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Abstract. In the first section of this paper we prove a characterization
of integrable distributions which shows that the two definitions for
the convolution of distributions given by I,. ScHwaRrRTZ and W.S. Wra-
DIMIROW are equivalent. In the second section we consider the corres-
ponding situation for the §’-convolution which was introduced by
Y. Hirara and H. OcaTa. We then give an example of two tempered
measures whose convolution is a non-tempered measure. This answers
a question of R. SHIRAISHI.
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0. Iwntroduction and Notations.

For spaces of functions and distributions we use the notations
of HORVATH [4]. In particular, Bo(R") denotes the space of all C°°-
functions defined on R" which together with all their derivatives
vanish at infinity. The topology on By(R”) is defined by the sequence
of norms pl—> p,,(¢): = max {|0* p(x)|; x € R*, |a| < m} (m € Ny). The
topological dual By(R”)" of By(R*) is the space of all integrable dis-
tributions which is denoted D'z: by ScaHwartz [9, Ch. VI, § 8, p. 200].
For peE(R") we denote by ¢4 the function belonging to £ (R2")
defined by (x,y) > @(x + y).
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L. Scawarrz gave the following definition for the convolution
of two distributions.

(0.1) Definition (ScEHwWARTZ [8, Exposé n° 22, p. 2]). Two distribu-
tions S, T € D (R*)’ are said to be convolvable if ¢4 (S & T) € By(R?*)’
for all ¢ e D(R*). The convolution S * T e D(R")’ is then defined by
(S*T,9>:=[[Sx) T(y) plx +y) dxdy: = (p2(SX 1)1
(p € D(RY)).

It was shown by HORVATH [5, p. 185 et seq.] that the above
definition extends the usual definition of convolution between & (R*)’
and D(R*)’, O¢(R*)" and S(R*)’, L?(R*) and L?(R*) (p~' + ¢~ ! > 1).

W.S. WrapiMirRow defined the convolution of two distributions
by means of special approximate units.

(0.2) A sequence (n;; £ €N) in D(R*) will be called an approximate
unit if (n; B € N) converges to 1 in & (R") and {n;; £ € N} is bounded
in Bo(R"). (m; £ eN) will be called a special approximate unit if in
addition the following holds: For every compact set K ¢ R* there
is k(K) e N such that #,(x) = 1 for all x e K, & > k(K).

It is easy to see that for every ¢ € By(R") and every (special)
approximate unit (7;; £ € N) the sequence (x, - ¢; £ € N) converges to
@ in By(R").

(0.3) Definition (Wrapimmirow [14, Ch. II, § 7, p. 101-102]). Two
distributions S, T e D(R*)’ are said to be convolvable if for every
special approximate unit (; 2 € N) in D(R*) and every ¢ € D(R")
the scalar sequence ({( S® T, .- ¢4); k& eN) converges. The con-
volution S *7T € D(R*)’ is then defined by ( S*7T,¢): =
=klim< SQT, n, - 92 > (p € D(RY)).

—>00

The convergence of ({( SX T, ;- ¢4); keN) for every special
approximate unit (i,; 2 eN) in D (R?*) and every ¢ € D (R*) implies
that the limit does not depend on the choice of the sequence (i;
keN). It follows from the sequential completeness of ¢(D(R")’,
D(R")) that zpl——-)kl_i:n (S®T,n-94) is again a distribution.

We didn’t use different notations for the above defined convo-

lutions since the proposition in the next section will show that the
two definitions are equivalent. .
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1. A characterization of integrable distributions.

(1.1) Proposition. For a distribution R e D(R")’ the following are
equivalent:

(a) R is continuous for the topology induced by B, (R*) on D (R").

(b) There exists m € Ny such that for every e > 0 there exists a
compact set K ¢ R* with the property: ¢ e D(R”), supp(p) n K =
=47 = I( R’ qj)l < 6'_75"»(?7)-

(c) For every approximate unit (y,; %€ N) in D (R*) the sequence
(C R, m); B eN) is convergent.

(d) For every special approximate unit (i k& eN) in D(R*) the
sequence ({ R, #;); keN) is convergent.

(e) There exist a compact set K¢ R*, C > 0 and m e Ny such
that [( R, ¢>| < C-p,(p) holds for all ¢ € D(R?) satisfying
supp (¢) N K = 2.

Proof.

(a) = (b): From (a) we obtain the existence of m eNy and C > 0
such that |( R,¢)| < C:p,(p) holds for all @ € D(R"*). Assume
there exists g > 0 such that for every compact set K ¢ R* there
is g eD(R") satisfying supp (px) N K = ¢ and (R, x> >
> & * pu(px). Then we find inductively an increasing sequence
(Ki;1eN) of compact subsets of R* and a sequence (p; 2 eN) in

D(R”) sa’cifying Sllpp ((pl) c Io{l--}-l \KI: .75»; ((]:l) - 1 and (R: ‘Pl) > =)
k

for all /e N. We set y,: =Y ¢, (k € N). Since the functions (p,
I=1

(/ € N) have disjoint supports we obtain p, (y,) = 1 and thus
KR, )| < C for all ke N. On the other hand we have < R, Yy >
> k- g — oo (k — oo) which contradicts the above estimate.

(b) = (c): We choose 6 € D(R®) satisfying 6(x) = 1 in a neighbourhood
of 0eR” and set 6,(x) : = 0(x/r) (xeR*, 7 > 0). From the LEBNIZ
formula we obtain that for every j e Ny there exists C(6, J) > 0 such
that p;((1 —6,) - ¢) < C(6,7) - pj(¢) holds for all ¢ € By(R?) and all
7 2 1. Now let (n;keN) be an approximate unit, take m e N,
according to (b) and set M :=4-sup {p,(n); keN}. Let ¢ >0
be given. By hypothesis (b) there exists a compact set K ¢ R* such
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that KR, @] < (M - C(0, m))~!-¢-p,(p) holds for all ¢ e D(R") sa-
tisfying supp (p) n K = o. Now we choose » > 1 such that 0.(x) = 1
holds in a neighbourhood of K. We then have

KR,(1—6,) (e —m)>| < (M- C(G m))~t e p, (1 — (77A —m))
< M-t (Pm(n,’e) -+ pn (77) <

for all 2,7 eN.

Since (1;; & € N) converges in £(R") and 0, - R has compact sup-
port, there is £y e N such that
KR, 0, (nx — )] =<6, R, — n)| < ¢f2 holds for all k,7 > k.
Putting these two estimates together we obtain the convergence of
(KR, mY; ke N).

(c) = (d) is obvious.

(d) = (e): Assume (e) is false and set K, : = {x e R*; | x| < m} (m € N).
Then there exists a sequence (q),,,, m € N) in D(R*) satisfying
supp (¢n) NK,, = @ (m € N) such that [(R, ¢,>| > m? - p,,(¢,,) holds
for all m e N. We set 9, : = (m - p,,(p,)) ! - ¢,, (m € N). This sequence
satisfies supp (v, )nK,, =2 and [KR,y, | >m (meN), and for
every ke N the estimate p,(y,) < m—! holds for all m > k.

Now let (n;; £ € N) be a special approximate unit in D (R”). Then
the sequence defined by #,:=m, + y, (keN) is again a special
approximate unit in D(R”), and we obtain
[KR, 7> — (R, > = KR, v)| >k (keN). Thus at least one of
the sequences (( R, 7;*; k € N) and ({R, n,; k € N) is not convergent.

(e) = (a): It follows from the LrrBNiz formula that for every 6 € B(R*)
and every m e Nj there exists M(0, m) > 0 such that p,(0-¢) <
< M(0, m) - p,,(p) holds for all ¢ € By(R"). Now take K, C and m
according to (e). We choose an open relatively compact neighbourhood
U of K and a function # € D(R") such that supp () c U and %(x) = 1
holds in a neighbourhood of K. Since R|D(U) is of finite order there
exist keN, & > m, and C; > 0 such that (R, p>| < Cy- p(yp) for
all p eD(U). Using (e) we obtain

KR, ¢d] < KR, (1 —7) - ¢>| + KR, 1 - ¢
SC pu((l =) @) + Ci-puln - ¢)
< (C-M(1 —n,m)+ Cy- My, k) - pu(e)
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for all ¢ e D(R*). Thus R is continuous for the topology induced
by Bo(R*) on D(R*). (Since D (R") is dense in By(R”), R has a unique
extension R, e By(R")'.)

(1.2) Remarks.

(a) As indicated by Scuwar1z [8, Exposé n° 21, p. 2] and HORVATH
[5, p. 184] an alternative proof of the implications (1.1a) = (1.1b)
and (l.1a) = (I.1c) respectively may be given by using the repre-
sentation theorem for integrable distributions (cf. Horvaru [4, Ch.
4, § 6, p. 347]). On the other hand (1.1b) may be used instead of
the representation theorem to prove that the strong bidual (By(R")"”,
B(Bo"", By')) of By(R") is topologically isomorphic to B(R") provided
with the topology defined by the sequence of norms (p,,; 7 € Ny).

Property (1.1b) is similar to condition (M) of Boursaxi [, § 5,
n° 2, Prop. 5, p. 581

(b) Let neD(R") satisfy 5(x) =1 in a neighbourhood of 0eR”.
Then the sequence defined by #,(x): =5(x/k) (xeR", keN) is a
special approximate unit. Additionally this sequence has the follo-
wing property:

| For every o e N# there is C, > 0 such that

{ (1 4 |x[2)=li2 - |6% 9, (x)! < C, holds for all x e R*, keN.

Let us note, however, that it is not possible to replace the special
approximate units in (1.1d) by the smaller class of all special appro-
ximate units which in addition satisfy the uniform growth condition
(*). For example the distribution generated by f(x): = (sin x)/x (x € R)
does not belong to By(R)’ although for every approximate unit (n;
k € N) in D(R) which satisfies (*), the sequence ( f, .5 == [ f(x) - n.(x)
dx (kR eN) is convergent. )

(c) Conditions (1.1a), (1.1b) and (l.le) remain equivalent if R” is
replaced by an open subset £ cR*: The proofs of (1.l1a)= (1.1b)
and (l.le) = (1.1a) given above apply also to this case, and the im-
plication (1.1b) = (l.le) is obvious. (d) Using (1.1a) <= (1.1c) and
B. Levr’s theorem we obtain By(R*)'n L] (R*)* = L'(R")*. In
general this equality is not true with R” replaced by an open subset
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Q2 S R* as the following example shows: f(x):=1logx on Q: =
= (0,1)cR; then we obtain 8 feBy(2)'n Ll (@)* and 0 f ¢ L1(Q).
(e) An application of the equivalence (1.1a) <= (1.1d) to the dis-
tributions ¢4 - (S® T) (p € D(R") shows that the Definitions (0.1)
and (0.3) are equivalent.

In the following theorem we collect the equivalent conditions
for the existence of the convolution of two distributions we know
of.

(1.3) Theorem. For two distributions S, T e D(R")’ the following
are equivalent:

(a) (S*9)- (T *g) e LI(R") for all ¢,y eD(R).

(b) ¢4 (SR T) € By(R?*)’ for all p €D (R").

(¢) S(x — %) T(9) is partially summable with respect to v (cf.
Scawartz [10, § 5, p. 130]).

(d) S (T * g) eBy(R") for all gD (RY).

(¢) For every a > 0 there exist C > 0 and m € N, such that [(S&®

R T, ¢d| < C-p,(p) for all p e D(R*) satisfying supp (p)c {(x, ) €

eR™ |x 4+ v| < a}.

(f) For every approximate unit (n,;%eN) in D(R*) and every
@ €D (R") the sequence ((S® T, 7, - ¢4%; ke N) is convergent.

(g) Same statement as (f) for special approximate units instead of
approximate units.

(1.4) Remarks.

(a) Condition (1.3a) was first used by CHEVALLEY [2, p. 112] to de-
fine the convolution of two distributions S, T e D(R")’.

(b) The conditions (1.3b) and (1.3c) are contained in SCHWARTZ
[8, Exposé n° 221; see also HOrRvATH [5] and ROIDER [7].

(¢) SHirAtsHI [11, p. 24] proved the equivalence of (1.3a), ..., (1.3d);
the equivalence of (1.3b) and (1.3e) is proved by Horvaru [6, Prop.
1]. The equivalence of (1.3b), (1.3f) and (1.3g) follows from Propo-
sition (1.1).

(d) The notion of simultaneous convolution for more than two dis-
tributions is not considered in WrapiMmirow [14]. But a glance at
the definition of the simultaneous convolution of a finite set of dis-
tributions in SHiratsHI {11, p. 30] (cf. also Horvaru [5, p. 190])
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immediately shows us how Definition (0.3) should be modified for
this case. An application of the equivalence (I.1a) <= (1.1d) then
shows that the definition obtained in this way is also equivalent to
SuirarsHr's definition of the simultaneous convolution of a finite
set of distributions.

2. The S'-convolution for tempered distributions.

In order to establish the validity of the exchange formula
F(S*T)=F(S) - F(T) for the Fourier transformation of tempered
distributions, Y. HIrATA and H. Ocara introduced the notion of
the §’-convolution of two tempered distributions.

(2.1) Definition (HiraTa, OcaTA [3, p. 148]). The S§’-convolution
S& T of two tempered distributions S, T e §(R*)" exists if (S * ¢) -
(T *y) e L' (R") holds for all ¢,y e S(R"). In this case S® T is
the unique tempered distribution satisfying ((S®T)*¢,p) =

= [(S*¢) () - (T *y) (x) dx for all g, p S(RY).

Y. HiraTA and H. Ocara (loc. cit., p. 151) showed that if the
§’-convolution of S, T e S(R”)’ is defined then F(S& T) = F(S) - F(T)
holds in the following sense: For any two sequences of regularizations
(0x; k € N) and (g; & € N) the sequences ((F(S) * g,) - F(T); k eN) and
(F(S) - (F(T) *%x); k€ N) converge in D(R")’ to the same distribu-
tion and this common limit is denoted by F(S) - F(T). (See SHIRAISHI,
Iravo [12, Prop. 2. (3), p. 225] for a more convenient description
of this multiplicative product.)

Surraisar [11, p. 26] showed that the S’-convolution of two
tempered distributions S, T € S(R")’ exists if and only if g1 - (S® T) €
€ Bo(R?")" holds for all ¢ eS(R").

In Wrapmmirow [14] the S’-convolution is not considered, but
the modification of Definition (0.3) to this case is straightforward.
An appeal to the equivalence (a) <- (c) in Proposition (1.1) yields
that ¢ - (S&® T) € Bo(R?*")’ holds for all ¢ € S(R") if and only if for
all (special) approximate units (n,; # € N) in D (R?*) and all ¢ € S(R*)
the sequence ((S& T, n, - ¢4); k € N) is convergent.

The properties considered in the next proposition are analogous
to (1.3b) and (1.3e) and provide another criterion for the existence
of the §'-convolution,
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2.2) Proposition. For ReD(R?)’ the following are equivalent:
a) @4 - R eBy(R?)" for all ¢ € S(R*).

b) There exist C > 0, m e N, such that

KR, 9> < Csup {(1 4 |5 +v )" - [op(x, v)|; %, veR", |y < m
holds for all y e D(R2").

(
(
(

Proof.

(a) = (b): We set w,(r) : = (1 + [x2)" (x eR", m e Z). The topology
of §(R") may be defined by the sequence of norms ¢r—» g.(p) : =
= sup {w,(x) - [0*p(¥)]; *€R", |a| < m} (meNy). Now let (a) be
satisfied and consider the bilinear form B:S§(R*) x Bo(R?*) — C,
B(p, y): = (¢4 - R, ). By assumption B(gp, *): Bo(R?*) - C is con-
tinuous for all ¢ € S(R*). Let (n;; 2 € N) be an approximate unit in
D(R?). Then the sequence <7, - ¢? - R, 9Y =<4 R, 5, - > (keN)
converges to <¢“ - R, > for all ¢ € S(R*), p € By(R*); and for every
p € Bo(R™) and every % e N the linear form gp+—> (g4 - R, 7 - Py =
=My R, ¢4y is continuous on S(R*) (cf. Horvaru [4, Ch. 4,
§ 9, p. 387], proof of Prop. 5). Thus B(-, ) : S(R*) - C, being the
pointwise limit of a sequence of continuous linear forms, is conti-
nuous for all ¢ € By(R?) since §(R”) is a Fréchet space. Theorem 1
of HorvaTH [4, Ch. 4, § 7, p. 357] implies the continuity of B : § (R*) x
X Bo(R?*) — C. Therefore there exist C’ >0 and /eN, such that
K¢ * R, 93| < C"-q,(9p) - pi(w) holds for all p eS(R") and all pe
€ D (R¥). The space S{R") (HorvaTH {4, Ch. 2, § 4, Example 11,
p- 90]) is canonically isomorphic to the completion of (S (R"), ¢). From
Horvaru [4, Ch. 2, § 5, Example 8, p. 101] we obtain w_;, €
€ §!(R*). Since the above inequality remains true for all p €S (RY)
we obtain:

(R =Ko g Roop 293! < C -glo_g.,) - prlo. )
< Cosup Al 4 Lx b VRT3 p(n0)s 3y e RY, [yl < L4 1y

for all y e D(R*), where the last estimate follows by a routine cal-
culation (analogous to Horvaru [4, Ch. 2, § 5, p. 102, (4) et seq.]).
The above proof was inspired by Scawartz [9, Ch. VII, § 4, p. 240 b)].

(b) = (a): Let ¢ € S(R*) be given. By the IrIBN1z formula we obtain
from (b) the estimate
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g2 - R, 93] = KR, ¢ -y < Cosup {(1+ |x 4 y[2)*(07(¢? - 9) (%, ¥)];
%, yeR" |yl <m} < C'-p,(p) for all y e D(R?). This shows that
@* - R is continuous for the topology induced by By(R?*) on D(R?*).

As in the preceding section we collect in the following theorem
the equivalent conditions for the existence of the S’-convolution
of two tempered distributions we know of.

(2.3) Theorem. For two tempered distributions S, 7 e S(R*)’ the
following are equivalent:

(@) (S*v)- (F*¢)eL'(R) for all ¢, peS(RY).

(B) (S*y)- (T*g)e L'(R") for all ¢ eS(R"), y e D(R").

(©) S+ (T* ) eBy(R") for all ¢S (R

(d) 4 (SR T) eBO(RZ”) for all ¢ €S(R*).

(e) There exist C > 0, m € Ny such that

KSDT,p>| < C-sup (1 + x -+ yP)"op(x, v)|; v R, y] < m)
holds for all y e D (R?").

(f) For every approximate unit (n,; ke N) in D(R?**) and every

@ €S (R") the sequence ((S® T, n, - ¢4 ~; k € N) is convergent.

(g) Same statement as (f) for special approximate units instead of
approximate units.

(2.4) Remarks.

(a) The equivalence of (2.3a), ..., (2.3d) was proved by SHIRAISHI
[11, p. 26].

(b) The equivalence of (2.3d) and (2.3e) follows from Proposition
(2.2), and the equivalence of (2.3d), (2.3f) and (2.3g) follows from
Proposition (1.1).

(c) The considerations of (1.4d) apply also to the simultaneous §’-con-
volution of a finite set of tempered distributions (cf. SHIrArsHI [11,
p. 30]).

3. An example.

SHIRAISHI [11, p. 27, Remark 1.] observed that if two distribu-
tions S,TeD(R"), S0, T #0, satisfy ¢4- (S® T) € By(R¥)’
for all g € §(R”) then it follows that S and T are tempered. He also
observed (loc. cit., p. 28, Remark 2.) that if the convolution (in the
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sense of Definition (0.1)) of two tempered distributions were tempe-
red whenever it is defined, the concept of S’-convolution would be
superfluous. Therefore he asked (loc. cit., p. 20) whether the convo-
lution S* T of two tempered distributions is tempered whenever
it is defined.

In order to answer this question we give an example of two tem-
pered measures whose convolution is a non-tempered measure.

For j,keN,k < 2/ we define

- | (), ) - =:§_:(2z') % ()R,

V(7. k)= (), k) —j.

For fixed j € N, the block (x(j, k); £ < 2/) consists of 2/ even integers
spaced at distance 2j. The distance from the j — # block to the
(7 + 1)— ¢tk block is 2(j + 1). With the exception of ¥(1,1) the points
V(j, k) are just the arithmetic means of the consecutive points x(l, 7)
(L, meN,m < 2.

We note the following inequalities:

x(7, k) = x(5, 1) > x(, 2) > x(I, m),
(3.2) S y(7, k) = v(7, 1) > x(1, 2) = x(l, m) > y(l, m)
forall j >0 ke{l,..., 2y, me{l, .. 2}.

In particular we have x(j, k) # x(l, m) and y(j, k) # y(l, m) for
(. k) # (I, m).

For ze R let §(% — 2z) denote the DIRAC measure concentrated
at z. Then the measures

| up): =S 3o - 20, 0,
(3.3) < ! k;‘
'\ v(%) : =l§-‘1 m:]é(fc —+ y(l, m))

are tempered (cf. TREVES [13, Part II, Ch. 25, p. 275, Exercise 25.7]).
For every ¢ € K(R?) we have

co 2f oo 2

(u@r, ¢y =% X X X ¢ k), —y(, m).

j=1k=11l=1m=1
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Considering the three cases j > 1,7 =1, < I one easily proves the
following inequality

(3.4) |%(7, ) — v(l, m)| > max {j,l} for all j,leN,
’ ke{l, . .,2h, me{l,.., 2.

Thus for every compact set Kc R the set supp(u ® »)n K4 is finite
and therefore the convolution of u and » exists even in the stronger
sense of HorvaTH [4, Ch. 4, § 9, p. 384]; we obtain

co 2f oo 2

u*v, 9y =(u®v,py = ¥ X X X v(x(j, k) — y(l m))

j=1k=1l=1m=1
for all y e K(R). For p e K(R), » > 0 we have the estimate

(%) 2f

u*vyy > X X g, k) — v, k)

j=1k=1 ji=1

I
b8
N
<
=

which shows that u * » is not tempered (TrREVES [13, Part IT, Ch.
25, p. 275, Exercise 25.7]).

(3.5) Remarks.

(a) Let o e D(R) satisfy supp (o)c(— 1/4,1/4),0 2 0,{po(x) dx = 1.
Then u* o and »*p are two bounded non-negative C°°-functions
whose convolution (u* ) * (v*9) = (u*») * (0 *0) (cf. ROIDER [7,
Prop. 1, p. 195]) is a (non-negative) C*°-function which generates
a non-tempered distribution (cf. Scawar1z [9, Ch. VII, § 5, p. 242]).

(b) In the above example the measure p * » was estimated below
co

by the measure (o, p):= ¥ 2y(j) (y e K(R)). The construction
i—1

shows that instead of the weights 2/ (7 e N) also faster growing se-
quences may be obtained.
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