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ABSTRACT:

The concept of regular genus for n-dimensional links is introduced. It ex-
tends the classical genus of one-dimensional links. Some characterization theo-
rems of the trivial knot are given. In particular, the only genus zero n-dimensio-
nal knot is proved to be homeomorphic with the trivial knot. Then the regular
genus of a knot is proved to be related to the one-dimensional homology of the
universal abelian covering of its complement. Partial extensions for links of these
results are also obtained. Some applications to low-dimensional links and a final
section about connected sums of links complete the paper.

1. DEFINITIONS AND NOTATIONS.

Throughout this paper, we work in the piecewise-linear (PL) category in the
sense of [GR]. All manifolds will be compact. If M™ is an n-manifold with spheri-
cal boundary components, then M" denotes the closed n-manifold obtained
from M by capping off each component of aM with an n-ball.

For graph theory see [Ha]. As general reference about crystallizations, we
refer to [FGG]. We shall always use the term graph instead of finite multigraph
without loops. Given a graph I, V(I') and E(T") denote the sets of vertices and
edges of I' respectively. By g(I") we mean the number of connected components
of I.

* This work was performed under the auspicies of the G.N.S.A.G.A. of the C.N.R. and fi-
nancially supported by the M.P.I. of Italy within the project ‘‘Geometria delle Varieta
differenziabili’’.

AMS (MOS) subject classifications (1980): Primary 57 Q 45, 57 Q 15; Secondary 57 Q 05,
57 Q XX.



230 Alberto Cavicchioli

An edge-coloration on T'is amap Y: E(I') — A_={0,1:....n} such
that v (e) # 7 (f) for any two adjacent edges e,f € E (I).

An (n+1)-coloured graph with boundary is a pair (I',Y) where I' is a graph
and 7v: E(T) —= A, is and edge-coloration on I'. Note that each vertex of T’
has degree < n+1. By definition, a boundary vertex of T" is a vertex of degree
< n+1.If I" has no boundary vertices (i.e. " is regular of degree n+1), then (T',7)
is simply called an (n+1)-coloured graph. For every B €A, I'y denotes the
subgraph (V(T'), Y™ (B)); for any ¢ € A, we set ¢ = A, —{c}. By 80,81
(a8 € Ay, a# B), we denote the number of cycles of 1"{ aB)

(I",7) is said to be regular with respect to the colour c if T's is regular of
degree n.

Two (n+1)-coloured graphs with boundary (T',Y) and (I"',Y") are said to be
colour isomorphic if there exist a graph isomorphism ¢: I' — I" and a bijec-
tion f: Ay —= A suchthatY o ®=fo7.

Now let G, be thesetofall (n+1)-coloured graphs with boundary, regular
with respect to the colour n.

For each (I',Y) € G, , the boundary graph (oT", 3Y) of (I',7) is defined (see
[CG]) by the following rules: 1) the vertices of 9I" are the boundary vertices of
I'; 2) two vertices v,w of oI are joined by an i-coloured edge (i e A,_;)iffv,w
belong to the same connected component of * in):

It is proved in [CG] that (8T, 87) is a (possibly non connected) n-coloured
graph, regular of degree n, and whence 90T is void.

Obviously, (T',7) is an (n+1)coloured graph iff (0I",07) is void.

Given (I',Y) € G, ., an n-dimensional pseudocomplex (see [HW]), written
K(I"), can be associated with (I',Y) as follows: 1') take.an n-simplex ¢"(v) for
each vertex v of T and label its vertices by A_; 2") if v,w are joined in T by an
edge e € Y (c), then identify the (n—1)-faces of ¢"(v), 6™(w) which do not con-
tain the vertex labelled by c, so that equally labelled vertices coincide.

By construction, there is a bijection between the connected components of
'y (for each B C A, with card (B) = r <n) and the set of (n—r)-balls of K(I")
whose vertices are labelled by A, —B. We shall also call simplexes the balls of K(T").

If IK(IM!is an n-manifold M", then (T,Y) is said to represent M and every
homeomorphic manifold. In this case, aI" represents the closed (n- 1)-manifold
oM since 0K(T") =K(arI’).

A graph (T',7) representing an n-manifold with non void boundary is said to
be d-contracted iff T'; is connected and g(T';) = g(dT") for every c € A,_;. Then
K(I") has only one vertex in its interior and each component of 3K(I') has
exactly n vertices because the number of c-labelled vertices of K(I") is equal to
g(T';), foreveryce A .

An (n+1)-coloured graph (T",y) representing a closed n-manifold is said to be
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contracted iff I'; is connected for every i e A,. In this case, the pseudocomplex
K(T") has exactly n+1 vertices.

A crystallization of an n-manifold M® with non void boundary (resp. a clo-
scd n-manifold) is defined to be a d-contracted (resp. contracted) graph which
represents M.

Every closed connected n-manifold can be represented by a crystallization
[P]. Further , let M" be a connected n-manifold with h (h > 0) boundary com-
ponents 0M;, ... ,0M; and let (T';,7;) be a crystallization of 0M; (i e A, —{0}).
Then there exists a crystallization (I',Y) of M such that (I, 37) is colour iso-
morphic to i§1 (T ;) (see [CG), [G, ], [CG,]).

2. THE REGULAR GENUS OF AN N-MANIFOLD WITH BOUNDARY.

For each (I',Y) € G, 1, we construct a graph (I'*,*), called the extended
(n+1)-coloured graph of T (see [G,]), by adding one vertex v* for each boun-
dary vertex v of I' and an n-coloured edge between v, v¥. By V* we denote the
set V(I'*)-V(I).

An imbedding j: |T*| — F of (I'*,7*) on a bordered surface F is called a
2-cell imbedding (see [G,]) iff 1) F Nj (I 1) =j(V*); 2) (Int F) - j(IT*]) has
open balls (named regions of j) as connected components; 3) if R is any such
region, then either dR is the image of a cycle of I'* (R internal region) or
dR = o(R) U B(R), where a(R) is the image of a walk of T'*, B(R) is an arc of 8F
and a(R) N B(R) consists of two (possibly coincident) vertices of V* (R boun-
dary region). Moreover, j is said to be regular iff there exists a cyclic permutation
€ =(€o, €1, . ...6,) of A, suchthat, foreach internal (resp. boundary) region R,
the edges of dR (resp. of a(R)) are alternatively coloured by ¢;, €;, 1, i being an
integer mod n+1.

Definition 1.— By the regular genus p(I'*) (resp. the hole number NI'*)) of
(I'*,v*), we mean the smallest integer r (resp. s) such that I'* regularly imbeds
on a bordered surface of genus r (resp. a bordered surface with s spherical boun-
dary components).

The above definition is well-posed as shown in [G, ].

Definition 2.— 1f M" is a connected n-manifold with boundary aM, then the re-
gular genus G(M) and the hole number L(M) of M are dcfined as follows

G(M) =min{ p(T*) / (T',7)is a crystallization of M }
L(M) =min {N(T*) / (I',Y)is a crystallization of M }.
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These invariants are proved in [G,] to coincide with the classical ones in di-
mension two. and to be related to Heegaard-like handlebody decomposition in
dimension three. If oM is void, then G(M) gives the analogous concept of [G3]
since (I',Y) = (T*,7*).

Let ég (h =0) be the n-manifold with boundary, called punctured n-sphere,
obtained by taking the interiors of h disjoint n-balls out of the n-sphere S”. Fi-
nally, we state the following propositions proved in [FG]:

Theorem 1.— Let M be a connected n-manifold with (possibly void) boundary.
Then M" is homeomorphic with S{ iff G/M) = 0 and L(M) = h.

Proposition 2.— Let M" be an n-manifold whose boundary oM is the disjoint
union of h (h =2 0) (n—1)-spheres. Then G(M)=G(M) and L(M) = h.

3. THE REGULAR GENUS OF AN N-DIMENSIONAL KNOT OR LINK.

Let L be a knot or link in an (n+2)-sphere S™*2. A Seifert surface for L is
a connected bicollared (n+1)-manifold M™*! € §™*2 such that 8M = L. Note
that M must be orientable.

Throughout the paper, we shall restrict our attention to knots or links
which admit tubular neighbourhoods in S™2_ Under this condition (always
satisfied in dimension one), it is proved that each L™ bounds a Seifert surface
(see [R]). Thus the following definition is well-posed:

Definition 3.— By the regular genus of L", we mean the integer
g(L) =min { GMM™1) / M™*! is a Seifert surface for L} .

This concept is clearly a link invariant. Since the regular genus of a bordered
surface coincides with its genus, the definition 3.— extends the classical genus
of a polygonal knot or link L' in S* (or R?) (see [R], [Se], [Sc], [Ki], [Ka]).

A Seifert surface M™ ! for L™ will be said to be minimal iff G(M) = g(L).

Theorem 3.— Let K" be an n-dimensional Knot in an (n+2)-sphere S**2. Then
K is equivalent to the trivial knot S™ C S"*2 iff g(K) = 0.

Proof.— C.N.— If K is equivalent to the trivial knot S® CS™?2, then K is the
boundary of a flat (n+1)-ball B**! in S"*2 (basic unknotting theorem, see [R]).
Since B is a flat ball in S™ 2 then B is bicollared in S**2, whence it is a Seifert
surface for K. By theorem 1.—, the regular genus of B is zero; thus 0 <g (k) <
<G(B)=0.
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C.S.— If the regular genus of K is zero, let M®™ ! C S™*2 be a minimal Seifert
surface for K. Since M = K is connected and GM) =g (K) = 0, then M is
homeomorphic with an (n+1)-ball B™*! ¢ gn*2 (see theorem 1.—). Obviously,
B is a flat ball of S™*2 as M is bicollared. Thus K is equivalent to the trivial knot
by the basic unknotting theorem.

The above result can be partially extended to the n-dimensional trivial link
with h (h > 1) components, i.e. the disjoint union of h n-spheres standardly
imbedded into an (n+2)-sphere.

Corollary 4.— Let L™ be an n-dimensional link in an (n+2)-sphere S*+2. If L is
equivalent to the trivial link, then g(L) = 0.

Proof.— If L is equivalent to the trivial link, then L bounds a flat punctured
(n+1)-sphere éﬂﬂ in S"*2. By theorem 1.—, we have 0 <g(L) < G(ﬁ?;'l) =0.

Remark.— Note that the converse of corollary 4.— is false (even in classical di-

mensions): consider the following non trivial link with genus zero in S3 (see
[R], p. 121).

Fig. 1.

Theorem 5.— Let L" C S™*2 be an n-dimensional link with h components. Then,
for each minimal Seifert surface Ml for L, there exist a crystallization (T,Y) of
M and cyclic permutation € = (e, €y, . . . ,€,, nt1) of Ay 41 Such that

gL)=1-(1/2)Zge . ., +(P)4-p/4—h/2 (imod nt+l),
i {61’ €i+1 }
where p, D are the orders of T, oI respectively.
Proof.— Let M™*1 C S™*2 pe a minimal Seifert surface for L. Since M™! has
exactly h spherical boundary components, it follows that L(M) = h (see proposi-

tion 2.—, sec. 2). By corollary 2 of [FG] and proposition 4.— of [G, ], there exist
a crystallization (T',Y) of M, a cyclic permutation € = (e, €y, . .. .€,, n+1) of
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Ap4q and a regular imbedding j: | T*|-— F of I'* into the orientable surface
F, with N(I'*) =L (M) = h holes and genus p(I'*) = G (M) =g (L). By means of a
direct computation, it is easy to see that the Euler characteristic x(F) of F is

T8,y AR p/2  (imodn+l).

Thus we have g(L) =G (M) = p(I'*) =1 — (1/2) x(F) — h/2 as requested.

Corollary 6.— a) A link L" in S"*2 with h components has regular genus zero iff
there exist a crystallization (1Y) of a minimal Seifert surface for L and a cyclic
permutation €= (€g €1, . - . €y, N+1) Of A4y such that

=2

ZBle 6,y ~ MP)/2 T P/2 R (imodnt).

b) A knot K" in S"+2 s equivalent to the trivial knot iff there exist a crystalliza-
tion (T,Y) of a minimal Seifert surface for K and a cyclic permutation
€=(€o,€1, . - .,€p, NT1)Of A1 such that

1=2 —(np)/2 +p/2 (imodn+l).

g{e El+]}

Example: Given an (n+1)-coloured graph (T, ), a subgraph © of I' formed by
two vertices X,Y joined by r edges (1 <r < n) with colours ¢;, ¢, . . . ,¢; Will be
called an r-dipole iff X and Y belong to distinct components of I" A,
(see [FGG]).

Now we construct a special crystallization of the (n+1)sphere S 1t will |
be used to produce a crystallization of genus zero representing a minimal Seifert
surface of the n-dimensional trivial link with h components.

Let (I‘n+1 7“”) be the (n+2)-coloured graph defined as follows: take h
cycles C; of length 4 (i € Ah ) cyclically set in the plane and clockwise numbe-
red 0,1, ..., Jh--10If v v3 v are the vertices of C; clockwise ordered, then

{cl,...,cr}

colour the edges vi : and vi ; (resp. vi : 4 and v?v:‘i’) by O (resp. 1). Let C; be a

cycle of length 2h containing each C; in its interior and let wz, wg,w?, w‘;', ces

Wp_;, wp. be its vertices clockwise ordered Then put an n-dipole ®;, with
edges labelled by An+1 —{0,1}, between v and v1+1 (i mod h) and put an
n- dlpole O (resp. @ ) with edges labelled by A+ —{0,1}, between v and

1 (resp. v4 and w; ) for each i € A;_;. By cancelling dipoles, the graph

(I‘“H 7“”) becomes the standard crystallization of S®*!, which conmsts of
two vertices joined by n+2 edgeslabelled by A, ; . A crystallization (I‘nJrl +1)

of Sn+1 is obtained from (l"r1+1 7?:1) by deleting the (n+1)-coloured edge of
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A regular imbedding of ((f‘35)*, ('3"35)*) into the punctured 2-sphere with 3 holes.
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The boundary graph (31!‘35, 973%) of (l!‘35,")$35).

Fig. 3.
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v v
@;’ for every i € A _;. It is an easy exercise to prove that ((l"’l_‘lﬂ)*, (7'111”)*)

v
regularly imbeds into the punctured 2-sphere with h holes, so that p((l"ﬁ“)*) =0

v
and A ((I\;ﬁﬂ)*) =h. In fig. 2 and fig. 3 we illustrate the above construction for
42 and S;* respectively.

Theorem 7.— Let L' C S be a one-dimensional link with h components. Then,
for each minimal Seifert surface M* for L, there exists a crystallization (T, Y)
of M such that

g(L)=1/2+p/4—h.

Proof.— Let M? be an arbitrary minimal Seifert surface for L and let (I,Y) be a
crystallization of M2 which satisfies the property of theorem 5. Since every com-
ponent of aI" is a crystallization of a one-dimensional sphere, it only consists of
two vertices joined by two different coloured edges. Thus the order p of aT" is 2h.

Recall that there is a bijection between the vertices of the interior of K(I")
and the set of all bicoloured cycles of I since I' is a 3-coloured graph with boun-
dary. Then the fact that K(I") has exactly one vertex in its interior implies the
relation

g{eo,el} +g{ebez} +g{€2,eo} = 1.

Finally the genus of L' isg(L*) =1 — (1 — p/2 + 2h)/2=1/2 + p/4 — h.

Corollary 8.— A knot K* C S® is equivalent to the trivial knot iff there exists a
two order crystallization (T,7Y) of a minimal Seifert surface for K:

:“'*-’.*7&

Fig. 4.

A new problem arises naturally from the above results: the study of the rela-
tions between a crystallization of the complement of a knot or link L™ in sn+2
and a crystallization of a suitable Seifert surface for L. In particular, it would be
interesting to construct a graph-theoretical algorithm to obtain the latter crys-
tallization from the former one.
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4. MINIMAL SEIFERT SURFACES AND REGULAR GENUS.

If R is a ring and A is a finitely generated R-module, let rk(A) be the mini-
mum number of generators of A.

Reeently Bracho and Montejano ([BM]) have proved that rk (T1; (M)) < G(M)
for any closed connected n-manifold M (n > 3). Here this result will be used to
study some properties about minimal Seifert surfaces and their fundamental
groups. We also relate the regular genus of a knot to the one-dimensional homo-
logy of the universal abelian covering of its complement.

In order to make the following proposition clear, we need some definitions
listed in [L].

Let K™ be an n-dimensional knot in an (n+2)-sphere S"*2. By X =S"*2 _ K
we denote the complement of K in S™* 2. The universal abelian covering X of X
is the covering associated with the commutator subroup C = [G,G] of
G = I, (X). If A is the integral group ring of Z, then Hy (X) becomes a finitely
generated A-module. Similarly the rational homology of X, ie. H, (55 Q) =
=~ H, (X)® Q, is a finitely generated module over the rational group ring
A= A®, Qofthe integers.

Theorem 9.— With the above notation and for each n = 2, we have
DgK) > tk(H,(X;Q)  (as A-module)

2)g(K) = rk([C cl ®,Q)  (as A-module)
Proof.—
1) We recall the construction given in [L] (sec. 2.4) to obtain a presentation for
Hq (%; Q) (as K-module) by using an arbitrary Seifert surface ML C st of
K. Let Y be the (n+2)manifold obtained from snt+2 by cutting along M. Then
9Y consistsof two copies of M, say N; and N, identified along their boundaries.
Let (Yl, NI, N;) (i € Z) be a countable number of copies of (Y-K,N; -K,N,-K).
Then X is obtained as a quotient space of the disjoint union of the Y s by
identifying N2 with NIJ'1 foreveryi. If B (M) is the free abelian group image of

q(M)———Hq(M,Q) then choose a basis {dq} of Bq(M) and a dual basis {bp}

of By(S™% - M) = By(Y) (p =n+1 - q).

If iy i, : M—Y are defined by the identification of M with N, or N,, then

set (i2)x () = 2 A} b and (i1 )y (a') = = w b, Itis proved in [L] that the
square matrix Pg(t) = | '[/J.ij - 7\% I is a presentation matrix for the A-module

Hq(i ; Q), where t is the variable of the Laurent polynomials in A. As a direct
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consequence, we have rk(Hg X; Q) as X—module) < k(Bg(M)) < rk(H,(M) as
Z-module). For q = 1 and n 2> 2, it follows that rk(H,(M) as Z-module) <
< rk(T; (M)) = rk(IT; (M) < G(M) = G(M) (use the above mentioned result of
[BM] and proposition 2. sec. 2). B

Thus g(K) = G(M) > rk(H,(X; Q) as X—module), whenever M is an arbitrary
minimal Seifert surface for K.
2) It is an easy corollary of 1) and of the A-isomorphism H, (3\() o~
in [R] p. 174. ’

given

Remark.— The equalities are not generally true in the statement of theorem 9.—;
In fact, for each n > 3, there exist non trivial knots K® in S"*2 with infinite
cyclic knot group M,(S™2 — K) =~ Z (see [R]). Thus I, (X) = H,(X) =
=H,(X;Q) =0 but g(K)>0.

Proposition 10,— Let L™ bean n-dimensional link in an (n+2)-sphere S"*2(n>2).
If g(L) =1, then the fundamental group of each minimal Seifert surface for L is
cyclic. In general, if g(L) = k, then the fundamental group of each minimal Sei-
fert surface for L is a quotient of the free group on h generators for some
h<k.

Proof.— Let M™*1 C S"*2 be an arbitrary minimal Seifert surface for L. Then
we have k = G(M) = G(M) > rk(1I, (M)) = rk(1I, (M)) as required.

Proposition 11.— Let K" (n > 2) be an n-dimensional knot in an (n+2)-sphere.
If g(K)=1and 11, (Sn+2 — K) is not infinite cyclic, then the fundamental group
of each minimal Seifert surface for K is non-trivial cyclic.

Proof.— Let M™*! C $™*2 be an arbitrary minimal Seifert surface for K. By pro-
position 10, the fundamental group TI; (M) is cyclic. Since I1,(M) =0 implies
that T1;(S™2 — K) ~ Z (see [F]). the proof is completed.

Proposition 12.— Let L* C S* be a 2-dimensional link with h components and
let M® C S* be a minimal Seifert surface for L. If g/L) =1, then M is homeomor-
phic to the connected sum # hB3# N, N being a lens space (different from S® ).

Proof.— If M is minimal, then G(M) = G(M) = g(L) = 1 (see proposition 2 sec. 2).
Thus M is homeomorphic to a lens space N (S? x S! is included among lens
spaces) as it is a closed orientable 3-manifold with Heegaard genus one, whence
M~ #hB*# N (where N cannot be homeomorphic to S$?).



240 Alberto Cavicchioli

Proposition 13.— Let L3 C S° be a 3-dimensional link with h components and
let M* C S° be a minimal Seifert surface for K. If g{L) = 1, then M is homeo-
morphic to #hB* #(S® x 8').

Proof.— If M is minimal, then we have G(M) = G(M) = g(L) = 1. The relation
G(M) = 1 implies that M is homeomorphic to S* x S' since the unique closed
orientable 4-manifold with regular genus one is S*> x S* (the proof will appear in
[C]); therefore the statement follows.

The last two propositons allow us to determine the topological structure of
a minimal Seifert surface for a low-dimensional link L by starting from the re-
gular genus of L. This fact suggests to study analogous relations in higher dimen-
sions.

5. CONNECTED SUMS.

Let M; (i = 1,2) be a connected n-manifold with h; boundary components
ajMi (G =1,2,....h). The boundary connected sum of M; and M, with respect
to 9. M, and O M,, written M; #a(r,s) M,, is the n-manifold obtained by identi-
fying two standard (n—1)balls B, and B, contained in M, and 0 ,M, respecti-
vely (also see [R]).

Given two (n+1)-coloured graphs (I';,7;), (I'2,72) with boundary and two
boundary vertices P, € V(I';), P, € V(I'y), we define the boundary connected
sum of "y and T, with respect to P, and P, as the (n+1)-coloured graph with
boundary (T, #B(Pl,Pg) I, #a'y) obtained by deleting P, and P, from I'; and
I, and pasting together the pairs of free edges (the ones that had an end-point
in the deleted vertices) with the same colour.

If (I},7;) is a crystallization of M; (i = 1,2), then let 9, I"; (resp. 9,I';) be the
connected component of aI'y (resp. oT';) representing 8, M; (resp. d,M, ). By
construction, it is easily seen that a crystallization of the boundary connected
sum M, #a(r’s) M, is given by the boundary connected sum of (I';,7;) and
(T5,7,) with respect two arbitrarly chosen boundary vertices P; e V(9,I';) and
P, € V(3,T',).

If LT (i = 1,2) is an n-dimensional link with hj components L, - vLi,hi>

let LT #, L7 be the connected sum of LY and L} with respect to Ly ;and L, q.

Theorem 14.— With the above notation, the regular genus of links is subadditive,
i.e., foreachrs, we have

gLy # (L3) < gL}) + g(L})
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Proof.— Let M; (i = 1,2) be a minimal Seifert surface for L; and let (I';,7;) be a
crystallization of M; such that p(I'}) = G(M;) = g(L{") and NI'#) =h;. We write
o,M, (resp. 9M,) for the component of M, (resp. M, ) that coincides with
Ly, (resp. L, ) and let 9,I"; (resp. 9sI';) be the component of I'y (resp. I';)
representing 9, M, (resp. d,M;). The (n+1)-manifold M, #a( 18) M, isa Seifert
surface for Ln # , L3 (for each pair r,s) and (I'; # AP ,P,) [y, #3y)isa crys-
tallization of M, #8(r sy Mz, where P, € V(3,T';) and P; € V(3 Fz) Let F{
(i = 1,2) be the orientable bordered surface, with genus p(I'¥) and h; holes, in
which T# regularly imbeds with respect to a cyclic permutation
€ = (e, €1,....6y ntl)of Ap,q. Therefore (I’ #a(Pl,Pg) I';)* admits a re-
gular imbedding, associated with the same €, into the orientable bordered
surface F¢ #B(r,s) F$ with genus p(I'¥) + p(I'$) and h, +h, — 1 holes. Thus we

have g(LY #, | LE) < GOM, #5, o) M)< p(Ts #5gp, p,) T2)*) = &(TF) +
+p(T'%)=GM,;) + G(M;) =g(L,) + g(L,) (for each r,s) as requested.

Remark.— The regular genus of one-dimensional polygonal links is additive as it
coincides with the usual genus (see [R]). In higher dimensions, we do not know
whether such a result holds too. Nevertheless it would be interesting (if it is
possible) to prove at least the weaker inequalities g(K{') < g(KT # K}),i=1,2,
for n-dimensional knots (n = 2) becouse this fact implies the non cancellation
theorem in higher dimensions (see [R] for the one-dimensional case), i.e. if
K% # K72 is a trivial knot, then both K; and K, are trivial knots.
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