∞

t

Gs(ρ)

ρn−σ+1
ωnnρ

n−1 dρ

% as

∫ 1/2

t

ρσ−2Gs(ρ) dρ.

(4.25)

Estimates (4.24), (4.25) and (4.13) imply that

|us(x) − us(0)| ≥ c t as

∫ 1/2

t

ρσ−2G(ρ) dρ,

which yields the result of part (ii).

5. Proof of the main results

Proof of Theorem 3.1:

Step 1: Proof of part (i). Since the Schwartz space S(Rn) is dense
in HσLp,q;b(R

n) (cf. [18, Lemma 5.1]), it is enough to prove (cf. [18,
Proposition 5.6]) that

‖u‖Λλ(·)
∞,r(R

n) - ‖u‖σ;p,q;b for all u ∈ S(Rn).

Let u ∈ S(Rn) ⊂ HσLp,q;b(R
n). Then Lemma 4.5 shows that ∂u

∂xi
∈

Hσ−1Lp,q;b(R
n), for i=1, . . . , n. Now, by [12, Theorem 3.1 (i)], with σ−1
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instead of σ, we have
∥∥∥∥
∂u

∂xi

∥∥∥∥
pσ−1,q;b

-

∥∥∥∥
∂u

∂xi

∥∥∥∥
σ−1;p,q;b

, i = 1, . . . , n,

where 1/pσ−1 = 1/p− (σ − 1)/n. Hence, again by Lemma 4.5,

(5.1)

n∑

i=1

∥∥∥∥
∂u

∂xi

∥∥∥∥
pσ−1,q;b

-

n∑

i=1

∥∥∥∥
∂u

∂xi

∥∥∥∥
σ−1;p,q;b

- ‖u‖σ;p,q;b.

Using (3.1), the estimate (cf. [14, Proposition 5.12 (i)])

(5.2) ω(u, t) -

∫ t

0

|∇u|∗(σn) dσ, t > 0,

where |∇u| denotes the Euclidean norm of the gradient of u, Lem-
ma 4.1 (i) (with ν = n/p − σ < 0) and the change of variables, we
obtain

∥∥∥∥t−1/r ω(u, t)

λ(t)

∥∥∥∥
r;(0,1)

-

∥∥∥∥tn/p−σ−1/rb(tn)

∫ t

0

|∇u|∗(τn) dτ

∥∥∥∥
r;(0,1)

- ‖tn/p−σ+1/q′

b(tn)|∇u|∗(tn)‖q;(0,+∞)

≈ ‖t1/p−(σ−1)/n−1/qb(t)|∇u|∗(t)‖q;(0,+∞).

Furthermore, the estimate |∇u|∗(t) ≤ |∇u|∗∗(t), (2.1), Lemma 4.1 (i)
(with ν = 1/pσ−1 − 1 < 0) and (5.1) imply that

‖t1/p−(σ−1)/n−1/qb(t)|∇u|∗(t)‖q;(0,+∞)

- ‖t1/pσ−1−1/qb(t)|∇u|∗∗(t)‖q;(0,+∞)

-

n∑

i=1

‖t1/pσ−1−1/qb(t)

(
∂u

∂xi

)∗∗

(t)‖q;(0,+∞)

≈

n∑

i=1

‖t1/pσ−1−1/qb(t)

(
∂u

∂xi

)∗

(t)‖q;(0,+∞)

- ‖u‖σ;p,q;b.

Consequently,

(5.3)

∥∥∥∥t−1/r ω(u, t)

λ(t)

∥∥∥∥
r;(0,1)

- ‖u‖σ;p,q;b.
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As in [18, Proposition 5.6], we also have ‖u‖∞ - ‖u‖σ;p,q;b. This and
(5.3) yield

‖u|Λλ(·)
∞,r‖ - ‖u‖σ;p,q;b for all u ∈ S(Rn).

The proof of part (i) is complete.

Step 2. We shall assume without loss of generality that Bn(0, 1) ⊂ Ω.
Let s ∈

(
0, 1

4

)
and γ < 0. Define the function G by

(5.4) G(t) =

∫ +∞

t

τγ−n/p−1 [b(τn)]−1 dτ≈ tγ−n/p [b(tn)]−1, t ∈ (0, 1],

and put

(5.5) as = s−γ .

The function G satisfies (4.5)–(4.7). Because

|G′(t)| = tγ−n/p−1[b(tn)]−1 ≈
G(t)

t
, t ∈ (0, 1),

the function G satisfies (4.14) as well. Let us consider the functions us,
s ∈

(
0, 1

4

)
, defined by (4.18). By Lemma 4.3 (i), for all s ∈

(
0, 1

4

)
,

‖us‖σ;p,q;b - as(V1(s) + V2(s)) ≈ s−γ

((∫ 1

s

tγq−1 dt

)1/q

+ sγ

)

≈ s−γsγ = 1.

(5.6)

We shall consider two cases:

• If σ = 1, then (4.18), (4.16) and (2.3) imply that

(5.7) us(x) = as x1 Gs(|x|), x ∈ R
n, s ∈

(
0,

1

4

)
.

Thus, if we put x=(2s, 0, . . . , 0) for each s∈
(
0, 1

4

)
, we obtain from (4.13),

(4.7), (5.4) and (5.5) that

(5.8) |us(x)−us(0)|=us(x)≥C3as 2sG(2s)%s as G(s)≈s1−n/p[b(sn)]−1.

Moreover, if we take S ∈
(
0, 1

4

)
, s ∈

(
0, S

4

)
, then |x| = 2s < S

2 , and

so uS(x) = 0 by (4.10) and (5.7). Thus, for all s ∈
(
0, S

4

)
and x =

(2s, 0, . . . , 0), (5.8) yields

(5.9) |[us(x) − uS(x)] − [us(0) − uS(0)]| = us(x) ≥ c1 s
1−n/p[b(sn)]−1,

with a positive constant c1 independent of S and s.
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• If σ ∈ (1, n + 1), then, by Lemma 4.3 (ii), there exists a positive
constant c such that

|us(x) − us(0)| ≥ 2c s1−γ

∫ 1/2

2s

tσ−2+γ−n/p[b(tn)]−1 dt

% sσ−n/p[b(sn)]−1

(5.10)

for every s ∈
(
0, 1

8

)
and x = (2s, 0, . . . , 0). Furthermore, if we take

S ∈
(
0, 1

4

)
, we can see that the conditions (4.20) and (4.21) also hold.

Indeed, as = s−γ - 1 for all s ∈
(
0, 1

4

)
because γ < 0. Moreover, since

σ − n/p− 1 < 0 and γ < 0, we have, for all sufficiently small s,

as

∫ S/2

2s

tσ−2 G(t) dt ≈ as

∫ S/2

2s

tσ−2+γ−n/p[b(tn)]−1 dt

≈ s−γ+σ−1+γ−n/p[b(sn)]−1

≈ sσ−1−n/p[b(sn)]−1,

which tends to +∞ as s→ 0+. Hence, by Lemma 4.3 (iii), there exist ε =
ε(σ) ∈

(
0, 1

2

)
, s1 = s1(S) ∈

(
0, S

8

)
and a positive constant c (independent

of S and s1) such that, for every s ∈ (0, s1) and x = (εs, 0, . . . , 0),

|[us(x) − uS(x)] − [us(0) − uS(0)]| ≥ c s1−γ

∫ S/2

2s

tσ−2G(t) dt

≥ c1s
σ−n/p[b(sn)]−1,

(5.11)

with a positive constant c1 independent of S and s1.

Step 3. Let λ be the function defined by (3.1). Since b ∈ SV (0,+∞),
we have, for any fixed k ∈ (0,+∞),

(5.12) λ(kt) ≈ λ(t), t ∈ (0, 1].
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Let us assume that (3.3) and (3.4) hold. Then, by (5.6), (5.8) or (5.10)
(with x = (2s, 0, . . . , 0)) and (5.12), we obtain

1 % ‖us‖σ;p,q;b % ‖us|Λ
µ(.)
∞,r(Ω)‖ ≥

∥∥∥∥t−1/r ω(us, t)

µ(t)

∥∥∥∥
r;(0,1)

≥

∥∥∥∥t−1/rω(us, t)

µ(t)

∥∥∥∥
r;(0,2s)

%
ω(us, 2s)

2s

∥∥∥∥t−1/r t

µ(t)

∥∥∥∥
r;(0,2s)

≥
|us(x) − us(0)|

2s

∥∥∥∥t−1/r t

µ(t)

∥∥∥∥
r;(0,2s)

%
sσ−n/p[b(sn)]−1

2s

∥∥∥∥t−1/r t

µ(t)

∥∥∥∥
r;(0,2s)

≈
‖t−1/r t

µ(t)‖r;(0,2s)

2s
λ(2s)

for all s ∈
(
0, 1

8

)
, which contradicts assumption (3.3). The proof of

part (ii) is complete.

Step 4. Take S ∈
(
0, 1

4

)
fixed. Let λ be the function defined by (3.1).

Then, (5.9) or (5.11) (with x = (ks, 0, . . . , 0), where k = 2 or k = ε
if σ=1 or σ ∈ (1, n+1), respectively) and (3.1) yield, for every sufficiently
small positive s,

‖(us−uS)|Λλ(·)
∞,r(Ω)‖ ≥

∥∥∥∥t−1/rω(us − uS, t)

λ(t)

∥∥∥∥
r;(0,1)

≥

∥∥∥∥t−1/rω(us − uS, t)

λ(t)

∥∥∥∥
r;(0,ks)

%
ω(us − uS , ks)

ks

∥∥∥∥t−1/r t

λ(t)

∥∥∥∥
r;(0,ks)

≥
|[us(x) − uS(x)] − [us(0) − uS(0)]|

ks

×

∥∥∥∥t−1/r t

λ(t)

∥∥∥∥
r;(0,ks)

≥ c1
sσ−n/p[b(sn)]−1

ks
(ks)n/p−σ+1b((ks)n)≥c2,

(5.13)

with c2 a positive constant independent of s and S. Therefore, if we con-
sider the sequence {u1/k}

+∞
k=k0

, with k0 sufficiently large, then, by (5.6),
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this sequence is bounded in HσLp,q;b(R
n). However, by (5.13), it has no

Cauchy subsequence in Λ
λ(·)
∞,r(Ω). The proof of part (iv) is complete.

Step 5. Let q ∈ (0, q). Let now G be the function defined by

G(t) =

∫ +∞

t

τ−n/p−1`
−1/q
1 (τ)[b(τn)]−1 dτ

≈ t−n/p`
−1/q
1 (t)[b(tn)]−1, t ∈ (0, 1).

(5.14)

Put

(5.15) as = 1, s ∈

(
0,

1

4

)
.

The function G satisfies (4.5)–(4.7). Because

|G′(t)| = t−n/p−1`
−1/q
1 (t)[b(tn)]−1 ≈

G(t)

t
, t ∈ (0, 1),

the function G satisfies (4.14) as well. Let us define the functions us,
s ∈

(
0, 1

4

)
, by (4.18). By Lemma 4.3 (i) and (5.15), for all s ∈

(
0, 1

4

)
,

(5.16) ‖us‖σ;p,q;b - as(V1(s) + V2(s)) = (V1(s) + V2(s)),

where

V1(s) =

(∫ 1

s

[
G(t)tn/pb(tn)

]q dt
t

)1/q

≈

(∫ 1

s

`
−q/q
1 (t)

dt

t

)1/q

<

(∫ 1

0

`
−q/q
1 (t)

dt

t

)1/q

≈ 1,

because q < q, and

V2(s) = G(s)sn/pb(sn) ≈ `
−1/q
1 (t) - 1.

Hence, the functions us given by (4.18) satisfy

(5.17) ‖us‖σ;p,q;b - 1 for all s ∈

(
0,

1

4

)
,

which means that

us ∈ HσLp,q;b(R
n) for all s ∈

(
0,

1

4

)
.

We shall again consider two cases:



318 A. Gogatishvili, J. S. Neves, B. Opic

• If σ = 1, then (4.18), (4.16) and (2.3) imply that

(5.18) us(x) = as x1 Gs(|x|), x ∈ R
n, s ∈

(
0,

1

4

)
.

Thus, if, for each s ∈
(
0, 1

4

)
, we put x = (t, 0, . . . , 0), t ∈

[
2s, 1

2

]
, we

obtain from (4.13), (5.14) and (5.15) that

ω(us, t) ≥ |us(x) − us(0)| = us(x) ≥ C3as tG(t) ≈ tG(t)

≈ t1−n/p`
−1/q
1 (t)[b(tn)]−1.

(5.19)

• Suppose now that σ∈(1, n+1) and s ∈
(
0, 1

8

)
. Then, by Lemma 4.3 (ii),

(5.14) and (5.15), there exists a positive constant c such that, for every
x = (t, 0, . . . , 0) with t ∈

[
2s, 1

4

]
,

ω(us, t) ≥ |us(x) − us(0)| = us(x)

≥ c t

∫ 1/2

t

τσ−2−n/p`
−1/q
1 (τ)[b(τn)]−1 dτ

% tσ−n/p`
−1/q
1 (t)[b(tn)]−1.

(5.20)

Let us assume that (3.5) holds. Then by (3.1), (5.17), either (5.19)
or (5.20), we obtain, for all sufficiently small s,

1 % ‖us‖σ;p,q;b % ‖us|Λ
λ(·)
∞,q(Ω)‖

≥

∥∥∥∥t−1/q ω(us, t)

λ(t)

∥∥∥∥
q;(0,1)

≥

∥∥∥∥t−1/q ω(us, t)

λ(t)

∥∥∥∥
q;(2s,1/4)

%
∥∥∥t−1/q`

−1/q
1 (t)

∥∥∥
q;(2s,1/4)

= (`2(2s) − `2(1/4))
1/q

.

Since the last expression tends to +∞ as s → 0+, we can see that (3.5)
cannot hold. The proof of part (iii) is complete.



Optimality of Embeddings into Hölder Spaces 319

Proof of Theorem 3.2:

Step 1. The proof of part (i) can be seen in [19, Theorem 5.7].

Step 2. We shall assume, without loss of generality, that Bn(0, 1) ⊂ Ω.
Let β ∈ (−q′,+∞) and let the function G be defined by

G(t)=

∫ 2

t

τ−σ [b(τn)]−q′

(∫ 2

τn

ξ−1[b(ξ)]−q′

dξ

)1/q′+β/q′

dτ

≈ t1−σ[b(tn)]−q′

(∫ 2

tn

ξ−1[b(ξ)]−q′

dξ

)1/q′+β/q′

, t ∈ (0, 1],

(5.21)

and let the numbers as, s ∈
(
0, 1

4

)
, be given by

(5.22) as =

(∫ 2

sn

ξ−1[b(ξ)]−q′

dξ

)−β/q′−1

.

The function G satisfies (4.5)–(4.7). As

|G′(t)|= t−σ [b(tn)]−q′

(∫ 2

tn

ξ−1[b(ξ)]−q′

dξ

)1/q′+β/q′

≈
G(t)

t
, t ∈ (0, 1),

the function G satisfies (4.14) as well.
We again consider the functions us, s ∈

(
0, 1

4

)
, defined by (4.18).

By Lemma 4.3 (i), the identity σ − 1 = n/p, the inequality β > −q′

and (5.21), we obtain

(5.23) ‖us‖σ;p,q;b - as(V1(s) + V2(s)) for all s ∈

(
0,

1

4

)
,

where

V1(s) =

(∫ 1

s

[
G(t)tσ−1b(tn)

]q dt
t

)1/q

≈

(∫ 1

s

[b(tn)]−q′

(∫ 2

tn

ξ−1[b(ξ)]−q′

dξ

)q(1/q′+β/q′)
dt

t

)1/q

≈

(∫ 2

sn

ξ−1[b(ξ)]−q′

dξ

)1+β/q′

and

V2(s) ≈ [b(sn)]1−q′

(∫ 2

sn

ξ−1[b(ξ)]−q′

dξ

)1/q′+β/q′

.
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Now, for all s ∈
(
0, 1

4

)
,

(5.24) as V1(s) ≈

(∫ 2

sn

ξ−1[b(ξ)]−q′

dξ

)1+β/q′−1−β/q′

= 1

and

as V2(s) ≈ [b(sn)]1−q′

(∫ 2

sn

ξ−1[b(ξ)]−q′

dξ

)−1/q

- [b(sn)]1−q′

(
sn/2[b(sn)]−q′

)−1/q
(∫ 2

sn

ξ−1ξ−1/2 dξ

)−1/q

≈ [b(sn)]1−q′+q′/q = 1.

(5.25)

Thus, by (5.23), (5.24) and (5.25),

(5.26) ‖us‖σ;p,q;b - 1 for all s ∈

(
0,

1

4

)
.

Step 3. Let k ∈ (0,+∞) be fixed. Since b ∈ SV (0,+∞), by [13,
Proposition 2.2 (iii)], we have

(5.27) b(kt) ≈ b(t) for all t ∈ (0,+∞).

By Lemma 4.3 (ii), there exists a positive constant c such that

|us(x)−us(0)| ≥ 2c s as

∫ 1/2

2s

tσ−2G(t) dt

% s as

∫ 1/2

2s

[b(tn)]−q′

(∫ 2

tn

ξ−1[b(ξ)]−q′

dξ

)1/q′+β/q′

dt

t

≈ s as

(∫ 2

sn

ξ−1[b(ξ)]−q′

dξ

)1/q′+β/q′+1

≈ s

(∫ 2

sn

ξ−1[b(ξ)]−q′

dξ

)1/q′

(5.28)

for every s ∈
(
0, 1

8

)
and x = (2s, 0, . . . , 0).

Let us assume that (3.15) and (3.16) hold and let λr be the func-
tion defined by (3.13). Then, by (5.26), (3.16) and (5.28), with x =
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(2s, 0, . . . , 0), we obtain

1 % ‖us‖σ;p,q;b % ‖us|Λ
µ(.)
∞,r(Ω)‖ ≥

∥∥∥∥t−1/r ω(us, t)

µ(t)

∥∥∥∥
r;(0,1)

≥

∥∥∥∥t−1/rω(us, t)

µ(t)

∥∥∥∥
r;(0,2s)

%
ω(us, 2s)

2s

∥∥∥∥t−1/r t

µ(t)

∥∥∥∥
r;(0,2s)

≥
|us(x) − us(0)|

2s

∥∥∥∥t−1/r t

µ(t)

∥∥∥∥
r;(0,2s)

%

(∫ 2

sn

ξ−1[b(ξ)]−q′

dξ

)1/q′ ∥∥∥∥t−1/r t

µ(t)

∥∥∥∥
r;(0,2s)

(5.29)

for all s ∈
(
0, 1

8

)
. On the other hand, by (3.20), we have

(5.30)

∥∥∥∥t−1/r t

λr(t)

∥∥∥∥
r;(0,s)

=

(∫ 2

sn

ξ−1[b(ξ)]−q′

dξ

)−1/q′

for all s ∈
(
0, 1

8

)
. Consequently, (5.29), (5.30), (5.27) and a change of

variables imply that

1 %

∥∥∥t−1/r t
µ(t)

∥∥∥
r;(0,2s)∥∥∥t−1/r t

λr(t)

∥∥∥
r;(0,s)

≈

∥∥∥t−1/r t
µ(t)

∥∥∥
r;(0,2s)∥∥∥t−1/r t

λr(t)

∥∥∥
r;(0,2s)

,

which contradicts the assumption (3.15). The proof of part (ii) is com-
plete.

Step 4. Take S ∈
(
0, 1

4

)
. We can see that (4.20) holds because

as =

(∫ 2

sn

ξ−1[b(ξ)]−q′

dξ

)−1−β/q′

≤

(∫ 2

1

ξ−1[b(ξ)]−q′

dξ

)−1−β/q′

- (b(2))β+q′

≈ 1
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for all s ∈
(
0, 1

4

)
. Moreover, condition (4.21) also holds. Indeed, for all

s ∈
(
0, S

8

)
,

as

∫ S/2

2s

tσ−2 G(t) dt ≈ as

∫ S/2

2s

[b(tn)]−q′

(∫ 2

tn

ξ−1[b(ξ)]−q′

dξ

)1/q′+β/q′

dt

t

≈ as

(∫ 2

sn

ξ−1[b(ξ)]−q′

dξ

)1/q′+β/q′+1

≈

(∫ 2

sn

ξ−1[b(ξ)]−q′

dξ

)1/q′

,

which tends to +∞ as s → 0+ in view of assumption (3.12). Hence,
by Lemma 4.3 (iii), there exist ε = ε(σ) ∈ (0, 1

2 ), s1 = s1(S) ∈ (0, S
4 )

and a positive constant c (independent of S and s1) such that, for every
s ∈

(
0, s1

2

)
and x = (εs, 0, . . . , 0),

|[us(x)−uS(x)]−[us(0)−uS(0)]| ≥ c s as

∫ S/2

2s

tσ−2G(t) dt

≥ c1s

(∫ 2

sn

ξ−1[b(ξ)]−q′

dξ

)1/q′

,

(5.31)

with a positive constant c1 independent of S and s1. Let λr be the
function defined by (3.13). Then, for every sufficiently small positive s
and x = (εs, 0, . . . , 0), (5.31), (5.30), (5.27) and a change of variables
give

‖(us−uS)|Λλr(.)
∞,r (Ω)‖ ≥

∥∥∥∥t−1/r ω(us − uS , t)

λr(t)

∥∥∥∥
r;(0,1)

≥

∥∥∥∥t−1/r ω(us − uS , t)

λr(t)

∥∥∥∥
r;(0,sε)

%
ω(us − uS, sε)

sε

∥∥∥∥t−1/r t

λr(t)

∥∥∥∥
r;(0,sε)

≥
|[us(x) − uS(x)] − [us(0) − uS(0)]|

sε

×

∥∥∥∥t−1/r t

λr(t)

∥∥∥∥
r;(0,sε)

%

(∫ 2

sn

ξ−1[b(ξ)]−q′

dξ

)1/q′∥∥∥∥t−1/r t

λr(t)

∥∥∥∥
r;(0,sε)

≈ 1.

(5.32)
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Therefore, if we consider the sequence {u1/k}
+∞
k=k0

, with k0 sufficiently

large, then, by (5.26), this sequence is bounded in HσLp,q;b(R
n). How-

ever, by (5.32), it has no Cauchy subsequence in Λ
λr(.)
∞,r (Ω). The proof

of part (iv) is now complete.
Step 5. Let q ∈ (0, q) and α ∈ (−1/q,−1/q). Let now G be the

function defined by

G(t) =

∫ 2

t

τ−n/p−1[b(τn)]−q′

(∫ 2

τn

[b(ξ)]−q′ dξ

ξ

)− 1
q

×

[
`1

(∫ 2

τn

[b(ξ)]−q′ dξ

ξ

)]α

dτ

≈ t−n/p[b(tn)]−q′

(∫ 2

tn

[b(ξ)]−q′ dξ

ξ

)− 1
q

×

[
`1

(∫ 2

tn

[b(ξ)]−q′ dξ

ξ

)]α

(5.33)

for all t ∈ (0, 1), and put

(5.34) as = 1, s ∈

(
0,

1

4

)
.

The function G satisfies (4.5)–(4.7). Because

|G′(t)| = t−n/p−1[b(tn)]−q′

(∫ 2

tn

[b(ξ)]−q′ dξ

ξ

)− 1
q
[
`1

(∫ 2

tn

[b(ξ)]−q′ dξ

ξ

)]α

≈
G(t)

t

for all t ∈ (0, 1), the function G satisfies (4.14) as well. Define the
functions us, s ∈

(
0, 1

4

)
, by (4.18). By Lemma 4.3 (i) and (5.34), for all

s ∈
(
0, 1

4

)
,

(5.35) ‖us‖σ;p,q;b - as(V1(s) + V2(s)) = (V1(s) + V2(s)),
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where

V1(s)=

(∫ 1

s

[
G(t)tn/pb(tn)

]q dt
t

)1/q

<

∥∥∥∥∥t
−1/q [b(tn)]−q′/q

(∫ 2

tn

[b(ξ)]−q′ dξ

ξ

)− 1
q
[
`1

(∫ 2

tn

[b(ξ)]−q′ dξ

ξ

)]α∥∥∥∥∥
q;(0,1)

≈1,

because αq + 1 < 0, and

V2(s) = G(s)sn/pb(sn)

≈ [b(sn)]−q′/q

(∫ 2

sn

[b(ξ)]−q′ dξ

ξ

)− 1
q
[
`1

(∫ 2

sn

[b(ξ)]−q′ dξ

ξ

)]α

≈ s1/2[b(sn)]−q′/q

(∫ 2

sn

[b(ξ)]−q′ dξ

ξ

)− 1
q

×

[
`1

(∫ 2

sn

[b(ξ)]−q′ dξ

ξ

)]α(∫ 1

s

t−q/2 dt

t

)1/q

-

(∫ 1

s

tq/2[b(tn)]−q′

(∫ 2

tn

[b(ξ)]−q′ dξ

ξ

)−1

×

[
`1

(∫ 2

tn

[b(ξ)]−q′ dξ

ξ

)]αq

t−q/2 dt

t

)1/q

= V1(s) - 1.

Hence, the functions us given by (4.18) satisfy

(5.36) ‖us‖σ;p,q;b - 1 for all s ∈

(
0,

1

4

)
,

which means that

us ∈ HσLp,q;b(R
n) for all s ∈

(
0,

1

4

)
.
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Let s ∈
(
0, 1

8

)
. Then, by Lemma 4.3 (ii), (5.33) and (5.34), there exists

a positive constant c such that, for every x = (t, 0, . . . , 0) with t ∈
[
2s, 1

4

]
,

ω(us, t) ≥ |us(x) − us(0)| = us(x) ≥ c t

∫ 1/2

t

τσ−2G(τ) dτ

≈ t

∫ 1/2

t

[b(τn)]−q′

(∫ 2

τn

[b(ξ)]−q′ dξ

ξ

)− 1
q
[
`1

(∫ 2

τn

[b(ξ)]−q′ dξ

ξ

)]α
dτ

τ

≈ t

(∫ 2

tn

[b(ξ)]−q′ dξ

ξ

) 1

q′
[
`1

(∫ 2

tn

[b(ξ)]−q′ dξ

ξ

)]α

.

(5.37)

Let us assume that (3.17) holds. Then, by (3.13) with r = q, (5.36)
and (5.37), we obtain, for all sufficiently small s,

1 % ‖us‖σ;p,q;b % ‖us|Λ
λq(.)
∞,q (Ω)‖

≥

∥∥∥∥t−1/q ω(us, t)

λq(t)

∥∥∥∥
q;(0,1)

≥

∥∥∥∥t−1/q ω(us, t)

λq(t)

∥∥∥∥
q;(2s,1/4)

≈

∥∥∥∥∥t
−1/q [b(tn)]−q′/q

(∫ 2

tn

[b(ξ)]−q′ dξ

ξ

)− 1
q
[
`1

(∫ 2

tn

[b(ξ)]−q′dξ

ξ

)]α∥∥∥∥∥
q;(2s,1/4)

.

However, the last expression tends to +∞ as s→ 0+ because αq+1 > 0.
Therefore, the embedding (3.17) cannot hold. The proof of part (iii) is
complete.
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Textos de Matemática (Série B) 34, Departamento de Matemática,
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matics 97, Birkhäuser Verlag, Basel, 2001.

[23] A. Zygmund, “Trigonometric series”, Vol. I, 2nd ed., Cambridge
University Press, New York, 1959.

Amiran Gogatishvili:
Mathematical Institute
Academy of Sciences of the Czech Republic

Z̆itná 25
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