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INTRODUCTION

The theory of flows with free boundaries has been developed mainly
in a non constructive way. The existence of flows is known in a large
number of cases, but so far there is no sound method to compute them.

The first general proof of existence and uniqueness is due to A. WEIN-
steIN [1], [2], [3], [4], [5], (**) who extended the method of continuity of
Conformal Mapping to the determination of the flow of a plane jet issuing
from a concave canal (Sce also G. HameL [7], [8], H. WEYL [9], K. FRrIE-
pricHs [10], J. LEray and A. WEINSTEIN [11]). The idea consists in
approaching the walls of the canal by polygonal walls, solving the pro-
blem for these, and procceding to the limit. Unfortunately the existence
of flows with polygonal walls is not attained in a constructive way and
the method cannot be made the basis for effective computations.

The most general results were obtained by the french school headed
by J. Leray [12], [13], (J. KravrcuEnko [15], [16], A. Oupbart [17],
R. Huron [18], P. TuEroN [19]). However, these results are not inten-
ded to be constructive, and it is extremely doubtful whether they can
be made so. A systematic use is made of Brouwer’s notion of topolo-
gical index of a continuous transformations as extended by J. Scmau-
peR and J. LEray [20] to Banach spaces, a powerful tool indeed but
a non-constructive one.

The variational approach, first formulated in 1927 by D. RiaBou-
cHINSKY [21], which lately has lead to new proofs of existence and uni-

(*) This paper has been prepared under the sponsorship of the Office of Naval
Research through Contract N5 ori — 76, Project 22. A communication of these re-
sults was presented to the International Congress of Mathematicians, Cambridge 1950.

(**) Numbers in brackets refer to the bibliography at the end of the paper.
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queness for plane flows (See K. Friepricus [10], P. R. GARABEDIAN and
D. C. Seencer [23], P. R. GaraBepian and H. Rovyben [23]) and to
the first proof of existence for axially symmetric flows (P. R. Gara-
BEDIAN, H. LEwy and M. ScHIFrER [24]), suggests, in principle, a way
to compute a solution by succesive approximations, but it does not seem
to be ready to support any computational scheme. The same should be
said with regard to the variational theory of M. LAVRENTIEFF [25] (Sec
also J. SERRIN [26], [27] and D. Gieara [28]).

On the constructive side the results are by far more modest and
restricted. N. NEkRrassoFF [29] seems to have been the first to prove
the existence of the wake of a curved obstacle given before hand. He
works with circular arcs and puts the problem into the form of a non
linear integral equation (of the type later considered by A. HAMER-
sTEIN [30], see also A. Quarter: [31], and A. WEINSTEIN [6]) which he
tries to solve by iterations. These are shown to converge for arcs of a
rather small angular extent. Nekrassoff method was later extended,
with the same limitations as to the convergence, to more general obsta-
cles by his disciples (N. ArRJaNNTIKOFF [32], P. MiasnikorF and S. Ka-
LININE [33], J. SEKERJ - ZENKOWITCH [34]).

In 1934 C. ScamieEDEN [35] tiied a similar iteration process working
on the Fourier coefficients of the unknown function, and made some
computations (see also M. KoLsHER [36]) but failed to prove the con-
vergence of his method.

Remarkably good approximate solutions for circular and elliptic
arcs have been given by S. Broberzxy [37], [38]. Putting aside all
questions of existence and convergence he simply tries to approximate
the obstacles by obstacles having at a finite number of points the same
curvature as the given one. Analytically this amounts to satisfy the
equation of the problem at a finite number of points only. Such pro-
cedure, however, appeared to be impracticable for more than threc
points and was left without a rigorous foundation. (For applications
see L. RoseNHEAD [39], and Y. BErGMAN [40]).

A characteristic of these last methods is that they do not solve the
hydrodynamical problem proper but one of the equations of which it
consists. To make this clear we recall that the determination of a flow
with free boundaries is equivalent to the determination of a func-
tion 4 (o) and parameters p,, p,, ..., p, from equations of the form
F@A=0f@A)=0f(,() =0, ..., fw () = 0, where F is a non linear
operator (transforming functions into functions) and f;, f,, ..., f,, functio-
nals (transforming functions into numbers) depending on the parameters.
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The later methods attempt to solve the first equation ignoring the rest.
In such a way A is eliminated and the problem is reduced to the solution
of a finite number of trascendental equations with a finite number of
unknowns, which, if the number is small (< 2), can be numerically
effected by inverse interpolation with not too great an cffort.

In behalf of this point of view it should mentioned that equation
F () = 0 is the only one that keeps its form, while the others change
a good deal from case to case, and so, that any result about the first
equation has a universal value for problems with free boundaries.

The present paper is written in the same spirit and contains a cons-
tructive theory for the cquation F (4) = 0, which in our formulation
takes the form

1 A=wvx(TA)e DA

where » and # are given functions and T and D linear integral opera-
tors. The solution is attained in two stages: discretization and itera-
tion. In the first, the equation is replaced by a finite number of equa-
tions (in the sense of BrRoDETzKY) which are solved by iteration in the
second. Proof of convergence and bounds for the number of opcrations
are given at cach stage, thus making the method sound and practical.
Most of the results of this paper apply also to the conformal mapping
of the unit circle onto a domain bounded by a curve given by its intrin-
sic equation, for, as it had been shown somewhere else (G. BIRKHOFF,
D. M: Youncg and E. H. ZaranToNELLO [41]), such a mapping obeys -
also an equation of type (1).

I. THE EQUATIONS

§ 1. A typical case. Parametrization of Levi Civita. In this paper
we shall deal only with plane, irrotational, steady motions of a non
gravitating ideal fluid. In such case the conjugate of the velocity vector

is an analytic function ¢ (z) of the position z. Its integral w (2) = f {(2) dz,

defined up to an additive constant, is the so called complex poten-
tial: the real part is the velocity potential and the imaginary part
is the stream function. Streamlinies arc characterized as level lines of
the imaginary part of the complex potential (Cf. MILNE - THOMPSON [42],
Chaps. IV, VI). A free streamline is a streamline along which the ve-
locity remains constant in modulus. Once {={(f) and w =w (t) are
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given in terms of a parameter ¢ running in the interior of a domain,
the flow is determined by a simple quadrature: z (f) = f /¢ () (dw/dt)dt.

This we call a parametric representation of a flow.

In this § we shall derive the cquations for a typical flow with free
boundaries. This will illustrate, without the inconveniencies of «a most
general treatment», the broad significance of equation (1).

Let us consider a free jet J of speed 1 and thickness d impinging
on a curved barrier P, as in Fig. 1. J is divided by the barrier into two
free jets J; and J,. If d; and d, bé their respective thicknesses, clearly

3

/,
B
ar
C
’\ J
Fig. 1

by the equation of continuity, d = d; 4 d,. On the obstacle there is
a point C where the flow divides, it is the point of bifurcation of a
streamline. We shall assume that the obstacle has a finite length and
a continuously turning tangent, except perhaps for an angle of z f ra-
dians at C; moreover the arcs AC and BC will be assumed to have
a continuous curvature, end points inclusive, with a common value at
each side of the vertex C.

Let £ be the arc length of the barrier measured from A in the (po-
sitive) sense leaving the interior of the flow on the left and ¢ the angle
of the positive tangent with the impinging jet. Then, the intrinsic equation

1.2 =9

determines the barrier up to a translation (It 1s convenient to rotate
coordinates so that the impinging jet is paralell to the positive z - axis).
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Thus, according to the above hypothesis, ¢ (f) is continuous except
for a jump m (1 — B) at C, with a continuous derivative on each bran-
che of the obstacle.

Following T. Levi - Civita [43] we proceed now to represent the
flow in terms of a parameter { varying on the interior of the unit semicircle
I':|t{| <1, Im ¢t > 0 (Fig. 2). By the Fundamental Theorem of Con-
formal Mapping there is exactly one, one-to-one transformation z = f (f),
mapping the domain occupied by the flow conformally onto I', such that
the separation points A, B and the point at infinity of the oncoming jet
correspond respectively to { = 1, — 1, 0. In this way, the free streamline
is mapped onto the real diameter and the barrier onto the semicircumference
t=2¢% 0 <o <z of I' The complex velocity {, which is analytic

Fig. 2

and regular at interior points of the flow, becomes, through the transfor-
mation z = f (f), an analytic and regular function of £ on I'. It has no
zeros, except at the vertex C ({, = €"?). For an adequate formulation
of the problem it appears convenient to represent the complex velocity
in terms of a new function £ as follows:

(13) ¢ = Ut — 1)(lty— 1)F e=2@1), Q) =0() + iz().

According to this definition £ is an analytic function, regular inside I".
The first factor in (1.3) is intended to take care of the peculiar behavior
of ¢ at the vertex. Since we have made the jet horizontal, {3 = 1, and
so by (1.3), £2(0) = 0. What is more important, since both { and
[(ttg* — 1)/(t{,— 1)]f-have modulus one on the frec boundary Im =0, 2 (¢)
is real on the real diameter. It follows, by Scawarz’s Principle of Reflec-
tion, that £ (f) can be extended as an analytic regular function to the
unit circle.

16 — Collectanea Mathematica.



180 E. H. Zarantonello

We now pass to consider the behavior of Q () along the fixed boun-
dary { = ei°. On approaching the semicircumference, hence the barrier,
we must have (if the velocity is continuous):

(1.4) lim arg (7Y = Wj 'z T =0 =0
£ 0 Lo—m, 0o=2020.
On the other hand; passing to the limit on the right of (1.3) we get :

[ B7o+ 6(0) T =0 =0,

. li )=
(1.5) 1m.6arg () L Bleo—m) + 0(0) 0o >0 >0,

t—c"

where for simplicity we have written 6 (o) for lim 6 (f). Comparing (1.4)

and (1.5), t -0
1 1

where

[ 1

| ¢+ 57 (1—f) on CB,
1.7 @1 =1 )

| g—5a(1—p) on AC.

L

@1 (D) is, as one immediately realizes, the angle of the positive tangent to
the «straightened barrier» P,, obtained by rotating AC and CB until
they become perpendicular to the bisector of < BCA. ¢,(I), unlike
@ (),is continuous with continuous derivative in the whole interval
of definition.

We can now prove that € has continuous boundary values. The
arc length [ (¢) is an increasing continuous function of 0. Moreover, since
the mapping z = f(f) relates two domains whose boundaries have con-
tinuously turning tangents, except for a jump of z (1 — B) radians,
l (0) satisfies a LipcHrTz condition of exponent arbitrarily close to mi-
nimum (1, £)(*). (For a detailed discussion see J. KRAVTCHENKO [15]
specially Chapter III). Hence, @, (I(0)) as a composition of two Lip-
chitzian functions is itself Lipchitzian, and by (7) so is 0 (¢). By Pri-

wALOFF THEOREM [44], 0 (0) and 7 (0) = lim 7 ({), as boundary values
t — 10

of conjugate harmonic functions, belong to the same Lipcuirz class.
Thus 7 (0) is also Lipchitzian. Summarizing :

(*) A funclion [(g) is said to satisfy Lipchitz condition with exponent pin an
interval (a, b) if there is a constant ¢ such that for every couple of points ¢, and o,

in (a,0), |1(6,) —1l(0.)| =¢c|o,—0, ).
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Q () is an analytic function, regular in the unif circle |t| < 1, real
on the real diameter, vanishing at the origing and having Lipchitzian boun-
dary values.

We now consider the complex potential w. As a function of £, it is
characterized by being an analytic function regular in the interior
of I', having piecewise constant imaginary part on the boundary with
jumps d, —d,, —d, at the image points 0, &, ¢, of the jets J, Jy, J,
respectively. Such a function can be immediately written as

1.8) w = — (dy/n) In (T — Ty) — (dp/m) In (T — Ty),

where T =—(1/2) ({4 17Y), T, =—(1/2) (t; + ;=Y. At the dividing
point (Ty =— (1/2) (f, + ;%)) the condition dw/dT = 0 has to be
satisfied, so

(1.9) d,/(To— Ty) + dp/(Ty— T) = 0.

On account of this relation and of d = d; 4 d,, we get from (1,8)
(1.10) dw/dT = — (d/n) (T — To)/(T — Ty) (T — Ty)).

Finally, from (1.3) and (1.10) the position z is readily computed by in-
tegrating dz = {1 dw.

In conclusion, fo every flow of the considered type corresponds a func-
tion Q (f) and a set of parameters B,d, ty = €%, t,,1, (0 < <2, d>0,
0 <op<m —1<t<0, 0<ty,<1) that describe it.

§ 2. The curvature equation. This section is devoted to the. de-
termination of the conditions to impose upon the function 2 (f) and the
parameters in order to obtain a flow past a given barrier. These will
be reached by stating that the resulting obstacle has the proper intrin-
sic equation. To this purpose, it is better to introduce a ncw intrinsic
equation, the equation x; = %; (p;) of the «straightened barrier»,
expressing the curvature as a function of the direction of the tangent.
It is a single valued function only if the barrier has no inflexion.

The are-length along the obstacle is obtained by setting ¢ = €*® and
taking modulus in both sides of dz = {~ldw. On account of (1.3)
and (1.10) we get (*)

1.11) dl = |dz| = v(0)e~*© do,

(*) The existence of the derivative dl(c)/do and its continuity follows from
the differentiability of ¢, (). Cf. J. KravrcHENKoO [15], pag. 163.
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where

(1.12) »(0) = d |sin (1/2) (6 + a9) # |cos ¢ — cos g

7z | sin (1/2) (6 — 0p) | |cos 60— T;) (cos 60— Tp)| sin o.

We can now compute the curvature of the «straightened barrier». By
definition and (1.7)

- 6’ ()
(1.13) " = d(pl/dl = dB/dl = W .
Eliminating @, with the aid of (1.7), this equation can be written in the
form

(1.19) A (o) = v (0) % (6 (0)) €7,
where

(1.15) A(o) =— 0 (o),

(1.16) v @) =— (045 —B(F— o))

% (6) can be considered as the curvature of P;, qua function of the
tangential direction measured from a new angular origin. It is positive
if the obstacle is convex towards the fluid and negative if it is concave.

0 (¢) and 7 (o) can be eliminated from (1.14) by expressing them in
terms of A. For 6 (¢) such an expression is immediately derived from (1.15).
By taking in account the fact 0 (¢) is an even function with zero mean
value in the interval (0, z,) one gets,

(1.17) 8(0) = / " T, 9) A(5)ds,
0
where
= CoS j o sin js — s/ 0<s<e
(1.18) T(0:9)=@2m)Z —5 = (1/2) — sjn, s=o
= 1— s/m, o< s <m.

As to 7 (0), it is given by a formula due to Din1 [45] relating the boun-
dary values of an harmonic function in the unit circle (z = Im 2 (¢)
with its normal derivative (— 4 = 9z/on) on the boundary :

(1.19) () = / "D(o, ) A(s)ds,
0
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where t 1 t 1
(120) D(o,s) = @fm) 5 SRI SIS angz o + tang s
7

= (1/27)1n
=1 ]

tangi o— tangé s

If the elimination of 6 and 7 is carried out by replacing them in (1.14)
by their expressions (1.17) and (1.19), one obtains equation (1), where
T and D stand for the transformations (1.17) and (1.19) respectively.
(1) is, therefore, a necessary condition in order to have a barrier with
the given intrinsic equation ; moreover, by retracing our steps in the
reverse order, it is found to be also sufficient. However, (1) does not
say anything with regard to other geometrical aspects such as the lo-
cation of the separation points, the orientation of the obstacle, etec.
These have to be given by extra conditions. For instance, if the points
A, B, C are fixed, the values of ¢, at such points are then given and (1.6)
yields three conditions, which in terms of 4 are:

1.21) /"T(o, s)l(s)ds:q)l(A)—-lz-n—ﬂ(—lz-n——o'o),

0

(1.22) /"T(ao,s)}.(s)ds=¢1(C)—%n—ﬁ(;—n~oo>,

0

(1.23) /"T(n, s)z(s)ds=<,)1(B)—~%n_ﬂen_ao).

0

For a separation «cn proue» (convex free streamlines with finite cur-

vature at the points of detachment), (1.21) and (1.23) have to be subs-

s , 1

tituted by the conditions 7’ (0) = f tan 5

respectively, given by H. ViLiaT [46]. These again can be expressed
linearly in terms of 4 as follows :

60, T (@) = — B cotan % gy

" 1
(1.24) 1;/0. A (6) cotan 5 odo = B tan % Gos
1 /= 1 1
(1.25) 3—2/(; 2 (o) tan 3 odo = B cotan 5 %

It is to be noticed, in accordance with what we said in the Introduction,
that these conditions of geometry vary considerably from one case to
another in their dependence upon the parameters of the problem.
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But, putting aside such conditions, the equation (1) is perfectly gene-
ral and conirols all flows occupying a simply connected domain bounded
by a free streamline and a fixed wall with the stated regularity conditions (*).

The form of the function »(¢) depends only upon the geometrical
(topological) type of the flow, while % (6) is given with the obstacle.
In other terms, different types of flows correspond to different #'s and
different obstacles to different x’s.

From now on we shall abandon the hydrodynamical problem and
deal exclusively with equation (1), or, what is the same, with equations
(1.14), (1.17) and (1.19). The functions » (¢) and x (), the data of the
problem, will be restricted to the following ranges :

v(0) is a p-integrable (p > 1) non-negative function defined in the
interval (0, 7) and vanishing at the end points.

%(0) is a bounded continuous function defined for all real values of 0
with a bounded derivative.

It is easy that to see the » corresponding to the hydrodynamical pro-
blem we have discussed, defined by (1.12), is within the above range
provided that f# < 2. The same is true for most types of flows that have
been described in the literature.

For simplicity we shall often write equation (1) in the form

(1.26) A=Sa

§ 3. The diserete equations. Numerical computation are by essen-
ce discrete, that is, they deal only with a finite number of quantities
at once, and so, to handle a continuous problem like the one set by the
solution of equation (1), a previous discretization is required. In this
regard we shall follow S. BrobErzky [31], and motivate our discreti-
zation of (1) in the idea of approaching the obstacle with varying obs-
tacles whose intrinsic equations agree with the intrinsic equation of
the given obstacle at a finite but increasing number of points. Thus,
we are lead to satisfy (1.14) at a finite number of points. For practical
and theoretical reasons, it appears to be convenient to take equally
spaced points in the parameter plane . We set

(1.27) 2@y =» (@) 2 O ")) e " (@), o) =kn/(n+1), k=1,2,...n.

Clearly, 6 and 7 are related to 4 by (1.17) and (1.19) respectively. Mo-
reover, to make the problem determined, it is necessary to restrict the

... (* By a convenient departure from Levi - Civita’s parametrization their va-
lidity can also be extended to some symetric flows with two free streamlines.
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unknown function 4 in (1.27) to an n-parameter family of functions.
These we take to be the trigonometric polynomials of the form

(1.28) A(6) =X a;sin jo,

i=1
With this choice 0 (¢) and 7 (o) become,

" d;CcoS jo

(1.29) 0@ =5 4L,
i=1

(1.30) t(0) =3 “7_“]“_"_’ .
i=1

With such meaning fo r4, 6 and 7z, (1.27) reduces to a set of n equations
with the n unknowns a;, ay, ..., a,. However, in these variables (1.27)
looses entirely its similarity with (1.14) and a parallel treatment of both
is impossible. To keep the resemblance one has to take A (6 as the
unknowns themselves. 0(0},”)) and 1:(65;")) can be expressed in terms of
A (") by eliminating the a’s with the help of the trigonometric identi-

ties (Cf. D. Jackson [47], pag. 114),

n 0, j+
a3y X sinjof sin goi’ =5 (n 4+ 1)6;,4 57-,g={ g
=1 Ll’ i=g

DN =

as follows: setting o =o)) in (1.28) and adding after multiplying by
sin of”, one gets, on account of (1.31),

2 sin j o

_ d (n) .
(1:32) 4 =BAE) T P=12 .,
which replaced in (1.29) and (1.30) give
(1.33) b)) =S T AGY), k=12, .0,
h=1

(1.34) Tg:)h _ 5”_,‘ 2 cos jgg") sin ]'0.5:1)

=1 j(n+1) ’

and

(1.35) (@) = XDV, A, k=12, ..,n
h=1

(m)

" n 2 sin joy’ sin jaﬁe")
1.36) DY) = :
(1:36) o ;E] j(n+1)

s k, h = 1, 2, ceey I
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Clearly (1.33) - (1.36) take the place of (1.17) - (1.20) of the continuous
case. With their help (1.27) can be written in a form similar to (1),

(1.37) A=y (T® 2)e~P"%

where 4 and » stand for the functions 4 (6§"), » (o{") of the discrete varia-
ble ¢, k = 1,2, .., n, and T, D@ for the linear transformations
(1.33) and (1.35) connected with the matrices T%% and Dy’ respecti-

vely. Parallel to (1.26) we shall write
(1.38) A =S4

where S® represents the operator v (T A)e—P™ 2.

No confusion is to he expected from the fact that the same symbols
4 and » have one meaning in cquations (1.37), (1.38) and another in (1),
(1.26), their meaning will be always clear from the context.

In writing (1.27) we have assumed implicitly that none of the va-
lues » (") is infinite. To assure this and further questions of conver-
gence, we shall assume, in all questions relative to the discretization, that
v (o) is continuous with a p-integrable derivative for some p > 1. Such
conditions are satisfied by (12) only if g < 1.

Two types of questions have to be examined with regard to the dis-
crete equations (1.37): Ist. Existence and uniqueness, 2nd. Approxi-
mation of solutions of (1). The first belongs also to (1) and will be sub-
jected to a parallel treatment in Section III. The second is the subject
of Section IV, and it is to be understood as the convergence of the
trigonometric polynomials (1.28) interpolating the solutions of (1.37)
towards the solutions of (1).

II. THE TRANSFORMATIONS

This section will' be devoted to the study of the various transfor-
mations intervening in equations (1) and (1.38) and will serve as a pre-
paration to the following chapters. If the reader prefers, he can skip
it and refer back to it whenever necessary. We shall systematically

I
adhere to the following notation : the scalar product / z(0)y (o)do
0
of two functions defined in the interval (0, z) will be designated by (z, y),

7T 11
and the p-norm{ / |z (o) Pdo ff’ by [z |s. L, will represent the space
0
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of all p-integrable functions in (0, ). If x(a,({’)) and y (af;”’) are functions

of a discrete variable ¢\ — km/(n+ 1), k=1, 2, ...,n, we shall write :

" n | 1
@y = X x(@”)y(©) Ao’ and |z, = {z z (o) A o} }P. Fre-
k=1 k=1

quent use will be made of Holder inequality | (z,y)| <| x|, |y ], where
p and ¢ are positive numbers related by (1/p) + (1/g) = 1, and of
Minkowski’s inequality |z + y|, < |zl + l7l,- (Cf. Harpy, LiTT-
LEwoop and Porva [48], Chapters II and VI.) For brevity we shall
usually write m and M for g.1. b and . u. b respectively. We recall that
iim lz], = M {z(o)}. Finally, if for almost every o, z(s) <y (o),

we write * <y ; if in addition x (o) and y (o) are not equal almost
everywhere we write z << y.

§ 1. Properties of D and D™, Lemma 1. a) For every p >1,D
is a linear transformation from the space L, inlo the space of functions sa-
lisfying Lipchitz condition with exponent 1/g =1— 1/p and vanishing
at 0 =0and 0 = m.

b) There is a constant A, depending on p only such that for every
Ae Ly,

1
[z(0) —7 (09| < A4, [ 4], |0y — 00, v=DA

¢) D is symmetric: (D Ay, Ay) = (A1, D 4,).

d) D is positive definite : (DA, ) = 0, (DA, 4) = 0 implies A = 0
almost everywhere.

e) D is order preserving : A, > A, implies DA, > D A,.

Proor: a) and b). For every o, D (o,s) is a continuous function
of s except at s = ¢ where it has a logarithmic singularity. Therefore,
as a function of s it belongs to all spaces L, ¢ > 1. Hence if A¢L,

the scalar product 7 (o) = / D (o, s) A(s) ds is, by Holder inequality,
0

defined and finite for every o in (0, ®). Moreover, since D (0, s) =
= D(m,s)=0, 7(0) = 7(x) = 0. Obviously the transformation D 4,
so defined in Ly, is linear. We now prove that if AeL;, 7 =D2 is a
continuous function. For that purpose we first observe that for every
positive r, |0 — s|" D (o, s) < M,, where M, depends on r alone. This

1
sin 5 (c+9) |?

becomes plain if D (o, s) is written in the form (1/2 %) In

sin 3 (c—59)

~

17 — Collectanea Mathematica.
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It follows from this remark that for every ¢ > 1, the integral
b 11
{/ | D (o, s) | dsJk‘I tends uniformly to zero as |a— b|— 0. In fact,
a
taking r = 1/¢?,
J’ b ! j b 1 L 1t
2.1) 1./' |D (o, s)[*ds ¢4 = / |o—s]| ?||o—s]|” D(o,s)]"ds e <
Lo RV J
j b 1 L i
<M, 1/‘ |o— s| 4dsj‘1 < M, [Zp[b——aji’]q.
¢ LJa 7

Let 0, be a fixed point and ¢ a variable point in the interval |6 — 0| < 6,
where 4 is a positive number. By definition and Hélder inequality,

<

2:2) |7(0) — 7 (0p)| = ‘é [D (o,5) — D (g, 8)] A(s)ds

S]Mllf,{/o- | D (0, s) — D(gy, 9) [qu}t?.

If the interval (0,7) is decomposed into three parts (0, o, — J),
(0o— 0, oo + ), (o9 + 0, 7), one gets, by Minkowski’s inequality.

@3) |7(@) — 7 (o0)| =

A Yo Fsr i e
- 0+ a.,+al (@, )— D (0p, )" ds |7+ on|—'6(6’8)[ s 60_6(0'0,3) .s]

Now, if ¢ — g,, the first two integrals tend to zero because in the inter-
vals of integration |D (o, s) — D (o, s)| tends uniformly to zero, and
the last two can be made beforehand arbitrarily small by a conveneint
choice of d, so 7(¢) = 7 (o), and the continuity of 7 (¢) is proved. It
remains to prove b).

The set of functions {sin ]'s}, i=1,2, .. is a complete orthogonal
sct in the interval (0, z) and so, to every integrable function 4 it corres-
ponds a unique development of the form (*)

(2.4) A~ 3 asinjo.

i=1

* The symbol ~ means that the series on the rigth is the Fourier series of the
function on the left.
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A simple computation shows that if 7 = D 4,

(2.5) T R USMIT

i=1 ]

Let now 2(c) be the conjugate function of 2 (o) (For the definition
see A. Zvamunp [49] pgs. 145-146). By a well known theorem of
M. Riesz [50]

(2.6) 130, < Ay Al

where A, depends on p only. So 2 (o) is integrable, and its Fourier se-
ries is

@.7) 2~ 3 acosjo.
j=1

Integrating both sides of (2.7) (termwise integration is permited, Cf. A.
Zvyemunp [49], p. 16)

(2.8) / A(s)ds ~ — 5 45T
0 j=1 ]

(4
Hence, 7 and — / A ds are continuous functions vanishing ¢ = 0, having
0

the same Fourier series. Thus they arc identical. Now by Holder
inequality and (2.3),

(2.9) IT (o) —7 (‘72)| =
1 1

1 O:_ 1 1 _ 1
S|01—°’2lq [/;[l]ds]'h §|01—02Iq A1, SA?”MIPl“l—Uzq

i(s) ds
[

which is b).
¢) obvious from the symmetry of the kernel.
d) From (2.1), (2.2) and Parseval equation,

2.10) ADH =7 =5 5 afj >0

7

unless all a;’s are zero, in which case 4 vanishes almost everywhere.



190 E. H. Zarantonello

e) It is enough to prove that if A > 0 then D4 > 0. This follows
trivially from the positiveness of the kernel D (o,s) which in turn
follows from the inequality |z + 1/(x — 1)| > 1 valid for positive z, by
putting x = tang 9/,/tang °/, in the definition (1.20) of D (o, s).

LeEmMMmA 2. a) D™ is a one-to-one linear transformation of the n-di-
mensional euclidean space E™ onlo itself.

b) (D™ A, D" 1) < (4, A).

c) D" is symmeiric: (D™ Ay, 4,) = (4, D™ 2,)

d) D(”Yispositive definite ; (D™ 2, 2) =0, (D™ A, A)=0 implies A=0.

e) D™ is order preserving : A, > A, implies D™ 2, > D™ A,.

Proor: a) The lincarity of D™ is part of the definilion. To prove
that it is one to onc and that it transforms E(™ onto itself it is enough
to show that D ™A= 0 implies A = 0. This follows from d) for which
we give an independent proof.

b) Let A= { A Aoy s Z,,} and define, in accordance with (1.32),

» . 2sinjoy
2.11 _ 2sin jou_
( ) a] kgizk n +1

Then the polynomials

i) =X asinjo, (o) =3 LY

j=1 j=1 ]

take the values
Ao =4  t@)=7=3 Di} 4
n=1

Moreover

n (”)

(2.12) (4, 1)=§”_‘, 22 Aot =§ 22 (o) Aaﬁ{":ﬁ a;a, ¥ sin jag’)sin gor Aa
k=1 k=1 1

fe=1" k=

and by (1.31),

@.13) AhH=Z3% a

2 j=1
Similarly
(2.14) (D™ A, D™ 2) = ’2—’ 2”: ai/f?,
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and b) follows by comparison of the right hand sides of (2.10) and
(2.11).
¢) A trivial consequence of the symmetry of the matrix D,ﬁ";),

d) Proceeding as in b),

(2.15) (DM A0 =146 =
k=1
— St Ade =3 L2 S sinjof? sin gof’ Aol =2 T ajj > 0.
K=t pe=1 | #=1 25

Moreover, comparing (2.12) and (2.10)

(2.16) ' D™ A3 < (A A) <n2(D" A, 2),

which trivially contains the last half of d).

e) To prove this property we simply have to show that all the
elements of the matrix D}Z’;’, are positive. On account of the symmetry
D},’f}. = D},’fi we can restrict ourselves to the case h < k; moreover
the relations D{) = Dy for k+ k' =n+ 1, h 4+ ¥ =n + 1 allow
the further restriction k + h < n -+ 1. Inserting the trigonometrical
identity

(2.17) 2sinjol sin joi) =cos j (o} — o§")— cos j (o1 + oi) =& (2} — ab),

(o) — gl TE O] s
where z; = € (%" —") and T, = ¢i(oi” + o ), into the definition (1,36)

of Dg’;), we get

j J
@18) Dfh=iiqa s (% %),

Now, for any z =+ 1,

1—=x

" % n 14 __ o X1 an
2.19) ¥ @fj) = / 3 wi-tde = | A=Y g+ f 1—2 .
=t 0 =1 0o 1—=x 1

If x = e®, a change of variables in the last integral gives

1 N

” . 11-—'E"’ 68151— et(n+§)t

a Fepe [1=Ta [Eid
@20  Z@h=) g fo T
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which replaced in (2.15) yields
o™ 4+ 6"
i gl

o(:) - o}(t”)

0gt) + t,ﬁ‘n)

cos (/2) — cos (n + %) t
=(1/2(n+ 1)) s (2 dt =
(n

)

%
Ugl)‘f'“;,”)
= (1/2(n + 1)) | cotg (t/2) (1 — cos (n + 1)) dt —

o'szn) —0 hn)

og;) + o}(‘n)

— [ (/2 + 1)) sin (n + 1)tdt.

UE,”)_U;;”)

The last integral is equal to

(n) , o)
cos (n41)¢|% *%" M
(22.2) lj—ET:l o) (/(n+ 1)) [(— ¥+ — (— 1)*~#] = 0.
Hence (2.18) becomes
ag‘)+a},”)
(2.23) D) = (1/(n + 1)) | cotg (/2) sin? (n + 1)¢/2) dL.
ot __o(n)
k

On account of the above restrictions, both the interval of integration
and the integrand are positive and the positiveness of the elements of
the matrix is proved.

LEmMa 3. a) For every p > 1, T is a linear transformation from
the space L, inlo the space of functions satisfying a Lipchiiz condition of
exponent 1/qg = 1 — 1/p and having mean value zero.

1
b) [6(e) — 0(o)| <[4, |oy— oy |7, 6 =T34,

16(@)] < |A]pne.
¢) (TA,TA)=(DADA.
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Proor: a) and b). T (o, s) is, for fixed o, a continuous function

of s except at s = o where it has a simple discontinuity. Moreover
44

|T (o, s)] <1 and / T (0, s)d 6 = 0. Therefore, the transformation T
0

is defined for every function in Ly, is linear and yields functions with
mean value zero. Now, by definition and Holder inequality,

/i(s) ds
1

g/Ti.(s)[ds <[ Alpat.
0

1
<[ 4lp [0y —0

@29 [6(0)—0 (o) =

0@ =

/ T (o, s) A(s)ds
0
From (2.6) it follows by direct computation

(2.25) TA =0~ 3 (i) cosjo.
i=1

A simple application of Plancherel Theorem to 6 and t (whose Fourier
series are given by (2.25) and (2.7)) leads to c).

LEmmA 4. a) T™ is a one to one linear fransformation of E®
onto itself.

b) (TMA, T™MA) < (4, 4).

c) (T™MA, T™2) = (D™ A, D™ 2).

Proor: a) Obvious except for the fact that the transformation
is one to one. This follows from Lemma 2 and c¢) which is proved inde-
pendently.

b) From Lemma 2, b), and c).

¢) IA={A, A, .., 4} and q; arc defined by (2.10), then the
trigonometric polynomial 0 (o) =7§]1 (aifj) cosjo takes the values

e(o_gt)) — 0h =h§1T;(:,), ,ﬂ.h. NOW,

(2.26) (T™MA, T"2) =310 (0%") 6 (") 40 =3 L3 cosjol” cos gof® Ao,
k=1 ie=119 k=1
which, by virtue of the relations (Cf. D. Jackson [47], page 114)

(2.27) an cos joi cos gol¥ Aol = ;—t d;,¢ (8;, ¢ Kronecker symbol),
=1
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becomes

(2.28) T, Tl =2 3 ),
=1

which, in turn, is equal to (D™ 4, DU 1) by (2.11).

§ 2. Bounds for |Q (eis)]. Lemma 5. If 2 8 Ly, 1< p <2 and
t=DA, 0 = TA, then for every r between zero and 1,

12
<@ DAy [Eln

L
2

1 1
(2.29) {0 (0?2 + 7 (0)2} i r]2 + Cy | A ll» [ln }]qa

where

22/p 1 1— e—w)P 1
(2.30) 2 {/( e }

Proor: Let i a; sin f o be the Fourier series of A(0). Then, the
i=1
analytic function

&, L. 1 r 1—te—*
‘Q(t) =i§1ait7/] = ;A ln{w}l(s)ds

takes on the boundary the values (&%) = 0(o) 4 i7(0). Now if
t = re® and 1, = €',

231) Q@) =2@) =20 + 2t)—2@) =

_ e 1 — ll e—s 1— te““]
-—7_:2, t7/]+ / v — In T A(s)ds.

Applying Schwarz inequality to the first term on the right and Holder
inequality to the second, we get

N 1
(232) Q)] < {Ela?/i } {z HE } T

1f "1, 1—te* 1—te—op . |2
— R q
+||z|[,n{/o [ln i l_teis}ds}.

Replacing the first factor by (2.10) and the second by its value
In (1/(1 — r?%),
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. ir2 1 3
2.33) 12|(e%) < (4 D Ay? [;z In 1_r2] +
' 1| (™|, 1—teis 1—te—s|? |3
‘HMHP',;{/; In l_tleis — 1n 1 — fets ds}q'

To obtain a bound for the last integral we shall make use of the Hauss-
dorf - Young Theorem (Cf. A. Zvemunp [49], page 190) which states

+ oo
that if 1 < p <2 and f~2 ¢; €'°, then

j=—o

27T 1 . 1
(2.34) (1/271){./0.“(0-) |ng}3 3{,}}@!%!“’}”-

In our case, the Fourier series of the function under the integral

w tl i
in (2.25) is 3} B— "9 sin jo, so

i=1

" 1—te ™ 1—fe~* | 11 ! ‘_4' w [1—ri? 11
g = —_—— . q q Qp b,
(2.35) {/0 I —In | ds[f <02 u§1( . )f

Moreover by Cauchy integral criterion of convergence,

o (1 — riyp (1 — e _ p—1 /'”(l—e‘“)’d
(2.36) 5‘1( : )g‘[ L du = 1yt | S=E T

Which if replaced succesively in (2.35) and (2.33) yields (2.29) with r?
in place of r. Putting r = C, ||,/ [(4 DAt + C,|A4],] we obtain
the following

Conozany (237)] 002+ (@)} < (4 mﬁ{ 2In ( 1+ G, (}I{ ;H;)%)}é-

+ G, A

/ 1 (1 (4, D2 }')'5')15
A\ T

An important consequence of this is that for A's with bounded p-norms,
convergence of the 4’s with regard to the norm (4, D 4) is transformed
into uniform convergence for T'A and D A. This fact could easily be
obtained by non constructive arguments, the advantage of the above
formula being that it gives an estimate of the error. In the discrete case
we have a similar situation.

18 — Collectanea Mathematica.
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Lemma 6. If A= {A({"), (s}, o, A(@") } and 6 = T},
v = D™ 2, then

1 7 1
l_r]z+c;;uznp[1n ;]q,

(2.38) {6(cV")2 + 7 (al)2}F < (4, D™ )t L% In

where Cy, = B,G,, ; B, depends on p only.
ProoF : The proof follows the same line as the previous one. Let
A (o) be the trigonometric polynomial intcrpolating the values 4 (o))

with coefficients (2,11). Then Q(f) = X ¢; li/j takes on the boundary
j=1

(n)*
the values .Q(emk ) = 0(0) + iz (c}"). Proceeding as before one
obtains
1t 1 I
2 2
L+

@39) {00 + @R} < { Sai [1“ i
=1

- C,,{/(;nll(s) ["ds}%’{ln%}%.

The sum in the first term on the right hand side is equal to
(2/7) (D™ 4, J)%. As to the p-norm of the polynomial A(c) can be
majorized by the p-norm of the discrete function Z(og”) by using
a result of J. MarciNnkiEwicz [51] (See also Section IV, Lemma 16)
stating that

(2.40) {/:M(s) [? ds }% < B, {él |A(0)[? 408 }Ti

(2.39) so majorized becomes (2.38).

§ 3. The forms yx(z). The range and rate of convergence of the
iteration process for solving (1-1) will appear to depend upon the values
of a special type of functionals applied to the data of the problem. These
we shall now consider.

DeriNiTION. If K (0, S) is a symmetric kernel 2 g-inlegrable in the
square 0 <o <m, 0 <s <m, and z (0) is a funclion in L, p > 1,
1/p + 1/g = 1, we define

(2.41) xK(z)=1.u.b.//K(o,s)\/|?(T)| V|2 (5)| £ (@) z (s)da ds.
(2)=1J0 JO
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If K = K,, is a symmelric matriz and z = z (6%

te variable, we set in a similar way

) a function of a discre-

(2.42) yx (z)=Lu.b. ﬁKk,,\/ 2 @)V |2 (6")| x (68") 2 () A} A
k=1

(r,2)=1

The reader will immediately recognize that yx (z) is the greatest eigen-
value of the operator K,, corresponding to the kernel

V]2 (@) K (0,5) 4/]z(s)] (to the matrix '\/|z @) Kyn \/Iz( -

This operator can be factored as follows K, = 4/]z| K4/[z], where
K indicates the operator corresponding to the kernel K (o,s) (the
matrix K,,), and 4/ |z| the operation of multipliyng by the function

V]z(@)]-

Lemma 7. If K is definite non-negative,

T L7 1
hz",, {/ | K (o, 5)|? do ds }2? for a kernel,
a) 0 < yr(z) << 00

1
{ lKk x| 4 o A g }‘“ for a matrix,

b) xx(x2) = |a| xx(2),

¢) xx(z + 2) = x(2) + xx (22),

d) 1k (Vnz) =V ix @) 1x @),

e) |z < |z| implies xx(z) < 2k (2o)-

Proor: We first show that the kernel 4/ |z(0)] K (0 9) v/ [2(5)]
is squarc integrable. In fact, by Hoélder inequality

(2.43) {/ / (K (0, 9 V]2 (0)] V]2 ()] dads }3

SIIZIIp{_//K(a, )quadsqu

Similarly for a matrix. The second half of @) is an immediate conse-
quence of the above inequality. The first half follows from the fact
that K being definite positive: (K,z, 2) = (K4/[z]|x, 4/]z]|2) = 0.

b) 1is an immediate consequence of the definition.
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c) is somewhat involved and will require the proof of the follow-
ing alternative definition of yx (2):

(2.44) 2k (@) =L u. b. (|z| Kz, Kz).
(%, Kx)=1

Let us assume first that z is positive. Then

(245) lu.b. (zKz,Kz) =Llu.b. (\/ZKr/72\/2,4/2KA/7x[\/2),
(x, Kz)=1 (/7 ViKA2/V37) = 1

and putting z/4/z =y
(2.46) —Lub K,y K,3).

(Kz9,9)=1

Now if ¢, @, ... is a complete orthonormal set of eigen-functions
of K, (Cf. P. HammEeL [52]) corresponding to decreasing cigenvalues
X1s Xas - €VETY U € L, can be uniquely expressed in the form

(247) y =5 i+

where y; is orthogonal to all the functions ¢;. Hence K,y, = 0 and

(248) K.y =5 azp
(249) KKy =35 azio:

Performing the scalar products of (2.48) with itself and with (2.47)
(2.50) (K,y, K,p) = ia% 2
(251) @ K.p) =5

and by direct comparison of the right members

(2.52) Lub. (K,y, K.y) = 51 = 1 (2)-
(9 Kz9)=1

Thus (2.44) is proved for positive z’s. To extend it to non-negative z’s
let us put for a moment

(2.53) 2% (z) = l.u. b. (zKz, Kz).
(2. Kx)=1
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Putting z = z; + z, one gets
(2.54) 1% (21 + 25) —1 u b ((z1 + z,) Kz, Kz) <

< lu.b. (z Kz, Kz)+ Lu.b. (22 Kz, Kz) = 1% (2) + 2% (z2).
(¥, Kx)=1 (%, Kx)=1

From which it follows
(2.55) |28 (z1) — 2% (22)] < 2% (2 — 29)-

In particular if ¢ is a constant, |x“) (z+ ¢ — x(” ()] < x(” (e)=¢ xx (1),
and

(2.56) 1R @ = lim x(”(z + &)

On the other hand, by a similar argument
(257) [2x((z + 29 = Lub. (Ko + )5 (7 + z2)B)F <
[XK (zko + 1k (D)5,

SO

(2.58) | 2% (z2) — 2 ()] < 28 (V72 — V7)),
(2.59) |28 (z + &) — 28 (2)| < x# (W72 + e—/2)°).

By a) the term on the right tends to zero with & hence xx(z) =
= lim gx (z -+ €). Therefore, the identity between xﬂr) (z) and yxx (2)
which was proved for positive z’s, is, by continuity, extended to every
non negative z, and so to every z. This identity being established, c)
is nothing but (2.54).

d) results from a simply application of Schwarz inequality, as follows:

(2.60) zx (V1] |z2|)=1.u.b-/f {K (0,9 Tz @]V ]a6)] z(@0)z(s)}?
(r,2)=1J0 J0O
{K (0,92 0)[V]=6)] @)z ()} dods <
Sl.u.b.{// K(o',s)»\/|z1(o)|\/lzl(s)lx(o)x(s)dads}g

(£, 7)=1

Lu.b. //K(a,S)\/IZz(G)l\/IZz(S)Iw(ﬂ)x(S)dddS}Sx @) 2k ).

(#2)=1
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To prove e) we write the definition of yg(z) in the form

(2.61) xx(2) =Lu.b. (K4/|z]z, 4/]z|2)} =Lu.b. (Ky,p)t

() < 1 GIVTEL 9V <1

Clearly, since the class of functions y such that (y/'\/m, z]/\/-l—z—|) <1,
is larger the larger is |z [, yx (2) increases with |z]|.

These results and definitions are now applicd to obtain some impor-
tant relations involving the operators T and D.

Lemma 8. If z is a non-negalive function and «, B are non-negative
real numbers such that « + B = 1, then

(2.62) (@zDx — Bz, D (xzDx— Ba))t < 8(z, Da)t,
where D is the Dini’s operator (see (1.19), (1.20)) and

Bif 0<a<2/(xp()+2)

(2:63) & =max{juyo(:)— B, ﬂ}':{axp @—Bif 2/(zp ()+2) <a<1.

Proor: As in the proof of part ¢) of Lemma 7, we have
(2.64) Lu.b. (xzDx— Bz, D(azDxr— B2))i =
(%, Dx)=1

= 3.u.b («D,y— By, D,(a D,y — BY)),
Vs

Day).:i
so by (2.47), (2.48), (2.49) (K is now D),

(2.65) @D,y — 3, D@D,y — Byt = 5t piere— B

which compared with (2.51) leads to

(266) (xD,y— By, D,(aD,y— py) <lu.b. [ay;— B| @, D,y)*

Putting y = 4/[z|* and noticing that, all the eigenvalues being po-
sitive, d > L.u.b. |« z;— B|, one obtains the desired result.

Lemma 9. (2.67) (2Tz, DzTx) < [%p (2) x5 (2)] (x, Dx),

1

® COSjoCosjs 2
j 2 (cos 6—cos s)]

= (1/27) In [

=1

where D (0,5) = (2/m) .
7
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ProoF: We introduce three new operators in Ly: D, U, V, which
we define by the way they act on Fourier series,

(2.68) D (a2 + 3 a; cos jo) = 3 q; cos jaff,
i=1 i=1
(2.69) U (a2 + S ajcos jo) = 3 cos jo/T,
i=1 j=1
(2.70) \% (i‘,l q,sin jo) = iia cos jo/A/].
i= i=

D is the integral operator connected with the symmetric kernel D (o, s)

define above. It is non negative definite and D (g, s) is integrable of
any order. U and V are also bounded integral operators, but we shall
not concern us with their kernels. We simply notice that their
ranges are both dense in the same linear subspace of L, con-
sisting of all functions with mean value zero (orthogonal to constants).

D and T have, in terms of U and V, the factorizations: D~ = UU and

T = UV. Moreover, for every z & L,, (z, Dz) = (Vz, Vz), (2, 5.7:) _
= (Uz, Uz). Therefore,

2.71) lL.u.b. (zTz, DzTz) =l.u.b. (zUVz, DzUVx)

(x,Dx)=1 (Vz,Vz) =1

But, since when « runs in L,, Vz and Uz describe spaces dense in each
other, Vz can be replaced by Uz in the above equation, so

(272) Lu.b. (T, DzTx) = Lu.b. (zUUz, DzUUz) = Lu.b. (zDx, DzDa).
(%, Dz)=1 (Uz, Uz)=1 (# Dz)=1

Now by the positiveness of the kernel D (g, s) and by definition of xp (2),

(2.73) (zD, DzDa) < (||¢| D, D||z| Dz) = (v/[Fl D VI VI |D=l, /[l | D) <
< 10() &/ D%, v/ D) = 1 () (2| D, Day.
Thus, on account of (2.44),
@74) Lwb. (T, DeTx) < zp() Lu.b. (2 D, D2) = 10 () 25 ),

(%, Dx)=1 (% Dx)=1

which clearly implies the assertion of the Lemma.
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In the discrete case, Lemmas 8 and 9 read:

Lemma 10. If z (o (”) is a non-negative function of the discrele varia-
ble o} and a, B are non negative real numbers with « 4 f = 1, then,

2.75) (xzD"z— Bz, D™ (azDMz — Ba)t < 8™ (x, DM m)t,
(2.76) 6™ =max {|«z® () — B, B}
Lemma 11, (T®x, D™ zT™Mx) < gpw (2) 25 (2) (x, DM ),

where H, = .Z 2 cos jai” cosjo)j (n + 1).

§ 4. Properties of S and S™. In the concave case, # <0, a sig-
nificant role is played by the functions of a real variable :

1

(2.77) H,(z) = M{[x]}{/n{ehp(c)x}qdo}i
0

E ] 1 ’ 1< q = o
where hy (o) = { / D? (g, s)v? (s)ds }7’
0

for the continuous case, and
" n 1
(2.78) 1#@=MHM{2M“”VMﬂa
11
where B (6¥)) = {Z [Dy,4v (60)]? 463" fp

in the discrete case. X, and Xg,") will designate the greatest root of
the equations :
(2.79) r = H, (),

z = H (2)

respectively. If there is no root we put X, = oo (Xﬁ,”) = o). The re-
levant facts for our investigation about these functions are summari-
zed in the following Lemma.

Lemma 12. a) For every q > 1, Hy(x) and Hé”) () are positive, in-
creasing and convex functions of x.
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1 1 6)}z
n' M {|x|}e {fo o } <H (x)anM{lx]}eM{hp()}

1 { l 1 } {’_'%v h;n) (o.in)) Aa(n)} -]_ M{h;n)(o;‘n)) }m.
x €

o M SH,‘,"’(:E)STL”M{]%]}(&

b) (2.80)

¢) Equations (2.79) have at most two solutions.

ProoF: a) The only questionable part is the convexity. This is,
however, by Minkowski’s inequality, a direct consequence of the con-
vexity of the exponential.

b) The right half is obtained by replacing h,(¢) by its maximum
in the integral representation of H,(z). The left half is the result of
applying the inequality

1

;J';'mluwlda L[ 1
(2.81) ¢ s{-/ I/ (e(%d o {2
TJo J

(or its discrete analogous.) (Cf. Harpy, LitTLEwoop and Porva [48],
page 138) to the function e*»(0),

¢) The solutions of (2.79) can be interpreted as the intersections
of a convex curve with a straight line. Naturally, there are at most
two such intersections.

Lemma 13. If v € Ly, p > 1, then for every q4 >gq = p/(p — 1),
S |A| and SA are totally continuous operators in the space of all func-
tions 2 (o) such that |Afv|,, < oo More precisely, (*/,) S || and (*,) S4
lransform every bounded set info a family of uniformly bounded equicon-
tinuous functions (Cf. Courant - HiLBERT [53], page 49). Morcover, S |A|
maps the whole space into the sphere | A/v],, < M (|%|), and S A the
sphere | Ay, < X,, into itself.

Proor: By Hélder inequality

11
282 Al =1 /11]"«10 j/”./v] ]vl“daj“s

<t [y imao i [Mlopondo i = it

for every u >0, p; > 1,q; > 1 satisfying (1/p;) + (1/) =1. Thus if u, p;, ¢,
990

990 — (90— 19)

¢, = 1 +¢;/p, the above inequality becomes, |4 [, < |4/v], [» Iy

are taken as to have uq, = qo, p; = p, that is, u = > 1,

19 — Collectanea Mathematica.
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Hence, every bounded set with regard to the norm || 4/»|,, is bounded
with regard to | 4|,, and by Lemmas 1, b), 2, b), D and T transform
it into a family of uniformly bounded equicontinuous functions. Because
of the continuity of » and of the cxponential, the same is truc for the
transformations 1/, S |A| = % (T |A|) e~PI* and Y/, SA=x (T A)e—P W,
Since from every such set of functions, a uniformly convergent (a for-
tiori, convergent with regard to| 4/»|,) subsequence can be extracted,
the set is compact.

The operator D transforms non-negative functions into non nega-
tive ones, hence 1/, S|A| < M (|#|), |Y» S |44, < M (|=|) and the
assertion with regard to the range of S|A| is proved. As to the range
of SA the situation is less simple. The statement of the Lemma
is obvious is X, = o, so ‘we have to consider the case X, < o only.
Applying Hélder inequality to the definition of 7 = D4 we get

(2.83) 7| = <

/"D (o, 8)v(s)A(s)[v(s)ds
0

£ 1 7T 1
< { / |D (0, 5)v(s) [Pods }'f" { / |2 ()/ (5) |%ds } = Iy, (@) | A/ s, »

S0,

(2.84) |}, sz‘ =[x (T A)e=P < M {|x|} el < M{||} etrn@ iy,

and taking g,-norms in both sides,

1

(2.85) ” 117 SA “q < M {|«|} { A "[ewwllwwoda}?o = H, (| A/»])-

Now, if |4/»], < X, by the monotonicity of H,, H,, (|A/v],) <

< H, (X,) = Xq H Si ) < X,,, and the proof is completed.

In the discrete case, the reader will find no difficulty in proving
the following analogue of Lemma 13:

Lemma 14. For every ¢ > 1, the operador S™ |A| maps the whole
space E™ into the sphere |Afv], < M (|=|), and the operator S™ A maps
the sphere | Afy|, < X into itsel].

With these Lemmas we have reached the point where the existen-
ce of solutions of (1) and (1.37) can be almost immecdiately established
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in a large class of cases if we only give up to the requirement of cons-
tructivity. It seems worthwhile to digress from our main purpose to
gather these early results.

Tueorem 1. If v ¢ L, and » is continuous, equation (1) has a solu-
tion for all non-negative »'s; it also has a solution for the non-positive
%' s for which there is a q, with X, < oo.

Proor: If % = 0, every solution of 4 =S4 is non-negative and
so is a solution of A = S |A|, and reciprocally. By Lemma (13) the opera-
tor S|A| is totally continuous and maps the sphere [|A/» ], < M (||)
into itself, so by the ScHAUDER-LErAY [20] extension of Brouwer
Fixpoint Theorem, there is a fixed point under the transformation S |}.| ,
that is, a solution of 4 = S|4|. If » <0, and X,, < o the same
argument applied to S A leads to the existence of a solution of 4 = S 4.
Similarly in the discrete case.

II1I. THE ITERATION PROCESS

Equations (1.26) and (1.38) appcar in a form suitable for iteration.
Such a method has actually been used to solve (1) and the numcrical
computations have shown that simple iteration is relatively weak and
yields convergence for sufficiently flat obstacles only, that is, for suffi-
ciently small »'s. Moreover if, in the covex casc, instead of applying
simple iteration one proceeds by averaged iteration (where a new iterate
is the weighted average of the previous iterate and its transformed by
S) the range of convergence appears to be considerably increased. Such
is, for instance, the case with convex circular obstacles (¥ = const. > 0)
where one always gets convergence with averaged iteration.

In this section we shall try to provide a theoretical support for this
numerical behaviour. We observe, in the first place, that simple itera-
tion corresponds to the succesive application of the operator S while
averaged iteration results from the repeated application of the avera-
ged operator Sy = a S + (1—a) I, where I is the identity and « a po-
sitive number. It is clear that all equations 4 = Sy, 4 have the same
solutions, namely those of A = S 4, and yet that the operators Sy may
behave quite differently under iteration. It is, therefore, a natural
question to ask which advantage can be taken from this situation to
increase, by means of a judicious choice of «, the range of effectiveness
of the iteration process. A partial answer to this question is to be found
in Theorems 2 and 4 which, in the continuous and discrete case respecti-
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vely, give intervals where « can be chosen to insure convergence toge-
ther with bounds for the error commited after the n® iteration.

§ 1. Convex case, » = 0. THEOREM 2. Lef %(0) be a non-
negative continuous function with bounded derivative, v € L,, and
M{ | (0]} [xp ®) 25 #)]¥ < 1. Then for every « in the interval

’ /s e
Bl 0<a<2/[M{x} o)+ M{|«|} 15 @) x5 ) + 1],
the successive averaged inferales 1, = St A, of a non-negative function A,

converge towards a solution A of (1). More precisely, if 0 < 2y < M {x},
then for every r belween 0 and 1,

[ =F7, 1 %
G2 @ —4() sar@) 47— [lnl_r]“L

Ak 1
+ Bl “'3 [m }]E}Jr B*[A(0) — Ao ()],

where

B=1—a,
M {x} 10 0)— B, B} + a M {|#|} 15 &) 15 ),
A = [(w/2) (M2 {se} 4+ M2 {|#]}) (Sudo— o D (Suto— ANIE.
B = (M2 {u} + M2{ || })¥2C, M {x} 7], (*)

y = max {

(3.3)

The convergence is uniform in every closed interval where v is bounded.

Proor: Let us put 6, = T 4,, 7,= D4, and compute the diffe-
rence between two consecutive iterates 4., — 4;,

(34 Myr— A = Sady— Sa by =
= av[x(T A) e P — % (T Ay_y) e~ P=] + B (4, — 44_y).

By simple algebraic manipulations this can be written as

(3.5) Opp1 =—aw, DO+ B0, + g, T,
where

6 = A — A,
(3-6) wy = v%(0y) (67 — e~")/(— 7 + Thy)s

0r = v e~ (% (0) — % (0,_1)/(0, — 6,_,)-

* (Cp appearing in this formula has been defined in (2.30).
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Since S, transforms non-negative functions into non-negative ones, all
the A, are non-negative and the following bounds hold for w, g,

(3.7 0< w, <vM {x}
(3.8 los| < v M {|'|}

We now show that (8;, D &;) is reduced at every iteration provided that
« is taken within the indicated bounds. Since (z, D)% satisfies the

triangle inequality,

(3.9) (041 D 5k+1)% < (—oawyDdy + BOy D(—aw,Dé,+ B 8¢ +
+ « (gs T 83 Doy T 8%,

and by Lemmas (8) and (9),

(3.10) i+ DOt < ¥3(8s DY,

1 /2
where, y, = max {|och (wp) — B s ﬂ} + « x4 (0x) %5 (0s). Because of
the monotonicity of yp (Lemma 7, e)), the right hand side is increased
if w; and g, are replaced by their bounds (3.7) and (3.8), so

G.11) 9, <y =max {|aM{x} 2o ) — B, B+ M { ||} 25 0) 15 ).

A simple computation gives

{ B+ aM{|¥|} 2k o) 2a ) for a<2/(M{x}zp @)+2);
3.12) y = a[M {x} 7o) + M {||} 25 6) x5 &) — B
for oM {xn} gp() +2] < a <1,

showing that y < 1 and that the minimum of y is: [M {x} %o (v) +
1 /2 .
+2M {I“'“ Zléz @) 25 ]/[M {M} x%p (») + 2], attained for

a = 2/(M {x} xp ¥) + 2).
From (3.10) and (3.11) it follows

(3.13) (8 D 8)F < =1 (3, DOy)*
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and by the triangle inequality, if k¥ >k,

k k
(3.14) (Ay— Ay D(As — A))F = (26, DX 6t <
i=h+1 i=h+41

k B k
< 3 (0, DO)t < (3, DY Tyi~1 < (8, DYt L
i=hii i=h41 11—y

Therefore {1,} is a Cauchy sequence under the metric defined by the
norm (z, Dz)%. From this fact we shall deduce, with the help of Lemma 5,
the uniform convergence of the sequence {4,} towards a solution of
(1.26). The 2, all liein the interval (0, v (¢) M {x}) and so |4, — 4,1, <
<2M {x}|»], Hence, by Lemma 5, and (3.14),

(3.15) {[6: (0) — 6, (@)]* + [14(0) — mu (O)2} <
1 h 1 1
< (85, Doy)* l;y_y L% In lir]z +2C, M {x} (K28 [ln ;]q,

which shows that the sequences 6,(c) and 7, (0) converge uniformly
towards limits 6 (o) and 7 (o) respectively. Now if u, = vx (6;) e—,

(316) | [m(0) — mi(0)| = [vx(Bp) e~ —wx (B) | <
<9 (0) [M {x} |74(0) — 7,(0)| + M {[#'| } |6:(0)— 6, (0)]],

and by Schwarz inequality,

B17)  |p(0) — m(0)] < v (o) [M2{x} + M2 { ||} ]}
{164 () — 6, (0)12 + [74(0) — 7, (@)]2}4,

and p; (o) converges towards a function 4 (o) uniformly in any closed
interval where v () is bounded. (3.15) and (3.16) yield, by letting k — oo,

B.18)  [A(0)— m(0)| < v(o) [M2 {w} + M2 {|x'|}
3 1
x {(al,pal) 1y_y [72; In l_l_r]é 1 2C,M {x) uvu,[ln ;]3}

For brevity, this we write as

(3-19)  [A(0) — p,(0)| < v(a){A ph [ln 1 l_r]% + B[In ;]El}
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We now prove that 4, (o) converges towards A (o) in the same way as
ui (0). By definition

(3.20) A (0) = a pp_1(0) + BAr_1(0),
A(0) — A4 (0) = « [A(0) — pp_1(0)] + B[A(0) — 44—y (0)}.

Iterating,
h—
321 10)— 1) =« P 40) — s s (@) + B [2(0)— L o))

Taking modulus on both sides and applying (3.19),

h—1 1
(3.22) |A(0)— A (0)] < ow(c){A (X B*"717H [1“ 1 —r]2 T

+5Em[n e tio— o),

that is,
h__ ph
3.23)  |2(0)— A4 (0)| Sav(a){A Vy_g [m l_l_r]§+
g 1
+ 8L }]q}+ B {4(0)— 2,(@)}.

Since y and B are both less than 1 and A(c) <M {x} v (0), the
sequence 4,(c) converges, due to the arbitrariness of r, uniformly
towards 4 (¢) in any closed interval where »(c) is bounded. Finally,
since the operator S is continuous,

(3.24) Sal = lim Sa }hh = liIIl Zh'l'l - 1
h — o0

h — o0

That is, « SA + A = 4, SA = 4, and the Theorem is proved.
We shall now investigate a formula giving the variation of the solu-
tion of (1.26) when the data » and » are altered.

THEOREM 3. Let 4, = v % (T 4;)) e~DA,
Ay = 3%y (T Ag) €=Ph,

where vy, v, € Ly, p > 1 and %, x, are non-negative continuous functions

R /g
with bounded first derivatives. If, M { || } X5 ) xp ) < 1, lhen
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(3.25) (A — 2 D(A— A)F <
< Mbu} @1 —2), DOy — ) + M {|x — |} @ D)t
R 7, :
1— M{ %2 | } X5 @) ()

Proor: The difference between the first and second equation may
be written in the form

(326) 6=—wDd+oTd+ e

where,

=M—2A, 0,=TA, 0,=T2, t,=D1, 1,=D2,
@ = %5(0) (67" — e~ ™) /(— 7y + 7o),
0 = vp e (%3 (0;) — %5 (65))/(6, — 6o),
& = (v — v9) %; (6;) 7™ + v 677 (%1 (6)—215 (6y))-

(3.27)

Let « + 8§ =1, 0 < « < 1. Multiply (3.26) by « and add B4 to both
members,

(3.28) 0=—awDd+ apTd+ BJ + as.
Now estimate (3, Dd)¥ by using the triangle ineguality,
(3.29) (6, Do) <
<(—axwDd + apTd+f8), D(—awD8 + apTd + B + a(e Do)t

As in Theorem 2, the firts term is not greater than y (8, D 8)%¥ where

N 2
y = max [|ayp (w) — B[, ] + « x5 (0) x5 (p)- From the definition of p,
it follows |o] < M { | %5 } #5, so by Lemma 7, ¢) and by Hypothesis,

' /2 . Yy
X5 (@ (@ <M { %' } x4 o) x5 (). Consequently, if « is taken to
1 /s
1o (@) + 28 (@) x5 (o)

be 2/(xp (w) + 2) then y = < 1, and we can

Xp (@) + 2
write
(3.30) (6, D8): <y (8, D) + « (s, De)t,
@D < (Dot < — ©DN
Y 1—M {3 } 38 ) 25 )
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Again, by the triangle inequality (e, De)? can be split into two
parts corresponding to each of the terms in the expression for . The
first clearly does not exceed M {x,} (|n—72|, D|n —v2])‘5“, and the
second M { |x; — x| } (1, D»,)%, so

(3.31) (e, Do)k < M {%, }(|vy— vs|s Dj|my— 7| )¥ + M{|s;— 30| } (&, D)%

Inserting this into (3.30) we obtain (3.25).
Letting »; = v,, ®; = %, We obtain as a Corolary the following result.

TuEoREM 4. Under the conditions x > 0, M { || } 3 b o) xffg(v) <1,
equation (1) admits one and only one solution.

Proor: If A, and 4, are two solutions (1), the previous Theorem
yields, (4; — 4y, D(4; — 4;)) =0 which by Lemma 1, d) implies
A, (0) = 4, (0) almost everywhere. But the functions 4;/v and A,/» are
continuous and so they must be identical.

The same formal proofs lead to the following discrete analogs to
Theorems, 2, 3, 4:

Tueorem 5. Let »(0) be a non-negative continuous function with

1 1/2
bounded derivative, and M {|x’ (6)] } xléz,.,(,,) x5 (¥) < 1. Then for every o
in the interval

1 '/a
(3.32) 0.< < 2/[M {x} xow @) + M { |} 2502 0) x50 @) + 1]

the successive averaged iterates A, = (SY")* 44 of a non-negative function
}.o(aﬁ,”)) converge towards a solution A% of (1.37). More precisely, if

0 < A (o%") < »(o%") M {x}, then for every r between 0 and 1,

E__ RE 1 ¢
(3.33)  |A(0}) — A ()] Sv(ﬂ‘ff”){A‘"’ yy_f [‘“ 1—r]2+

+ 5 ! — £ [ln %]; } + B {A (0" — A (i)}
where
(334 p=1—a
y = max {|a M {x} 1o0 6) — B, B} + oM ||} x5t» ®) x5 )
AM = [g (M2 {sc} + M2 {'|}) (S Ao — Ao, D) (S5 Ao — /10»]é

B = (M2 {x} + M2 { x| })F 2G5 M {ae} [ 7],

20 — Collectanea Mathematica.
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Tueorem 5. Lel A = v, %, (T A)e—P"4
2 = Vap (T 2y) e~
where »,, ®, are non negative continuous functions with bounded first de-
) s
rivatives. If, M { | % } x,ﬁ?w (o) bt (vg) < 1, then,
(3.35) (Ay — Ay, D (4, — A))* <
M {1} (00— 92, D™ 0 —9))¥ + M { |y —%5| } (3, D9}t
" s :
Z—M{ | % } xém (vy) x5t (v5)

<

) s
TueoreM 6. Under the conditions x >0, M {|x’| botm () x5 () < 1,
equation (1.37) admits one and only one solution.

§ 2. Concave case, x <X 0. In the concave case the situation is
essentially more complicated because equation (1) not always has a
solution. In the iteration process this roughly corresponds to the fact
that the successive iterates do not remain bounded under any metric.
Therefore, a choice of the data to prevent this from happening is re-
quired before entering into the convergence of the process. Such a choice
will be based on Lemma 13, in which case we also know the existence
of a solution (Theorem 1). Moreover, averaged iteration does not, in
general, show any advantage and shall not be used. To substantiate
our assertion that (1) does not always have a solution, we shall first
give a simple and non trivial necessary condition for its solvability.

T
TueoreM 7. Ifx <0, N =(1/2)/ In [»(s) m {|x|}] sin sds <—1,
0
is a necessary condition for the existence of a solution of (1). If the con-
dition is fulfilled, then for all solutions of (1), — (1/2) / sin s 4 (s)ds lie
0

befween the smallest and largest root of the equation x = e*+7,

Proor: If x <0, every solution of (1) is negative and |4| =
= 9(0) |[x (T A)|eP!}, So if 6 =T 4, T = D4, then
1' k ) 1 5 '
- |A(s)| sinsds =5 | »(s) [%(0 ()| el sin sds.
2Jo 2 Jo

But, the arithmetic mean being always greater than the geometric one,
(Harpy, LitrTLEwoop and Porva [48], page 137).
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%f”{ln [v(9) [%(8 (1] + [v(s)]} sin s ds

(3.36) %/O‘nv (s) | (6(s))] €I*¥] sin sds =€ 7o

T T
and since/ |A(s)| sin sds = / |z (s)| sin sds,
0 0

1 (= 1 [
-éf In[¥(s) % (8 (s))|] sinsds+ 5_[ |A(s)| sin sds

T
3.37) %/ |A(s)| sin sds = e “o 0 >
0
1 £4
N + Ef |A(s) |sin sds
=e 0
So,

1 T
3 [A(s)| sinsds
e "o

>1 -
Q./o |2 (s)| sin sds

and N < — 1. Obviously, if N <<— 1, the equation z = e*+¥ has
two rots and every x such that x > ¢*+¥ lies between then. The proof
of the Theorem is, therefore, completed. We now prove the fundamen-
tal Theorem of Convergence for this case, which follows closely the main
lines of Theorem 2.

I
3]

(3.38) e=N

ez
=g 1lb —
0<z<o0 ¥

Tueorem 8. Lel »(0) be a non positive, continuous function with
bounded derivative and v & L,, p > 1. If for some q, > g,

(3.39) 3 =M {|x|} 100" + M |||} 2§ 0% x5 %) < 1,
v¥ (0) = v(0) ' (9 X0,

then the iterates A, = S*A,of a function with |2y/v], < X, converge
towards a solution A of (1). Precisely, for every r, 0 < r < 1,

P 1 7t 1]
(3.40) |A— A Sv*(a){A l*y[ln l_r-]z—l— B[ln r"]” “

where
(3.41) A={;—‘(M2{|u|}+M2{lx’|})(SAO—AO,D(SAO—%»%},
B =[M{|x|} + M2{|x|}Ji2C |  X,[v],
1
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Proor: Let us write 6, = T 4;, v, = D 4,, then
(342) Ayyr— Ay =SAh— Sh_, = vx(0,) e~ — vx(0,_;) e,
which, as in Theorem 2, can be written
(3.43) 0441 =— @, D6, + 0, T 0y,

with the meanings given in (3.6). By Lemma 13 all iterates are in the
sphere [ 4/»], < X,,, and by (2.83), |v3| < hy, (0) [ Ay, < Iy, (0) X,
This implies the bounds.

B4 0L—w, <M { lx‘ } v (o) €@ X0 = M { [K|}’V*(U),
les] <M {[|} (o) n@Xn = M{|x|}* (o),

Now by the triangle inequality and Lemmas 8 and 9
(3.45) @rs1s DOry)t < (—wp D(— 0 D)F +
+ (o Dos T 8)F < 95 (85 D)%,
where y, = yp (w;) + x5 (or) xg’ (0:)- By Lemma 7, ¢) énd (2.82),
(3.46) <y <l
So multiplying equations (3.45) together,
(3.47) (3w DO < y+1(3, DY,

and by triangle inequality, if k > h,

k k k
(3.48) (44— 4, DA — A)F < (X6, DX8): <X (5, D) <
i=h41 1

i=h+4+1 i=h+1

< (8, D)t % Y1 < (8, D8yt 7

i=h+1 11—y
As in Theorem 2, we shall prove that from this it follows the pointwise
convergence, first of 6, and 7, and then of 1,. We only have to recall
that, as it was shown in Lemma 13, if u = qqy/(q9o— (9o — 9)) then
| Al <|A»]s 7], and apply Lemma 5 to 4,— 4, with u in place of p,

(3.49) {164 (0) — 0,()]* + [1:(0) — 7, ())2}F <

Bor2 1 1! 171
<@ D8 2Rl ok 4 26, ol i 7]
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which, since r is arbitrary imply that 6, (o) and 7, (¢) converge uniformly
towards two functions 6(c) and 7 (o) respectively. We now prove
that 4, converges to 4 =wx (f)e~" On account of |7;| < hy, (0) X,,
and by Schwarz inequality,

(3.50) |A— A = |vx (@) e"—wx () e <
SV(a)e"w(“)Xﬂo{M{[x]} |t— 7| + M {|x’|} |6—6,|} <
< vk (@) { M2 {|x|} 4+ M2 { ||} }F{|0— 6,2 + |z — =2}

Letting k — oo in (3.49) and replacing the result in (3.50), we get
(3.51) |A— 2| <o*(0) 2 {[x]} + b2 { | }J¥

k12 1 1 11,1
X {(al,valr‘r liy[zlnl_r]z + 26X, |7l [ 1 }

and the convergence of A, towards A is proved. Clearly the convergence
is uniform in any closed interval where »* (o) is bounded. Finally, it
is plain from the continuity of the operator S that A verifies A = S 4.

In the concave case there is also an analogue of Theorem 3, but of
a less precise form. We shall limit ourselves to the unicity theorem that
follows from it.

TueoreM 9. Under the Hypothesis of Theorem 8 there is one and
only one solution of (1) with |Afr|,, < X,,.

Proor: That there is a solution is the content of the previous
Theorem ; that there is no more than one is proved as follows:
from 4, = vx (T 4;))eP4, A, = vx (T A,) e~P* follows by substraction

=-—wD¥d + p D6 with the meanings (3.27).
By Lemma (13), if | 4;/»],, < X,,, then |7;| < hy,(0) X,, and

(3.52) 0< — o< M{|x|}(o)ehn®Xa,
|Ql <M { lx’l } v () €#9(0) Xao,

Hence, as in the previous Theorem, (8, D 8)¥ < y (8, D 8)* where
. s
@353y =M{|x|} 0%+ M{[x|} x5 M5 0%
Therefore (6, DJ8) = 0 and by Lemma 1, d), 4, (¢) = 4, (c) almost

everywhere, hence, everywhere, because 4,/» and A,/v are continuous
functions.
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The conditions under which the last theorems hold, are rather in-
volved and difficult to verify except perhaps when p = co. Moreover,
they are presumably too stringent, as being based on inequalities valid
for a broad range of values which in specific cases are likely to be very
inaccurate. One suspects and the numerical computations confirm, that
iteration converges in a much larger range. In the important case of
symetry Theorem 8 can be considerably improved (though loosing most
of its constructiveness) by showing that if x (6) is negative and increa-
sing, the iterates converge towards a solution of (1), if there is one. We
shall say that equation (1) is symmetric when: »(0) = » (% — o),
% () = % (— 6) ; a symmetric solution is one for which 4 (¢) = 4 (x — o)
Clearly, for a symmetric solution, 7 (¢) = 7 (z— o) and 0 (¢) =— 0 (— o),
where v = DA, 6 = TA. This being clarified, we can enunciate the
Theorem :

THEOREM 10. Let equation (1) be symmertric and () a negative, non-
decreasing function of @ for 0 < 6. Under these conditions, if (1) admits
a symmelric solution, the iterates of the function identically zero converge
decreasing towards a symmelric solution which, in addition, is the great-
est of all solutions of (1).

Proor: In the first place we show that, in case of symmetry, the
operator S is order preserving on negative symmetric functions, that
is, 4,(0) < 24,(0) < 0 imply, S4 < S4, < 0. In fact, for symmetric

2/n
functions the operator T becomes the integral / SO
0

T
o°

/2 /2
(3.54) 0,(0) =/ A (s)ds g/ Ay(s)ds = 0,(0) for 0 <o < 5
0 0

which, in account of the symetry and monotonicity of x (o), yields
(6, (9)) <3 (0,(0)) <0. By Lemma 1,¢), 7, = D4, <D =1, <0,
so e~% > e~% > 0. Thus, since » is positive, S4, = vx () e <
<wvx(fp)e = = Si,

This being proved, let us assume now that A* (o) is a symmetric
solution of (1). If 4, (o) designates the function identically zero, 4, = 1*,
and so by applying S to this inequality

(3.55) =2= S > SA* = 1*,
and reiterating the operation,

(3.56) 0> 20> Shg= 524y > ... > SFAy = A%,
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Thus, S*2,, as a bounded decreasing sequence, converges towards
a function 4 > A*. To see that 4 is a solution of (1), we observe that
all S*A, having a minorant A* (obviously integrable) we can by Le-

/2
besgue Theorem pass to the limit under the integrals 6, = / Sk 2y ds,
0

/2
T, = / D (g, s) SkA,ds, and conclude that lim 6, = T A and lim 7,=D 4,
0

therefore, that 4 = lim vx (8;) e~ = S A.

It is to be noticed that the Theorem just proved is not a construc-
tive one, in the sense, that it does not provide a bound for the number
of iterations required to obtain a solution with a given accuracy. For
completeness we state the corresponding results for the discrete case :

Tueorem 11. Lel %(0) be a non positive continuous function with
a bounded derivative. If for some q > q,

B.57) p™ = M{ x| om 0%) + M {|x'| } 2ot (%) Yo %) < 1,

™ (Y 4,
B %A )X!Io

v* (O_;n)) — (05:1)) o™ ,

then the iterates [S™]* Ay = A, of a function Ay (o3") with | Ag/» |4, < XM

converge towards a solution A of (1.37), namely, for everyr, 0 <r <1,

. " n w (PO)E 1 ¢ L 11
(3.58) |A(d")— A (o] <¥* (o >){A(>1(7’_3m [m 1—r]2+ Bl )[m ;} qof

where
1

(3.59) A" = { [0 (]} + M2 {[x¢|}] 5 (S Ao — Ao D (S 3y — A9) (¥

Bm =Mz { |} + M2 { ||} F2Cx | XD,
-G

TuroreM 12. Under the Hypothesis of Theorem 11 there is one and

only one solution of (1.37) with [|A/v[,, < X,

TueoreM 13. Let equation (1.37) be symmetric and »(6) be a non
positive, non decreasing function of 6, 0 < 0. Then if (1.37) admits a so-
lution, the ilerates under the operator S™ of the function identically zero
converge decreasing fowards a symmetric solution vhich, in addition, is

the largest of all solutions of (1.37).



218 E. H. Zarantonello

I1V. CONVERGENCE OF DISCRETIZATION

In this last section we shall investigate how the solutions of equation
(1) can be approximated by the solutions of equations (1.37). As it
stands this problem does not have a clear sense, because the solutions of
(1), being functions of a continuous variable, cannot be compared with
the solutions of (1.37) which are functions of a discrete variable. This is
inmediately obviated by extending the discrete solutions by means of tri-
gonometric interpolation to the continuous interval (0, ) (see section I,
§ 3), thus reducing the problem to determine how the interpolating
polynomials approximate the solutions of (1). ’

§ 1. Auxiliary lemmas from the theory of trigonometrie interpola-
tion. The main tool in dealing with the above problem will be a
Lemma on trigonometric interpolation we originally developed for this
specific purpose [54] which we shall state here without proof.

LemMa 15. Let f(c) be a periodic function of period 2z with abso-
lutely continuous derivatives up to the r-1st order and let P (o) be a tri-
gonometric polynomial of degree n coinciding with f(c) a more than 2n
equidistant poinis modulo 2x. Then for every p,1 < p < oo,

a) {/ f” < B,, {/0“ ’”da}i,

b) |/(@)— P(o)] s( )"'M,,,,If“ da}’l’,

o {[o—riare <] e

do”
where By, M, , and N, , depend on their subindices only.
We shall also need the following result of J. MarcinkiEwICZ [51]
of which we have already made use.

P (0) d"f(9)

do”
df (6)

1
pdalz

LemMmA 16. For every trigonometric polynomial of degree n, P (o),
and m (m > 2n) equidistant points modulo 27, 6,, Gy, ..., Gps

27 1 m .1.
{/; | P (o) |Pda}5 < B,,{kz=‘,1 | P (o) |#Aab}ﬁ,

where B, is a positive number depending on p only.
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§ 2. Convergence of discretization. Convex ecase, x = 0. THEo-
REM 14. Let »(6) be a non-negalive continuous funclion with a bounded
derivative and v (o) a non-negative conlinuous function vanishing al ¢ =0,
¢ = m, and having a p-iniegrable (p > 1) first derivative. Then, the class

of all trigonometric polynomials 4,(6) = ¥ " sinjo, n =1, 2, ..., whose

=1
values A, (cl") at the points o) = kz/(n + 1), k =1, 2,..,n satisfy

equation (37) form a uniformly bounded family of equiconiinous functions

all whose limits are solulions of (1). If (1) has only one solution, the above

polynomials lend uniformly, as n goes lo infinity, to such a solution.
Proor: For every A,(0c) we define the polynomials 6, (o) =

=3 (ag-")/j) cosjo, 7,(0) = (a}”’/j) sin jo, and the function
j=1 i=1
J' v(0) % (0, (0)) e~ 0<o <

— p(— 0) —x <0 <0
U e (o + 2 k) k=0,+1,+2,..

@1) g (o) =

The u, are clearly non negative, continuous and odd functions of .
With their help the hypothesis that 4, (osz")) satisfy equation (1.37) can
be written as: 4, (o) = u, (s3") (See Section I, § 3). Thus, 4, (o) are
trigonometric polynomials of order n interpolating the functions g, (0)
at the 2n + 2 points ¢\’ = ka/(n + 1), k=0, + 1, 4+ 2, .., + n,
n + 1. The proof of the Theorem shall be attained by successively pro-
ving that {6,}, {r,,}, {,u,,} and }4,} are uniformly bounded families
of equicontinuous functions.

The u, being non-negative functions, 4, (6”) = u, (6%”) = 0 and so,
since D™ is order preserving, 7, (c}”) = C. Therefore

(4.2) 0 < 24,00 = p, (@) <v (@)% (6 () < M {x} v (o).

Applying Lemma 16, to 4, (o) and taking account of the fact that
the 4, (o) are odd functions,

n 1 1

“3) A, < Bﬂjkz1 |4, @) [P Aol 17 < B,M {x} M {»} a?.
Lk= J
Now by Lemma 1 b) and Lemma 3, b),

1 1
(44) |7, (0) —1,(0")| < P A, B,M {x} M {»}|o' — o"|1,
1 1
@5)  0,(0)—0,(c")| <a* B,M{x}M{r}|o'— o' |1,

21 — Collectanea Mathematica.
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which show the equicontinuity of 6, and z,. By setting 6" =0 in (4.4)
and by Lemma 3, b) we get

(4.6) 7. (0)| < A, B,M {x} M {»},
(4.7) [10.(0)] < B,M {x} M {},

and the uniform boundedness of 7, and 6, is assured. In the interval
(0, ) we have,

4,8) U, =e" = [V (0, + v0, % (0,) —rx(6,) ]

By Minkowski inequality the p-norm of u,’ is not greater than the
sum o the p-norms of the terms on the right of (4.8). Hence, taking
p-norms and replacing e~%, »(6,) and %’ (,) by their bounds,

49) | [, < Mo [M Lo} | '], + M {v} M {x'} 0,1, +
+ M {v} M {x} |z ).

The three terms in the brackets are uniformly bounded ; the first docs
not depend on n and is bounded by hypothesis, the second because
6, = — A, and (4.3), and the third by virtue of Riesz Theorem :
l7a I, < Ayl Ay (z+ and 4, are conjugate functions) and by (4.3). So

(4.10) &' ly <N,

where

1
(4.11) N = eA”B”M{"}M("}[M{x}H v |, + M2{v}M{ x|} M {x} B, n? +
L

M2 {o} M2 {x} 4, B8]

By Lemma 15 a), applied with r = 1, to the function g, and its
interpolating polynomial 4, (both functions being odd the interval of
integration can be restricted to (0, m)),

(4.12) 14, [p < Bpallp'ls < By N,
and by Lemma 15, b)

1)1
(4.13) o — A < (H)" M, ,N.
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An application of Hélder inequality yields, from (4,9) and (4.12),

1

(4.14) | (6) — n (") <N |0’ — |7
1
4.15) |4, (@) — 4, (0")| <N B,y 6" — 0|7

and the equicontinuity of { pn} and {l,,} is proved. Moreover, since
they vanish at ¢ = 0 they are uniformly bounded. To complete the
proof let us take a subsequence 4,, (6) convergent to a function 4 (o).
On account of the equicontinuity the convergence is uniform (Cf. Cou-
RANT - HiLBERT [53], page 50), and By Lemma 1, b) and Lemma 3, b),
the sequences 0,, = T 2,, and 7,, = DA4,, converge uniformly to
0 = T A and 7 = D A respectively. By the continuity of the exponential
and of %, g, = v%(0,,)¢ ™ converges to vx(6)¢ " But by (4.13)
2., and u,, converge to the same limit, so 4 = »x(6) e "and 4 is a
solution of (1). Finally, if (1) has at most one solution, there is at most
a limit function of the family {2.,,} and the sequence A, is itself
convergent.

The above Theorem is not constructive, but if the conditions
of Theorem 4 assuring the uniqueness of the solution are added to
its Hypothesis, then bounds for the degree of approximation can be

actually given.
TueoreM 15. ‘Under the Hypothesis of Theorem 14, if

1 1,
MA{|x|} b o)ws 0) < 1

then equation (1) admits one solution A (o) only (Theorem 4), and for ahy
trigonometric polynomial of order n, A,(c) whose values ai the points
o) = ka/(n + 1) satisfy equation (1.37) and any r, 0 <r < 1,

4.16) |4(0) — Ay (0)] SV(U){QI%[ln ll_r]§+ 0, [ln %];}+ Qs(%)%,

where

( —

0 _ vg (M2 {} + M2 { |} I {/0"/0”,1)(,,,3)|qd,,ds}z%NwN,

M {0 @

00 = 0022 {ef} + 302 {13+ Gy 3 e} 1oy 0 {1} 22 (o) B, 23]
L Q3 = M;,,N.

(4.17)
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Cs Ny, 4 My, are the constants defined in Lemma 5 and Lemma 15
and N is given by (4.11).

Proor: With the same notations as in Theorem 15.
4.18) A—A,=A—pu,+ p,—A, =vx(0)e"—vx(6,) e+ u,— 4,

which can be written

4.19) 6, =— w,D6,+ 0, T, + ¢,
where

0y = A — A,

&y = Uy — ]'n
4.20 - et
(4.20) w, = vx(0) ————

' 6) — = (0,
S TOESTCRY

As in Theorem 3, from this we dcrive (see formula (3.30))

(ews D e,)t

(4.21) (6;1’ Dan)% < 2 )
1— M{|¥|} xb &) x5 @

Moreover by Hbolder inequality,

n prn ]1
(4.22) (en D ,)t ={ / / D (o, 5) &, () &4 (0) dsdo f‘*
0 Jo
n frn 1
S{f / | D (o, 5) lqdads}zﬂus””[,,
0o Jo
and by Lemma 15, ¢) with r = 1, applied to 4, and u,,
1 '
(423) ”gn"p < ;l- NI,P ” By "P
Replacing in (4.21), and on account of (4.10),

(4.24 (A= DA— A < Qo 2,
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where

(4.25) Q= 1 {//ID(G,S)l”dsda}Qqup

1— {MHxMXM

Clearly | 4], <M {x} |2, so by Minkowski inequality and (4.3)

1
12— a,0, <M {}|v], + M {x} M {»} B,n?. Hence, by Lemma 5,
for every r,0 <r <1,

En 3

@2  {0— 0+ c—wr} <Qp[oin

+ [ G 1oty + 22 4 20 0} By [n 2

Now
(4.27) |A— 4| < |A— ma] + |2a— 44|

The first term on the right can be majorized by using Schwarz in-
equality, as follows,

(4.22) M—y”' < (o) [M2 {x} + M2 {w”% [|6 — 0”|2+ ]r—rnIZJ*'f,

and the second by (4.13). So on account of (4.26),

4.89) |4 — 4, gv(a){Ql%l[lnl ]2—1- Qz[ln ] }—l— Q3< )1

where Q,, Q,, and Q; have the values (4.17).

§ 3. Concave ease, x <X 0. The concave case presents here, as in
the iteration process, new difficulties. Theorem 14 very likely holds also
for x < 0, but we have not been able to prove it. The main obstacle
is to find a priori bounds for the values of the interpolating polynomials
A, (0) from the mere fact that they satisfy equation (1.37). Once this
is settled, the proof procceds, as the reader can easily verify, as in the
convex case. Such is, for instance, the case when the solutions 4, (o )
are obtained by iteration of the null function under the condition of
Theorem 11, in which case Theorem 15 admits also a natural generali-
zation. The details are left to the reader.
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