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Abstract

Let F be a homogeneous real polynomial of even degree in any number of vari-
ables. We consider the problem of giving explicit conditions on the coefficients
so that F is positive definite or positive semi-definite. In this note we produce a
necessary condition for positivity, and a sufficient condition for non-negativity,
in terms of positivity or semi-positivity of a one-variable characteristic polyno-
mial of F . Also, we revisit the known sufficient condition in terms of Hankel
matrices.

1. Introduction

Let F =
∑
|λ|=d Fλ xλ ∈ R[x1, . . . , xn] be a polynomial in n variables, with real coeffi-

cients, homogeneous of even degree d. We are interested in giving explicit polynomial
conditions on the coefficients Fλ so that F is positive definite or positive semi-definite.

Such conditions are known in the cases d = 2 (quadratic forms, positivity of
principal minors) and n = 2 (binary forms, Sturm-Sylvester). We shall give conditions
for any (n, d) via reduction to these two cases.

The tool used for the reduction is the characteristic polynomial of F , which is a fairly
natural thing to consider once the notion of Determinant of a tensor is known. In the
present case of symmetric tensors the Determinant is the discriminant. The notion of
Determinant was developed (after Cayley and others) by Gelfand-Kapranov-Zelevinsky
and we were motivated by some interesting questions posed in the Introduction of their
work [7] on Hyperdeterminants.
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Inside the vector space of real homogeneous polynomials of degree d sit the convex
cone of positive polynomials and the discriminant hypersurface. Part of our work will
be to understand some of the geometry involved.

In this picture there are two further cones of classical relevance: the polynomials
which are sums of squares and the sums of powers of linear forms; we refer to the
monograph [13] by Reznick for more details on these cones and for references to the
literature on positive polynomials. See also [10, 11] for the related Problem 17 of
Hilbert.

In the last section we revisit the known sufficient condition for positivity in terms
of positivity of the Hankel quadratic form (see [13]), making more explicit its relation
to the Veronese embedding, to geometric plethysm (as in Fulton-Harris [5]) and to the
coalgebra structure of the polynomial ring.

2. Positivity and the characteristic polynomial

Let F be a homogeneous polynomial of degree d in n variables x1, . . . , xn with coeffi-
cients in a field K. We will denote

K(n, d) (2.1)

the K-vector space of all such polynomials. Its dimension is N =
(n−1+d

d

)
.

For K = R, the field of real numbers, we shall say that F is positive (resp.
non-negative), written F > 0 (resp. F ≥ 0), if F (x) > 0 for all x ∈ Rn − {0} (resp.
F (x) ≥ 0 for all x ∈ Rn).

We are interested in obtaining conditions on the coefficients of F equivalent to
F > 0 or to F ≥ 0. We assume d is even, so that positive polynomials exist.

In case d = 2 such conditions are given by the well-known Sylvester’s criterion:
If F (x) =

∑
1≤i,j≤n Fijxixj (with Fij = Fji ∈ R) then

F > 0 if and only if Dr(F ) > 0, r = 1, . . . , n (2.2)

where Dr(F ) = det(Fij)1≤i,j≤r is the r × r principal minor of the n × n symmetric
matrix representing F .

Let us remark that the conditions F ≥ 0 and Dr(F ) ≥ 0, (r = 1, . . . , n), are not
equivalent. Actually, F ≥ 0 is equivalent to

DJ(F ) ≥ 0, ∀J ⊂ {1, . . . , n} (2.3)

where DJ(F ) = det(Fij)i,j∈J , see [6].
For the case n = 2 of binary forms we can use Sylvester’s formulation of Sturm’s

Theorem [6, 2, 12]. To recall this, let p ∈ R[t] be a (monic) polynomial of degree d
in one variable, over the real numbers. Consider the finite dimensional R-algebra
A = R[t]/(p) and denote its trace linear form tr : A → R. For each u ∈ A define a
quadratic form on A by

Qu(x) = tr(ux2) (2.4)
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Let R(p) ⊂ C be the set of complex roots of p. Then, Sylvester’s theorem asserts
that

rank(Qu) = |{r ∈ R(p)/ u(r) 6= 0}| (2.5)
signature(Qu) = |{r ∈ R(p)/ u(r) > 0}| − |{r ∈ R(p)/ u(r) < 0}| .

Here | | denotes the cardinality of a finite set. Suppose p(0) 6= 0 and denote P (resp.
N) the number of positive (resp. negative) real roots of p. Choosing u = 1, we have
that sg(Q1) is the number P +N of real roots of p. For u = t we obtain sg(Qt) = P−N .
Hence, 2P = sg(Q1) + sg(Qt). In particular, P = 0 (i. e. p(t) > 0 for t > 0) if and
only if sg(Q1) + sg(Qt) = 0, a fact that will be useful later.

Let us denote ∇(n, d, C) ⊂ C(n, d) the set of singular polynomials of degree d in n
variables, over the complex numbers. That is,

∇(n, d, C) =
{
F ∈ C(n, d) /∃x ∈ Cn − {0}, ∂F

∂xi
(x) = 0,∀i

}
. (2.6)

It is known (see e.g. [8]) that ∇(n, d, C) is an irreducible algebraic hypersurface
of degree

D = n(d− 1)n−1 (2.7)

defined over the rational numbers. Therefore, there exists a polynomial (unique up to
multiplicative constant)

∆ = ∆(n, d) (2.8)

called the discriminant, such that

∇(n, d, C) = {F ∈ C(n, d) / ∆(F ) = 0} . (2.9)

More precisely, writing a general polynomial

F =
∑
|λ|=d

Fλ xλ ∈ K(n, d) (2.10)

where λ = (λ1, . . . , λn) ∈ Nn, |λ| =
∑

i λi, xλ =
∏

i x
λi
i and Fλ ∈ K, so that Tλ(F ) = Fλ

are coordinate functions on the vector space K(n, d), we know ∆ is a homogeneous
polynomial in variables Tλ, of degree D = n(d − 1)n−1 and with rational coefficients.
In other terms, ∆ is an element of the D-th symmetric power of the rational vector
space dual to Q(n, d).

We shall normalize ∆ so that ∆(J) = 1 where J ∈ C(n, d) − ∇(n, d, C) is the
polynomial

J(x) =
∑

1≤j≤n

xd
j . (2.11)

Restricting to the real numbers, we denote

∇ = ∇(n, d, R) = ∇(n, d, C) ∩ R(n, d)

=
{
F ∈ R(n, d) /∃x ∈ Cn − {0}, ∂F

∂xi
(x) = 0,∀i

}
= {F ∈ R(n, d) / ∆(F ) = 0}

the set of real polynomials which have a singular point, real or complex.
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Let us denote
P = P(n, d) = {F ∈ R(n, d) / F > 0} (2.12)

the set of all positive polynomials. It is easy to verify that P is an open convex
cone in the vector space R(n, d). Here by ”cone” we mean a set which is stable under
multiplication by R>0. It is also easy to see that the closure of P (in the usual topology
of R(n, d)) is the closed convex cone

P̄ = P̄(n, d) = {F ∈ R(n, d) / F ≥ 0} . (2.13)

With slight abuse of notation we write ∆ : R(n, d) → R for the polynomial
function induced by the polynomial ∆.

Theorem 2.1

P −∇ is connected.

Proof. Let F ∈ P ∩ ∇ be a positive singular polynomial. Let x ∈ Cn − {0} be a
singular point of F . Since F (x) = 0 and F > 0 it follows that x ∈ Cn − Rn. The
complex conjugate x̄ ∈ Cn is also a singular point of F , because F has real coefficients.
It follows that F has two distinct singular points in Cn.

The idea now is that polynomials with at least two singular points occur in codi-
mension at least two and hence they do not disconnect P. To prove this, let us denote

∇2(n, d, C)

the Zariski closure of the set of complex polynomials with at least two distinct singular
points. By a standard incidence correspondence argument, ∇2(n, d, C) ⊂ C(n, d) is a
complex algebraic variety of codimension two. Let us denote its real points

∇2 = ∇2(n, d, R) = ∇2(n, d, C) ∩ R(n, d) . (2.14)

We claim that P ∩∇ = P ∩∇2. The inclusion ⊂ was observed just above, while
the other one is clear since ∇2 ⊂ ∇.

Then P ∩ ∇ ⊂ R(n, d) is an open subset of a real algebraic variety ∇2 of real
dimension N − 2, where N =

(n−1+d
d

)
= dim R(n, d).

The Theorem now follows from Proposition 2.2 below. �

Surely Proposition 2.2 is a well-known statement, but we shall give a proof due
to lack of a suitable reference.

Proposition 2.2

Let P ⊂ RN be a connected open set, Y ⊂ RN a real algebraic variety of dimension
d and denote X = P ∩ Y . Then

a) For any family of supports h and every sheaf L of abelian groups

Hj
h(X,L) = 0, ∀j > d (2.15)

i.e. the h-cohomological dimension of X is ≤ d.
In particular, Hj

c (X, Z) = 0 for j > d, where Hc denotes cohomology with compact
supports.

b) If d ≤ N − 2 then P −X is connected.
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Proof. We refer to [9] for general definitions.
To prove a), let us denote S ⊂ Y the set of singular points, T ⊂ Y the union of

the irreducible components of Y of dimension < d and A = P ∩ (S ∪ T ), which is a
closed subset of X. Let us remark that

i) S ∪ T ⊂ RN is a real algebraic variety of dimension < d.
ii) Y − (S ∪T ) is a smooth manifold of dimension d. Then, its open subset X−A

is also a smooth manifold of dimension d.
Now we apply to (X, A) the theory of [9], (4.10). From the exact sequence of

sheaves on X
0 → LX−A → L → LA → 0 (2.16)

one obtains a long exact sequence [9], (4.10.1) of cohomology with supports in h

. . . → Hj
h|X−A(X −A,L) → Hj

h(X,L) → Hj
h|A(A,L) →

→ Hj+1
h|X−A(X −A,L) → . . .

Let j > d. By induction on d and due to i) we know that Hj
h|A(A,L) = 0.

Since a smooth manifold of dimension d has h-cohomological dimension d ([9], (4.14.1)
and (5.12)) we have Hj

h|X−A(X − A,L) = 0. From the exact sequence it follows that

Hj
h(X,L) = 0, as claimed.

In particular, when L = ZX is the constant sheaf Z on X and h is the family
of compact subsets of X, we obtain the statement about cohomology with compact
supports.

To prove b) we apply the Poincare-Lefschetz duality theorem ([3], (7.13)) for the
N -dimensional manifold P and the closed set X ⊂ P . This Theorem implies that

HN−1
c (X) = H1(P, P −X) . (2.17)

Combining with a) we obtain H1(P, P −X) = 0 and from the homology sequence
of the pair (P, P −X) we deduce H0(P −X) = H0(P ) = Z. �

Now we deduce a Corollary of importance for our present purpose.

Corollary 2.3

Let F ∈ R(n, d). If F ≥ 0 then ∆(F ) ≥ 0.

Proof. We want to show that ∆ is non-negative on P̄. It is clear that

P −∇ ⊂ (∆ > 0) ∪ (∆ < 0) (2.18)

where we denote (∆ > 0) = {F/ ∆(F ) > 0}. By Theorem 2.1, P − ∇ is connected
and the polynomial J defined in (2.11) belongs to the intersection (P −∇)∩ (∆ > 0),
so we obtain P −∇ ⊂ (∆ > 0), that is, P ⊂ (∆ ≥ 0), and by continuity P̄ ⊂ (∆ ≥ 0),
as we wanted to prove. �

Example 2.4 Les us consider the case (n, d) = (2, 4) of binary quartics, written
F =

∑
0≤i≤4 Fi xi

1x
4−i
2 . Over the complex numbers we have ∇(2, 4, C) ⊂ C(2, 4)
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of respective complex dimensions 4 and 5. Their real parts ∇ ⊂ R(2, 4) have real
dimensions 4 and 5, but ∇ contains the open set P ∩∇ which has dimension 3 and is
a ”component” of ∇ in the sense that it is not contained in the closure of ∇−P ∩∇,
with respect to the usual (not Zariski) topology of R(2, 4).

More explicitly, P ∩ ∇ consists of the quartics with two double complex roots,
i. e. of the form F = (ax2

1 + bx1x2 + cx2
2)

2 with b2 − 4ac < 0 (so we see again it
has dimension 3) and it is clear that these are not limit of real quartics with only one
double root.

Let V ⊂ R(2, 4) denote the 3-dimensional subspace of those F ’s with F4 = 1 and
F3 = 0. We refer to [8], page 381, for a drawing of the two-dimensional real algebraic
variety ∇ ∩ V , but let’s point out that (P ∩ ∇) ∩ V (curve of quartics of the form
(x2

1 + cx2
2)

2 with c > 0) is lacking in that picture and should be added as a curve
pointing out and going through the point F = x4

1 marked ”quadruple root”.

Definition 2.5 For F ∈ K(n, d) we define the characteristic polynomial of F
(with respect to J)

χ(F ;J)(t) = ∆(F + tJ) ∈ K[t] (2.19)

where J(x) =
∑

1≤j≤n xd
j , as in (2.11).

Remark 2.6 a) The definition depends on the choice of J , but for simplicity we may
write χ(F ) instead of χ(F ;J). In fact, our choice of a positive J is rather arbitrary.

b) Since J and ∆ have rational coefficients it follows that χ(F ) has coefficients in
K if F has coefficients in K.

c) χ(F ) is a polynomial in t of degree D as in (2.7), and we may write

χ(F )(t) =
∑

0≤j≤D

∆j(F ) tj (2.20)

where ∆0 = ∆ and ∆j is a homogeneous polynomial in the coefficients of F , of degree
D − j for j = 0, . . . , D. Also, by our normalization of ∆ in (2.11) it follows that χ(F )
is monic.

d) The roots of χ(F ) are the values of t such that F + tJ is singular, that is,
they parametrize the intersections of the discriminant hypersurface ∇ with the pencil
spanned by F and J . These roots may have the right to be called ”eigenvalues of F”
(with respect to J).

The next Proposition gives a necessary condition for non-negativity.

Proposition 2.7

Let F ∈ R(n, d). If F ≥ 0 then χ(F )(t) ≥ 0 for all t ∈ R≥0.

Proof. Since J ≥ 0, for F ≥ 0 and t ≥ 0 we have F + tJ ≥ 0. By Corollary 2.3,
χ(F )(t) = ∆(F + tJ) ≥ 0, as wanted. �

Remark 2.8 a) The Proposition gives a necessary condition for non-negativity in
principle explicitly computable via applying the Sylvester criterion (2.5) to the char-
acteristic polynomial χ(F ).
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b) As kindly pointed out to us by Jiawang Nie (Berkeley), the converse to Propo-
sition 2.7 fails for d = 2.

c) Regarding the choice of J mentioned in (2.6) a), let us fix a finite number
of positive polynomials J1, . . . , Jm ∈ R(n, d). As in Proposition 2.7, if F ≥ 0 then
χ(F ;Ji)(t) ≥ 0 for all t ∈ R≥0 and all i = 1, . . . ,m. It would be interesting to know if
this necessary condition for non-negativity is also sufficient, for some choice of m and
J1, . . . , Jm.

d) Similarly, for F ∈ R(n, d) define a generalized characteristic polynomial

χ(F ;J1, . . . , Jm)(t1, . . . , tm) = ∆(F +
m∑

1=1

tiJi) ∈ R[t1, . . . , tm] . (2.21)

The same proof of Proposition 2.7 gives that a necessary condition for F ≥ 0 is

χ(F ;J1, . . . , Jm)(t1, . . . , tm) ≥ 0, ∀ti ≥ 0 . (2.22)

As kindly pointed out to us by Michel Coste, the converse to Proposition 2.7 holds
replacing ≥ by >. More precisely,

Proposition 2.9

Let F ∈ R(n, d). If χ(F )(t) > 0 for all t ∈ R≥0 then F > 0.

Proof. If χ(F )(t) = ∆(F + tJ) > 0 for all t ∈ R≥0 the polynomials F + tJ with
t ∈ [0,+∞] are all non-singular and define a smooth family of smooth varieties Xt =
(F + tJ = 0). By Thom’s Lemma such a family is locally trivial and hence the fibers
Xt are all diffeomorphic. Since the set of zeros of J is equal to {0}, the same is true
for F + tJ for all t ≥ 0. In particular, the set of zeros of F is {0}, so that F > 0 or
F < 0. If F < 0 then there exists t ≥ 0 such that F + tJ has a non-trivial zero, which
is a contradiction. Therefore F > 0, as wanted.

Here is an alternative proof, due to the Referee: Because of homogeneity, we
consider homogeneous polynomials to be real functions on the unit sphere S ⊂ Rn.
The function M which maps a continuous real valued function to its minimum value
M(G) = min{G(x)|x ∈ S} is continuous with respect to the supremum norm on the
space C(S, R) of continuous functions. Now suppose F is not strictly positive on S,
i.e. M(F ) < 0. Since J is positive and S is compact, we have that M(F + bJ) > 0 for
some positive real number b. Since M is continuous, there is some 0 < a < b such that
M(F + aJ) = 0. But then F + aJ has a critical point outside of the origin and hence
χ(F )(a) = 0. �

Now we obtain further conditions for positivity by combining the previous con-
structions with the operation of restriction to a linear subspace.

Let V be a finite dimensional real vector space and denote Sd(V ∗) the d-th sym-
metric power of the dual of V , thought of as the space of homogeneous polynomials
of degree d in V . As in (2.6) and (2.9) denote ∇V ⊂ Sd(V ∗) the set of singular
polynomials and ∆V ∈ SD((Sd(V ∗))∗) = SD(Sd(V )) the discriminant.

Let V ⊂ Rn be a linear subspace. For F ∈ R(n, d) = Sd((Rn)∗), denote FV ∈
Sd(V ∗) the restriction of F to V . We may now formulate a stronger necessary condition
for non-negativity:



286 Cukierman

Proposition 2.10

Let F ∈ R(n, d). If F ≥ 0 in Rn then ∆V (FV ) ≥ 0 for every linear subspace
V ⊂ Rn. Also, the characteristic polynomial χV (F )(t) = ∆V (FV + tJV ) is ≥ 0 for
t ≥ 0

Proof. It is clear that if F ≥ 0 in Rn then its restriction FV is also ≥ 0 in V . Applying
Corollary 2.3 in V we obtain ∆V (FV ) ≥ 0, as claimed. The claim about χV (F ) is
immediate as in Proposition 2.7. �

Example 2.11 For J ⊂ {1, . . . , n} let VJ = {x ∈ Rn/xi = 0,∀i /∈ J}, the J-th
coordinate plane. It follows that if F ≥ 0 in Rn then

∆VJ
(F ) ≥ 0, ∀J ⊂ {1, . . . , n} . (2.23)

Notice that in case d = 2, these ∆VJ
coincide with the diagonal minors DJ of (2.3).

Remark 2.12 In case d = 2, the conditions of Example 2.11 are equivalent to F ≥ 0
(see (2.3)). For d > 2 this is no longer true, as it is easily seen in the case of binary
forms.

3. Review of positivity via the Hankel quadratic form

In this section we review a well-known sufficient condition for non-negativity of F ∈
R(n, d) in terms of a quadratic form h(F ) associated to F , see for example [13]. See
also [1] for some related recent results.

Let V be a vector space of dimension n over a field K. The multiplication of the
symmetric algebra S(V ∗) induces maps

µ : Sm(Sd(V ∗)) → Smd(V ∗) . (3.1)

These are homomorphisms between linear representations of GL(V ). They may
be interpreted geometrically as the pull-back of homogeneous polynomials of degree m
under the d-th Veronese map

PV → PSd(V ) (3.2)

sending v ∈ V to vd ∈ Sd(V ) (see [5]).
Let K = R and fix m, d. Consider the vector space U = Sd(V ) and suppose G ∈

Sm(U∗) is non-negative (resp. positive). Then the restriction of G to the d-th Veronese
variety in PU is clearly non-negative (resp. positive) and hence µ(G) ∈ Smd(V ∗) is
non-negative (resp. positive).

For m = 2 in particular, we have

µ : S2(Sd(V ∗)) → S2d(V ∗) (3.3)

and if the quadratic form G ∈ S2(U∗) is ≥ 0 (resp. > 0) then the homogeneous
polynomial µ(G) ∈ S2d(V ∗) is ≥ 0 (resp. > 0).

On the other hand, suppose we have a map

h : S2d(V ∗) → S2(Sd(V ∗)) (3.4)
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such that µ ◦ h = identity. It follows that if the quadratic form h(F ) on U = Sd(V ) is
≥ 0 (resp. > 0) then F = µ(h(F )) ∈ S2d(V ∗) is ≥ 0 (resp. > 0). This is the sufficient
condition mentioned above.

What we shall do next is to explicitly construct such an h. It will be the well-
known Hankel quadratic form h(F ) associated to a homogeneous polynomial F ∈
S2d(V ∗) of even degree 2d (see [13]). The definition will be based on the co-algebra
structure of the symmetric algebra. It will follow in particular that h is linear and
GL(V )-equivariant. In [13] these constructions are based on an inner product on
S2d(V ∗). Let us remark that since S2d(V ∗) is an irreducible representation of GL(V ),
such an equivariant h is unique up to multiplicative constant. Thus, the construction
below may be considered as another example of plethysm as in [5].

Let V be a vector space of dimension n over a field K. For each d ∈ N we have a
natural map

V ⊗d ⊗ V ∗⊗d → K (3.5)

given on elementary tensors by

(v1 ⊗ · · · ⊗ vd)⊗ (ϕ1 ⊗ · · · ⊗ ϕd) 7→
1
d!

∑
σ∈Sd

d∏
i=1

< ϕi, vσ(i) > . (3.6)

This map factors through the quotient and gives a map of symmetric powers

(, ) : Sd(V )⊗ Sd(V ∗) → K (3.7)

with similar formula for elementary tensors (monomials). This induces a linear map
(called polarization, see e.g. [4])

℘ : Sd(V ) → (Sd(V ∗))∗ . (3.8)

Let us remark that (, ) and ℘ are equivariant for the natural actions of GL(V ).
Let {e1, . . . , en} be an ordered basis of V and denote {x1, . . . , xn} the dual basis

of V ∗, so that < xi, ej >= δij . For α = (α1, . . . , αn) ∈ Nn with |α| =
∑

i αi = d,
denote as usual eα = eα1

1 eα2
2 . . . eαn

n ∈ Sd(V ) and xα = xα1
1 xα2

2 . . . xαn
n ∈ Sd(V ∗). Then

{eα}|α|=d (resp. {xα}|α|=d) is a basis of Sd(V ) (resp. of Sd(V ∗)). Also, it is easy to
check from the explicit formulas above that

(xβ , eα) =
α!
d!

δαβ (3.9)

where α! =
∏

i αi!. It follows that

℘(eα)
( d!
β!

xβ
)

= δαβ . (3.10)

Writing Dα = ℘(eα) ∈ (Sd(V ∗))∗ we have

Dα
( d!
β!

xβ
)

= δαβ (3.11)

and the isomorphism ℘ may be written as

℘
( ∑
|α|=d

aαeα
)

=
∑
|α|=d

aαDα . (3.12)
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Now we look at the structure of co-algebra in the symmetric algebra

S(V ) =
⊕
n∈N

Sn(V ) . (3.13)

Consider the multiplication map of the symmetric algebra S(V ∗)

µ : Sd(V ∗)⊗ Se(V ∗) → Sd+e(V ∗) (3.14)

and the diagram

(Sd+e(V ∗))∗
µ∗−−−−→ (Sd(V ∗)⊗ Se(V ∗))∗ ∼= (Sd(V ∗))∗ ⊗ (Se(V ∗))∗

℘
x x℘⊗℘

Sd+e(V ) h−−−−→ Sd(V )⊗ Se(V )

(3.15)

where the vertical arrows are isomorphisms and h is defined so that the diagram
commutes. It easily follows from the definitions that the effect of h on basis elements
is, with sums extended to the pairs (α, β) such that |α| = d, |β| = e, α + β = γ:

h(eγ) =
∑

cαβ eα ⊗ eβ (3.16)

where cαβ = d!
α!

e!
β!

(α+β)!
(d+e)! . In terms of the basis elements Eα = d!

α! eα ∈ Sd(V ),

h(Eγ) =
∑

Eα ⊗ Eβ . (3.17)

Applying this to V ∗ we obtain GL(V )-equivariant maps

h : Sd+e(V ∗) → Sd(V ∗)⊗ Se(V ∗) (3.18)

such that for Xα = d!
α! xα ∈ Sd(V ∗)

h(Xγ) =
∑

Xα ⊗Xβ (3.19)

Proposition 3.1

With the notation above and any d, e, the composition

Sd+e(V ∗) h−−−−→ Sd(V ∗)⊗ Se(V ∗)
µ−−−−→ Sd+e(V ∗) (3.20)

is the identity.

Proof. To carry out this elementary calculation, let us compute on basis elements xγ

as above

µ(h(xγ)) = µ
( ∑

cαβ xα ⊗ xβ
)

=
∑

cαβ xα+β =
( ∑

cαβ

)
xγ = xγ .

The last equality amounts to

∑ d!
α!

e!
β!

=
(d + e)!
(α + β)!

(3.21)
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and this formula is easily checked by multiplying

( n∑
i=1

xi

)d
=

∑
|α|=d

d!
α!

xα and
( n∑

i=1

xi

)e
=

∑
|β|=e

e!
β!

xβ (3.22)

and equating coefficients of xγ . �

Now we specialize (3.1) to the case d = e. Since the multiplication of the sym-
metric algebra is commutative, by restriction we obtain GL(V )-equivariant maps, still
denoted µ and h

S2d(V ∗) h−−−−→ S2(Sd(V ∗))
µ−−−−→ S2d(V ∗) (3.23)

defined by the formulas above and satisfying µ ◦ h = identity.
This is the desired explicit definition of h as in (3.4). Hence, we obtain the

sufficient condition: if the quadratic form h(F ) is positive (resp. non-negative) then
F ∈ S2d(V ∗) is positive (resp. non-negative).
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