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ABSTRACT

A global existence and uniqueness result of the solution for multidimensional, time
dependent, stochastic differential equationsdriven by afractional Brownian motion
with Hurst parameter H>1 is proved. It isshown, also, that the solution has finite
moments. Theresult is based on a deterministic existence and uniqueness theorem
whose proof uses a contraction principle and a priori estimates.

1. Introduction

Let B = {B:,t > 0} be a fractional Brownian motion (fBm) of Hurst parameter
H € (0,1). That is, B is a centered Gaussian process with the covariance function
(see [16])

1
Ru(s,t) = 5 <t2H +s2H - S\QH) . (1.1)

Notice that if H = %, the process B is a standard Brownian motion, but if H # %,
it does not have independent increments. From (1.1) it follows that E|B; — Bs|? =
[t — s|?. As a consequence, the process B has a—Holder continuous paths for all
ac(0,H).
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56 NUALART AND RASCANU

The definition of stochastic integrals with respect to the fractional Brownian mo-
tion has been investigated by several authors (see, for instance, [1], [2], [6], [7], [8],
13)).

In the case H > 1/2 one can use a pathwise approach to define integrals with
respect to the fractional Brownian motion. In fact, if {u;,t > 0} is a stochastic process
whose trajectories are A-Holder continuous with A > 1 — H, then the Riemann-Stieltjes
integral fOT usdBg exists for each trajectory, due to the results by Young [21]. More
refined results have been obtained in [3] by Ciesielski, Kerkyacharian and Roynette
(see also [18]) for processes u with trajectories in the Besov space B;EH , where % <
H<1- %. The fractional Brownian motion has trajectories in the Besov space Bgoo,
and the following inequality holds:

/ UtdBt
0

In [22] and [23] Z&hle has defined pathwise integrals fOT utd By for processes with paths
in the fractional Sobolev type space Ié;ﬁ (L%(0,T)). The indefinite integral fg usdBs
is a continuous process provided that, in addition, u is bounded.

In this paper we are interested in multidimensional stochastic differential equations
of the form

<C -u ||B .
oy = Ol ey 1Bl

t t
X = Xo —l—/ o (s,Xs)dBs + / b(s, Xs)ds, (1.2)
0 0

where B is a fBm with Hurst parameter H > 1/2, and the integral with respect to B
is a pathwise Riemann-Stieltjes integral. This kind of equation has been studied by
several authors ([10], [12], [13], [14], [19]).

In [14], Lyons considered integral equations

mo .t
Ty =z + 2/ o’ (zs)dg?,
j=1"0

0 <t < T, where the ¢ are continuous functions with bounded p-variation on [0, T
for some p € [1,2). This equation has a unique solution in the space of continuous
functions of bounded p-variation if each g/ has a Holder continuous derivative of order
a > p—1. Taking into account that the fBm of Hurst parameter H has locally bounded
p-variation for p > 1/H, the result proved in [14] can be applied to equations driven by
a fBm provided the nonlinear coefficient has a Holder continuous derivative of order
a > 1/H — 1. Using this approach based on the notion of p-variation and the general
limit theorem proved by Lyons in [15] for differential equations driven by geometric
rough paths, Coutin and Qian [5], [4] have established the existence of strong solutions
and a Wong-Zakai type approximation limit for stochastic differential equations driven
by a fractional Brownian motion with parameter H > 1/4.

In [19] Ruzmaikina establishes an existence-uniqueness theorem for ordinary dif-
ferential equations with Holder continuous forcing. The global solution is constructed,
first, in small time intervals where the contraction principle can be applied, provided
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the Holder constant is small enough. The integral fOT fdg is defined in the sense of
Young [21], assuming that the functions f and g are Holder continuous of orders 3
and -y, respectively, with § 4+ v > 1. This result is applied to stochastic differential
equations driven by a fractional Brownian motion with parameter H > 1/2.

In [23] the existence and uniqueness of solutions is proved for differential equations
driven by a fractional Brownian motion with parameter H > 1/2, in a small random
interval, provided the diffusion coefficient is a contraction in the space Wzﬂ o Where
1/2 < B < H. Here Wzﬁ ~ denotes the Besov-type space of bounded measurable
functions f : [0,7] — R such that

T Tft—f32
/O/O%dsdt<oo.

|t '

In this paper we follow the approach of Zéhle, and we present a general result
on the existence and uniqueness of solution for multidimensional, time dependent,
stochastic differential equations driven by a fractional Brownian motion with Hurst
parameter H > 1/2. This result is based on a deterministic existence and uniqueness
theorem whose proof uses a contraction principle. Our result is global and based on a
priori estimate.

The organization of the paper is as follows. In Section 2 we state our main result.
Section 3 contains some basic facts about fractional integrals and derivatives. The
extended Stieltjes integral that we use is defined in Section 4, which also provides the
basic estimates in Lemma 4.1. Section 5 contains the deterministic result, and, finally,
in Section 6 we derive the existence and uniqueness result for stochastic differential
equations driven by a fractional Brownian motion with Hurst parameter H > 1/2.

2. Main result

Let 3 < H <1,1—H < a< 3 and d € N*. Denote by W;">(0,T; R?) the space of
measurable functions f : [0, 7] — R? such that

— w OO
11l a0 = s <\f(t)|+/0 PG d)< .

For any 0 < A < 1, denote by C* (0, T; Rd) the space of A-Holder continuous functions
f:[0,T] — RY, equipped with the norm

f
Il = flle + sup <00,
0<s<t<T  (t— )

where ||f||, := sup |f(t)]. We have, for all 0 < e < «
te[0,T]

CoT=(0, T;RY) € W§*°(0,T;RY) € C*~¢(0, T; RY).
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Consider the equation on R4
t .
Xi=X+ Z / ) dB] + / b(s. Xds, € [0.T],  (23)

i =1,...,d, where the processes B7, j = 1,....,m are independent fractional Brownian
motions with Hurst parameter H defined in a complete probability space (2, F,P), X

is a d-dimensional random variable, and the coefficients 0%, b’ : 2 x [0, T] x R?—R are
b= (bl) and for a matrix A = (a"’j)de

d><m ? dx1
and a vector y = (y') ., denote |A]? = > ‘ai’jf and |y|* = Do ‘y’f

Let us consider the following assumptions on the coefficients, which are supposed
to hold for P-almost all w € €. The constants My, Ly, Ko and the function by may
depend on w.

measurable functions. Set o = (a"’j )

(Hy) o(t,x) is differentiable in z, and there exist some constants 0 < 3,6 < 1 and for
every N > 0 there exists My > 0 such that the following properties hold:

i) Lipschitz continuity
lo(t,z) —o(t,y)| < Molz —y|, VYzeR4 Vte[0,T]
i1) Local Holder continuity
|0z, 0(t, ) — Oy, 0(t, y)| < My|z —yl°,

Vx|, |yl < N, Vte[0,T],
iii) Holder continuity in time

’O’(t7$) - U(S7$)’ + |8x10'(t,$) - axiO'(S,(L'” < MO’t - S’ﬁ

L Vo eRY YVt s€[0,T)

for each i =1, ...,d.

(H3) There exists by € L (O,T;Rd), where p > 2, and for every N > 0 there exists
Ly > 0 such that the following properties hold:

i) Local Lipschitz continuity
() [b(t,2) = b(t, y)| < Ln|z —yl, Vx|, [y] < N, Vt €[0,T],
b)

i1) Boundedness

b(t, )| < Lo|z| +bo (t), Yz € R, Vt € [0,T].
(Hs3) There exist v € [0, 1] and Ky > 0 such that

lo(t,x)| < Ko (1+ |z|”), Vo € RY, Wt € [0,T]. (2.4)

a(]:min{ ”8714-6}



Differential equations driven by fractional Brownian motion 59

The main result of our paper is the following theorem on the existence and unique-
ness of a solution for the stochastic differential equation (2.3).

Theorem 2.1

Suppose that Xy is an R%-valued random variable, the coefficients o(t,x) and
b(t, ) satisfy assumptions (H,) and (Hs) with 8 >1—H, § > £ — 1. Then

I Ifae(l—H,ap) and p > 1/a, then there exists a unique stochastic process X €
LO(Q, F,P; Wy (0, T;R%)) solution of the stochastic equation (2.3) and, moreover,
for P-almost all w € ()

X ()= (X"(w,),,, €C(0,T;RY).

II. Moreover, if « € (1—H,ag AN (2—7)/4), p > 1/a, Xo € L™ (Q,]—",IP’;]Rd), the
assumption (Hs) is satisfied and the constants My, Ly, Ko and the function by are
independent of w, then the solution X satisfies

E|X|[} s <00, Vp>1.

3. Fractional integrals and derivatives

Let a,b € R, a < b. Denote by L? (a,b), p > 1, the usual space of Lebesgue measurable
functions f : [a,b] — R for which |[f|| s, s < oo, where

1/p

b
_ /!f(x)\”dw , 1< p<oo
llres =4\,

ess sup{|f ()| :z € [a,b]}, if p=o0.

Let f € L' (a,b) and o > 0. The left-sided and right-sided fractional Riemann-
Liouville integrals of f of order a are defined for almost all = € (a,b) by

2@ = | @) f () dy

and

1\« b
e =5 /<y—x>“ L)y,

respectively, where (—1)"% = e~ and T (a) = [, r* e "dr is the Euler function.
Let IO‘ " (LP) (resp. Iy* (LP)) the image of Lp(a b) by the operator I, (resp. I ). If
fely (LP) (resp. f eIy (LP)) and 0 < o < 1 then the Weyl derivative

D3+f(fv)zr(11_a)<x_a o [ 1P >1<a,b><x> (35)



60 NUALART AND RASCANU

<resp g f (@ >=F((]—1_)

><< / G a+1 )1(a,b)($)> (3.6)

is defined for almost all x € (a,b) (the convergence of the integrals at the singularity
y = z holds pointwise for almost all z € (a,b) if p = 1 and moreover in LP-sense if
1<p< ).

Recall from [20] that we have:

. Ifoz<%andq:1p
IZ (LP) = Iy (LP) C L9 (a,b).
o If @ > J then
I (LP) U I (LP) € VP (a,b).
The following inversion formulas hold:
1o (Deyf) = Vfelg, (L7)

and
Dy, (Ig f)=f, VfeL'(ab),

and the same statements are true for (I* , D" ).

4. Generalized Stieltjes integrals

4.1. Definition of generalized Stieltjes integrals

Following [22] we can give the definition of the generalized Stieltjes integral (frac-
tional integral) of f with respect to g. Let f(a+) = lim~o f(a+¢), g(b—) =
lim.\ o g (b — €) (supposing that the limits exist and are finite) and define

far (@) = (f () = f (a+)) Liap) (@),
g (2) = (g (z) — g (b)) Liap) ().

DEFINITION 4.1 (Generalized Stieltjes Integral). Suppose that f and g are functions
such that f(a+), g(a+) and g(b—) exist, for € I2, (LP) and g,— € I, ~* (L?) for some
p,q>1,1/p+1/qg<1,0< a< 1. Then the integral of f with respect to g is defined
by

| #dg= (- / D2, fuy () DY=g,_ (v) da
+ f(a+) (g (b—=) — g (a+)). (4.7)
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Remark 4.1. If ap < 1, under the assumptions of the preceding definition we have
fely (LP) and (4.7) can be rewritten as

b b
/ fdg = (—1)° / D2, f () D:=%g,_ (x) du, (48)

which is determined for general functions f € I, (LP) and gy— € I,~ (L9).

Remark 4.2. If f € C*(a,b) and g € C*(a,b) with A + p > 1, it is proved in [22]
that the conditions of the above definition and remark are fulfilled and we may choose
p=q=o00and a < A\, 1 —a < u. Moreover the integral f; fdg coincides with the
Riemann-Stieltjes integral.

The linear spaces I, (L”) are Banach spaces with respect to the norms

1A lle oy = Ifll o + 1D Fll o ~ DGl o

and the same is true for I;* (L?). If 0 < av < 1/p then the norms of the spaces I, (L)
and I;* (LP) are equivalent, and for a < ¢ < d < b the restriction of f € I, (L? (a,b))
to (c,d) belongs to I, (L (c,d)) and the continuation of f € I2, (L” (c,d)) by zero
beyond (c,d) belongs to I, (L” (a,b)). As a consequence, if f € I, (LP) and gy €
Il}:“ (L9) then the integral fab L(c,a)fdg in the sense of (4.8) exists forany a <c < d <b
and we have

/c " g = / o Fdo, (4.9)

whenever the left-hand side is determined in the sense of (4.8).
Fix a parameter 0 < a < 1/2. Denote by W~ “>°(0,T) the space of measurable
functions g : [0,7] — R such that

t) —g(s ! A
19011 ooz = suD (W*/ %d‘”)m'

0<s<t<T

Clearly,
Cl=ote(0,T) € Wy ™0, T) € C1=2(0,T), Ve > 0.

Moreover, if g belongs to W%_a’oo(O,T), its restriction to (0,t) belongs to
I}=*(L>(0,t)) for all ¢ and

1
D2,
T =) o S0, [ (Pi="0) (5)]

1
< ———— < 0.
- F(l _ OZ)F(O[) ”g”lfa,oo,T 0

Au(g) =

We also denote by W' ’1(0, T') the space of measurable functions f on [0, 7] such that

Y VO R L A VO ()] P
IIfIIM._/0 = d+/0/0 oyt W ds < oo

The restriction of f € W (0,T) to (0,t) belongs to I, (LY(0,t)) for all ¢.
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Notice that if f is a function in the space W¢'(0,T), and g belongs to
W} ~*(0,T), then the integral fo fdg exists for all t € [0,T] and by (4.9) we have

/fdQZ/ f10,ndg,
0 0

which implies the additivity of the indefinite integral. Furthermore the following esti-
mate holds

t
] / fdg‘ <A@ Il

Indeed, by the definition (4.8) we can write

[ rda =0 [ (08,0 () (D) (5) s
0 0

Hence,

‘/Otfdg' < sup {(Diagt_)(s)\/ot\(Dngf) (s)| ds

0<s<t

< Aa(9) [fllan - (4.10)

In the next section we will derive more precise estimates for this indefinite integral.

4.2 A priori estimates

Fix 0 < a < 3. Given two functions g € W}~ “%°(0,T) and f € W' (0,T) we denote

:/Otfdg.

The following proposition provides the basic estimate for iterative calculus in the Ba-
nach fixed point theorem applied to the differential equations considered in this paper.

Proposition 4.1

L Let g € W} “°°(0,T) and f € W' (0,T). Then for all s < t, the following
estimates

L(1f)] ") - fW)l
‘Gt (f)_Gs (f)’ SAa(g)/S <W+O¢L Wdy) dr (411)

and

|Gt ’_{_/’Gt_ ()‘dS<A()(1)

a+1

x/o ((t— )2 <|f |+/ Lrr) = Pl a+1 )dT, (4.12)
hold.

IL If f € W5"™°(0,T) then G. (f) € C'*=*(0,T) and
1G () —a < Aal@)eh N1 o - (4.13)

The constants c(oi)T, i € {1,2} depend, only, on o and T.
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Proof. 1. Using the additivity property of the indefinite integral and Definition (4.8)
we obtain

G (f) = Gs (f)| =

fdg‘

) (Dy=%ge—) (1) dr

= Aa(g) ( / (if / / ’f aﬂ dyd7~> ;
which implies (4.11).
Multiplying (4.11) by (t — s)~®~! and integrating in s yields
t G G f t ol
/O‘t())+1()d8<A()/(t—8) 1

(t
(/s lf—s dr+ // ’fr_ Jotl dydr)ci. (4.14)

By the substitution s = r — (t — r)y we have

r r/(t=r)
/ (t—8)"*"Hr—s)"%ds = (t —r) 2 / (14y) * ty~dy, (4.15)
0 0
and, on the other hand,
y
/ (t—s)*Mds=a ' [t—y) =t <al(t—y)" . (4.16)
0

Substituting (4.15) and (4.16) into (4.14) yields
\Gt Gs (f)] (1)/ £ ()]
< L N
/ et ds < Au(9) = ’I”) dr

// 'fT_ a+1 it —y)_“dydr], (4.17)

) = / (1+y) 'y *dy =B(2a,1-a)
0

_T@r@) _ [y e [Tt
PO = g = [, P00 [

where

and

is the Beta function.
From (4.11) we can derive the following estimate

|G (f)] < Auf (/ f(r) d +a /t /07’ Wdydr) . (4.18)
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From (4.17) and (4.18) we obtain (4.12) with CS)T = max(c&l), 1) + T, since
a+({t—y) *<T (r*+(t- y)fza) )

Observe that

)< TOt
CT_oz(l—oz)jL )

II. From (4.18) we obtain

-«

164 (e < Aale) (= + 0T ) Il -

—

The relation (4.11) implies, for each s < t,

t
1 —
[ o] < Aat) 2 max(1, a7 = 9

and the indefinite integral fg fdg is Holder continuous of order 1 — a. Hence, the
inequality (4.13) holds with

2 Tlfoz
Ca,T - 1—a

1
+aoT + T—a max{1l,aT*}. O
-«

Recall that the space W™ (0, T; Rd) is a Banach space with respect to the norm

. SOOI
I i= sup. (!f(t)l + / T ) -

and for A > 0 a equivalent norm is defined by

o U - £,
Il = s e (1rol+ [ O ai)

te[0,T

Let 0 < a < i, fe We™ (0,T;R?) and g € Wy~ *>°(0,T;R™). Define

(U) = tO' S S
G <f>—/0 (s, 1(5)) dgs,

where o0 = (07) [0, T] x RY — R>™ = £ (R™,R?) satisfy the assumptions (H)

with constant 3 > a.

Proposition 4.2
If f € Ws°°(0,T; R?) then

G (f) e C'7 (0, T;R?Y) € W>(0,T;RY)
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Moreover for all f € W*°(0,T; R?) :

) 60|, <A@ (14 1fllane)

11—«
Aqa(g)C®)

Ve 0] =25 (14 1) (4.19)

A

for all A > 1, where the constants C®) and C'®) are independent of \, f, g (they depend
on T, the dimensions d, m, and the constants |c(0,0)|, Mo, «, 5 from (Hy)).
If f,h € Wg>°(0,T;R?) are such that || f| .. <N, ||hll,, <N, then

o)
_ Aal9)OY

e - m| | <=5

T+ A+ AW = hllg (4.20)

for all A > 1, where
A(f)= sup /T |fr—7fsf1 ds, (4.21)
rejo,r) Jo (1 —8)~
and the constants C](\‘,l) are independent of A\, f, h, g. (C](\?) depends on T', the dimensions
d,m, and the constants from (Hy)).

Proof. In order to simplify the presentation of the proof we assume d = m = 1. First
we remark that if f € W°°(0,T), then o (,f) € Wy"(0,T) since

o syl + [T =0 TONI

_ )a+1

a+1 ’

< C+ My |f(r |+M/’f7)<3>‘ds

and then
HO ('7 f)”a,oo < C+ My Hf”a,oo

with €' = My (T7 + 552 ) +10(0,0)|. Hence G2) (f) € €'~ (0, T).. Clearly, by (4.13)
the inequality (4.19—J) holds with C'?) = 0512)’[ (C + Myp). From (4.12) we obtain

6 )], = Ay smp > [ (=)
0

aA " tefo,T)

(it [T 1),

(r —s)atl

t
< Au(9) S)T sup e )‘t/ ((t—r)_2°‘+r_a)
t€[0,7) 0

<C’+Mo|f |+M/%ds>dr

gAa(g)cS)T/\%‘ leo sup e
’ rel0,T]

<C+Moyf +M/%ds>
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because
t t
/ e M) (=) 72 47 ) dr = / e M (27 + (t—2)"Y ) da
0 0

1 At
= X/ e Y ()\2O‘y_2a + ¥\t — y)_o‘) dy
0

< N2l (/ e Yy 2%y + sup/ e Y(z— y)ady>
0 z2>0J0

2a—1
=A Cor-

Hence (4.19-jj) holds. Remark that ¢, < 1_1 - :
Let f,h € W3 (0,T) be such that | f||., <N, ||h]|,, < N. We can write using
(4.12)

|¢@ () =@ m)

A
< Aol s @ {72507 (Jo 0 0) o )
"o (r f(r)) —o (s, f(s)) —o (r,h(r)) + o (s, h(s)) |
+ /0 r — 5o+ ds) }dr
< Aa(g)cs)T)\Qa_lca sup e_M{MO |f(r) — h(r)]
7’6[0 T]
o (r, f(r)) —o (s, f(s)) — o (r,h(r) + o (s, h(s))
/ (r—s)ott ds}.

By Lemma 7.1 we obtain
o (r, f(r) = (5. £(5)) = 0 (r,h(r)) + 0 (s, (s))]
< Molf(r) = f(s) = h(r) + h(s)| + Mol (r) = h(r)|(r — 5)°
+ Myl f(r) = b0 (1F0) = £ + h(r) = h(5)I°)

Hence

/WUWJW»0@J$DUUﬁ@D+U@W@D\®

(r—s)otl
<M/ ) T_Sa+l>+h< al
+——U() h(r)r®=

—Q

|f(r) = f(s)I° |h(r) = h(s)|®
+MN’f (/ ?”—SO‘Jrl d+/ 7“—80‘+1 ds | .

Making use of the notation (4.21) we obtain

HG(") (f) — G (h)H < Aa(g)CYN A+ A + AR IF — Bl

A

with C’](\?) = C(l)TCa (1 + 7[;6_7:) (Mo + My) . O
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Finally, we shall give similar estimates on the ordinary Lebesgue integrals

— [ s and FO (5= [ bls s ds.
0

0
Proposition 4.3
Let 0 < a < i and f:[0,T] — R? be a measurable function.

t
If sup |f(s >a‘ ds < oo (in particular if ||f|| . < oo) then F. (f) € W3 (0, T;R?
(t s) oo 0

t€[0,7]
and
|Fy (f \+/ |Ft - a+1 (4.22)
If f € Wg>°(0, T;RY) then F. (f) € 01 (0, T;RY),
t

F (f) - Fu (f)] = / fdr| < (t - )|l - (4.23)
and _

1E (g0 = ; fds <Chrlflls- (4.24)

Proof. I. We have

IFy (f +/’Ftt_s>a+§ ds </ (s |ds—|—/ (t—s)~ (/ 1f(r |d7~> ds
< [enas+t [@=n roar

t
< Cur / (t=r)" |f]dr,
0

[e%

and hence (4.22), (4.23), (4.24) hold with Cor =T* + 1 and Cor= gCQ,T. O

Proposition 4.4

Assume that b () 5y 2 [0,T] x R* — R satisfies the assumptions (Ho)

with constant p = If f € W™ (0,T;R?) then F-(b) = fo ) ds €

Cl-« (0, T; Rd) and

RI= |

V|FO 0, <dVa+is),

) [P0 < 1 (1411 (4.25)

a,A

for all X\ > 1, where d9 i € {1,2} are positive constants depending only on «,T, L,
and Boﬂ = HbUHLl/ﬂ .

If f,h € WS™°(0,T;RY) are such that ||f||., <N, ||h|, <N, then

< XN =l (4.26)

for all A > 1, where dy = Co, 7 LNT' (1 — a) depends on o, T and Ly from (H3).

| =0
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Proof. In order to simplify the presentation of the proof we assume d = 1. Let f €
W0, T). Then for 0 <s<t<T:

IEY (f) —F® ()] < / |b(r, ()] dr < / (Lo |f(r)| +bo (r)) dr
< Lo(t— ) [ fllo+ (t— ) ( [ o dr)
< (LoT® || fllo + Bow) (t — )™,

where By o := ||bol| 1/« As a consequence F'®) (f) € C1~%(0,T) and the inequality
(4.25-j) holds with dV) = (Lo T* + Bo,o) (1 +T17%).
By (4.22) we have:

t) () _ ()
’Ft(b)(f)‘+/0 ‘Ft ((tfz Fs (f)’ds

s)atl
"[b(s, £(s))]
< Cur | G2

"(Lo|f(s)] + bo(s))
SCQ,T/O 0 (t—s)o‘o ds

Clfs)] !
< Cor |Lo / _ds+ < / (t —5)~/ (=) ds) Bo | (4.27)
o (t—3) 0
Hence
t
F(b) f S Ca L sup e—)\t/ ‘f(s)’a ds
H () A o Ote[o,T} o (t—39)

1—a 11—«
+Cor ( ) By, sup e Ml —2a
1 -2« te[0,T]

< Cor LoA* " 'T(1 — @) sup e **|f(s)]
s€[0,T

+Cor (1 -22) % (1 —a)'"e?* 1By A2t
< N2 (14 f],)

for all A > 1, that is (4.25-jv) with
d? = Cor |[LoT(1 — @) + (1 —20) " (1 - a)lf‘)‘eQa*lBO,a} .

Let f,h € W™ (0,T) be such that ||f||., <N, ||h]l, < N. Since

FV(f) - E” (h) = / (b(s, f(5)) — bls, h(s))) ds
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then by (4.22), we have

|F© () =F" (g)

< Cqr1 sup e / [b(s, f(5)) — 0(;9 (s )|ds

oA te[0,T) (t—s)
h

<CorLn sup e~ |f 5) ~ (gs
t€[0,T (t—s)

< CorLn|f— hHa,)\ XTI (1 - )

1
= IS = Bl -
where dN == Ca,T LNF (1 - a) .4

Remark 4.3. If Ly = Lo, VN > 0 then, in Proposition 4.4 the constant dy is inde-
pendent of N. Similarly, if My = My, VN > 0 then, in Proposition 4.2 the constant
C](\;l) is independent of V.

5. Deterministic differential equations

Let 0 < a < 1/2 be fixed. Let g € Wy “™(0,T;R™). Consider the deterministic
differential equation on R¢

t m t
ri=aht [ Vemgas+ Y [0V aydg tep T (29
j=1

i=1,...,d, where xg € R%, and the coefficients o7, b’ : [0, T] x R¢—R are measurable
functions satisfying the assumptions (H;) and (Hsz), respectively with p = 1/a, 0 <
3,6 <1 and

O<a<a0:min{ ,B,1+5}

Then we can state the main result of this section.

Theorem 5.1

Equation (5.28) has a unique solution z € W>°(0, T; R?). Moreover the solution
is (1 — a)-Hélder continuous.

Proof. First we remark that if x € W™ (O,T;Rd) is a solution of Equation (5.28),
then x € 1~ (0,T;R?Y). Indeed, for all u € Wg"* (0,T;R?) we have G{7) (u) €
C'= (0,T;R?) by Proposition 4.2 and FO) (y) e Ct— (0, T;R%) by Proposition 4.4.
Hence,

x=x0+F® (2) + G () € O~ (0,T;RY).

Uniqueness. Let x and Z be two solutions and choose N such that |z||,_, < N, and
llz]l,_, < N. Then

Ty = xo + Ft(b) (x) + GEU) (x) and 7y = zg + F(b) (Z) + G(U) (Z)
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and by Propositions 4.2 and 4.4 we have
= Flop < [FO (@) - FO @) +]|6 @) -6 @)
dn ~ 1 (4) ~ ~
< yi=a 1 = Zllap + 3755 8a(9)Cy" L+ A(2) + A (@) |z = 2o 5

)\1—2a @
for all A > 1, where

A

"l — 3l z

~ U — T
A A(z) = ——— d d
O+ a0 = mp || G e e [

rel0,T] rel0,T]
T _ (1—04)6
< 2N sup / % ds
refo,r)Jo (1 —8)*t
T&—a(l—i—&)
=2N———— = Cyp.
s—a(l+e6) N

If we put A sufficiently large such that

dn 1

1
4
Mt mAa(g)C( IOy < 3

then we obtain .
3 |z =2, <0,

and as a consequence T = .

Existence. We shall prove the existence of the solution by a fixed point argument in
Wy (0, T;RY) using Lemma 7.2.

Consider the operator £ : Wi (0,T;R%) — C'~* (0, T;R?) ¢ W™ (0, T; R?)
defined by

x=L(u) =g —I—/ b(s,us)ds —i—/ o (s,us)dgs
0 0
=z0+ F® (u) + G ().
By Propositions 4.2 and 4.4 we have for all A > 1:

1£ ()]0 n < o] + [ F® ()

o P60

A

d® 1
< fool + 31z (1+ lullon ) + 5255 Aa(e)C® (14 lul ) -

Let A = A\g be sufficiently large such that

)\15204 (d(4) + Aa(Q)C(B)) <

0

1
5"

If flull, n, <21+ |zol), then [[£ (u)ll, 5, <2(1+ |zo|) and hence

L (Bo) C By
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where By = {u € Wo"™(0, T5RY) : [ul|,,, <2(1+ \xo\)} Hence condition i) of

Lemma 7.2 is fulfilled with By the ball centered at the origin of radius ro = 2 (1 + |z¢])

with respect to the metric py associated to the norm ||-||
Remark that for all u € By

Ao’

[l 00 <2 (1 + |zol) 7. (5.29)

Once again, from Propositions 4.2 and 4.4 we have for all u,v € By D L (By) and
forall A\ >1:

1€ (w) = L),

< HF(b) (u) — F® (v) R + HG(") (u) — G@) (U)H R
d 1
< i o= vl + 5773 Ba(9)OR) (14 A () + A ) u— o]
C
S L R YORNC)I R (5.30)

where C1 = dn, + Aa(g)C](ég and

" uy — USP
A(u) = sup / —— ds.
() ref0,7] Jo (r—s)ott

Clearly A : W5°°(0,T;R?) — [0, +00] is a lower semicontinuous function since the
convergence in W;">°(0,T;R?) implies the uniform convergence.

If w € £L(By) then there exists & € By such that u = £ (u) € C*~ (0,T;R?).
Then from Propositions 4.2 and 4.4 and using (5.29) we get

lully—q = 1€ @ o < ool + [FO @), + 6@ @]

< fool +d (1+ fJull) + Aa()C® (1+ Jull, o0 )

< |zo| + (d(l) + Aa(g)C(2)> (1+eT2(1 + |zo|) =: C.
As a consequence

A(u) = sup / L 5 ds
(u) rel0,7] Jo (r—s)ott

r o N\(1=a)s
< sup / Cali=s) 1 ds
ref0,71Jo (r—s)>
- @ _piear g 5.31
~ a0 1) = Ca. (5:31)

Therefore, from (5.30) and (5.31) condition ii) from Lemma 7.2 is satisfied for the
metric associated with the norm ||-||, ; and ¢ (u) = C1 (1/2 + A (u)).
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From (5.30) and (5.31) we have

C1 (14 2C
£ ()~ £ @)l < LEEZD g,

for all u,v € L (By). Let A = A\ be sufficiently large such that
C1 (1 + 204) < 1

)\1—2(1 — 2
Then 1
1£ () = L@)llan, < 5 llu =0l s Yu,v € L(Bo)

that is the condition iii) from Lemma 7.2 is satisfied. Hence there exists z € £ (By)
such that . '
x=L(x) —xo—f—/ b(s,a;s)ds—i—/ o (s,xs)dgs .
0 0
This completes the proof of the theorem. [J

Suppose now that the coefficient o satisfies assumption (Hs) from Section 2. In
that case we can derive a useful estimate on the solution as follows. Notice that (H;)
implies that the growth condition (2.4) holds for v = 1.

Proposition 5.1

Suppose that the coefficient o satisfies the assumptions of Theorem 5.1, and in
addition, assumption (Hsz) holds. Then, the solution x of Equation (5.28) satisfies

2] g,00 < Crexp (C2Aa(9)")

where )
—2a I 71:21
K= >11_72a if 1__531721
. — 2(x
T

and the constants Cy and Cs depend on T, «, 7, and the constants that appear in
conditions (Hy), (Hs) and (Hs).

Proof. We denote by C a generic positive constant, depending on T, «, -y, and the
constants that appear in assumptions (Hy), (Hz) and (Hs). Let xy = z¢ + Gig)(x) +
F®) (z). Using (4.18) we obtain

‘G(U) </ ’US$ ———ds +a// (5,25) = J(r:xT”drds)
(s —mr)™
1+ |zs|” Ty
<A, (g)< / ‘ ‘d +aM// s—raJF‘l drds

+ OéMotB atl >
(B-a)(B-a+1)

t s
-« —« “TS — Ly
S CAa(g) |:1 +/0 (3 ’(I?s”yds + s /(; m d’l“ dS .
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On the other hand, using (4.17) we can write

t (@) _ o) t
/ GI7@) = GO@ <C$) o (s, )
0

(t—s) o (= sy
o) o)l
e dd)’

which leads to

/t G\ (z) — GV ()]
0

(t — s)tt

< CAu(g) [1 +/Ot <(t—s)_2°‘|x5|7 bt —s)e /0 % dr> ds].

On the other hand, from (4.27) we get

ol [N oo fumten]

ds

Set

! |zt — @
hy = = _d
t |='L‘t’+/0 (t —s)otl s

Then the above estimates lead to the following inequality

he < C(1+ Aa(g)) {1—1—/{: [(t—s)_em—i—s_“] hsds] (5.32)

where the exponent () depends on the values of v, according to the following three
different cases:

i) If v =1 we take e(y) = 2a.

ii) If 1229 <y < 1, take e(y) > 1+ 20‘7—*1 Applying Holder inequality with ¢ =
e(v)y > 2a+ v — 1 we obtain

t t ) v t ) L=y
/ || (t — s)*2ads < (/ || (t — 3)76 Mds) (/ (t — 8)(*2a+5 )/(1w)d3)
0 0 0
t
<C (1 —|—/ |zs|(t — s)_g(w)ds) .
0

This allows to deduce (5.32) in this case.

iii) If 0 <y < 1222 take e(7) = a, and use the same argument as in the step ii).

The inequality (5.32) implies

t
he < C(1+ Aalg)) [1 + (1 - TSW)—”> / = (t — 5) "=V s==Mhds|
0
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As a consequence, the Gronwall-type Lemma 7.6 yields

< (14 Aa(9)) Cdaexp (caT (C (1 4+ Aa(g)) /1))

a,00 —

< C; exp ( CgAa(g)l/[lfa(W)]) )

]

which completes the proof. [

6. Stochastic integrals and equations with respect to the fractional
Brownian motion

Fix a parameter 1/2 < H < 1. Let B = {By,t € [0,T]} be a fractional Brownian
motion with parameter H defined in a complete probability space (2, F,P). Note
that (1.1) implies

E(1B — B,J?) = |t — 8|27,

and, as a consequence, for any p > 1,
1B — Byll, = (E(|B, — By|"))"/” = ¢, |t — 5| ™. (6.33)

By Lemma 7.5, proved in the Appendix, the random variable

1
G=——— su D{=*B;_) (s 6.34
I'(l-a) 0<5<£)<T}( ! ! )( )| ( )
has moments of all orders. As a consequence, if u = {us, ¢t € [0,T]} is a stochastic
process whose trajectories belong to the space W;"l(O,T), with 1 — H < a < 1/2,

the pathwise integral fOT usdB, exists in the sense of Definition 4.1 and we have the

estimate
T
/ usdBg
0

Moreover, if the trajectories of the process u belong to the space W;"*°(0,T'), then
the indefinite integral U; = f(f usdBs is Holder continuous of order 1 — «, and the
estimates (4.13) hold.

< Gllullg,y -

Proof of Theorem 2.1 The existence and uniqueness of a solution follows directly from
the deterministic Theorem 5.1. Moreover the solution is Holder continuous of order
1—a.

By condition (2.4) and Proposition 5.1 we obtain

||X||o¢,oo < Crexp (C2G H) )
where G is the random variable defined in (6.34). Hence, for all p > 1

E| X7, < CiEexp (pCaG™) < 00 (6.35)
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provided x < 2. This implies that (6.35) holds if v/4+1/2 <1 —-a < H. Ify=1
this means H > 3/4 and a < 1/4. O

7. Appendix

In this section we will recall some technical tools used in the paper and we will show
some technical lemmas that have been used in the proof of Theorem 5.1.

Lemma 7.1

Let 0 : [0,T] x R — R be a function satisfying assumption (Hy). Then for all
N >0 and |z1],|z2|,|z3|, |za] < N:

o (t1,21) — 0 (t2,02) — 0 (t1,73) + 0 (t2, 74)|

< My |xy — w9 — 23 + x4| + Mo |21 — 23| [t2 — t1|B
+ My |21 — x3] (]xl - x2]6 + |z5 — x4]6> )

Proof. By the mean value theorem we can write

- /Ol(xl — 23)0,0(t1, 01 + (1 — 0)23)do
_ /Ol(m — £4)040(t2, 02 + (1 — 0)a4)do
_ /O (01 — 0 — w3 + 20)000 (62,02 + (1 — O)z1)d
n /Ol(xl — 3) [0p0(t1, 021 + (1 — 0)x3) — Do (ta, 0o + (1 — 0)z4)] d6.

As a consequence, we obtain

lo (t1,21) — 0 (t2,2) — 0 (t1,23) + 0 (t2,74)]
< My |z1 — 9 — 3 + x4| + Mo |x1 — 23] |t2 *t1|ﬁ

8 8
+MN‘$1—$3‘<|:U1—.I2’ +|CC3—.T4’ )D
We present now a fixed point result used in the paper.

Lemma 7.2

Let (X, p) be a complete metric space and pg, p1, p2 some metrics on X equivalent
to p. If £L: X — X satisfies:

i) there exists 1o > 0, x¢g € X such that if By = {x € X : pg (zg,z) < ro} then

E(Bo) C Bo,
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ii) there exists ¢ : (X, p) — [0, +00] lower semicontinuous function and some positive
constants Cy, K such that denoting N,(a) = {z € X : p(x) < a}

a) L(Bo) C Ny(Co),
b) P1 (E(‘T)vﬁ(y)) SKOPI (.’L‘,y)7 vxaye Ncp(CO) OB(),

iii) there exists a € (0,1) such that

p2 (L(x),L(y)) <apz(z,y), Vz,y € L(By),

then there exists ©* € L (By) C X such that

Proof. Let
Tpy1 =L (zy), neN

Then x,, € L (By) and ¢ (x,) < Cp, for all n € N*. Also
P2 (Tnt1,%n) = p2 (L (%n) , L (Tn-1)) < apz (Tn, Tn-1) < ... < a”p2 (21, 20)

which yields

n

P2 (xn-i-pv Tp) <

ST (x1,29) — 0, as n — oo.

Since (X, p) is a complete metric space and By is closed in X, then there exists z* €
By such that x, — x* and, moreover, by the lower semicontinuous property of ¢,
¢ (z*) < Cp. From ii-b) we have

p1(L(zn), L (")) < Ko p1 (Tn, ") — 0.
Hence £ (z,) — L (z*) and z* = L (z*). O

The following lemma is the so-called Garsia-Rademich-Rumsey inequality (see [9]):

Lemma 7.3

Let p > 1, and a > p~t. Then there exists a constant C,, , > 0 such that for any
continuous function f on [0,T], and for all t,s € [0,T] one has:

PO~ FEP < Cap |t~ |/ / f (o ap+f’ drdy  (7.36)

(with the convention 0/0 = 0).
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The following lemmas provide basic inequalities for the fractional Brownian mo-
tion.

Lemma 7.4

Let {B; : t > 0} be a fractional Brownian motion of Hurst parameter H € (0,1).
Then for every 0 < ¢ < H and T' > 0 there exists a positive random variable n.
such that E (|n. r|") < oo for all p € [1,00) and for all s,t € [0,T)

IB(t)— B(s)| <merlt—s/""° as. (7.37)
Proof. Applying the inequality (7.36) with o = H —¢/2 and p = 2/ we deduce for all

s,t € 10,7
[B(t) = B(s)| < Crre [t — [

e/2
rB OIS
( [ O )

Let ¢ > 2/e. By Minkowski inequality and the estimate (6.33) we obtain

where

(qe)/2
B(O)P !

"B (q)/
e)/2
el < / / — e s

< T .

Hence, it suffices to take . r = Cy £ U

Lemma 7.5

Let {B; : t > 0} be a fractional Brownian motion of Hurst parameter H € (3,1).
If1—H < a< 3 then

E sup |D{Z%B; (s)|" < cc. (7.38)
0<s<t<T

for all T > 0 and p € [1,00).

Proof. From (3.6) we have

I—a L (IB(t)=B()
|D{ZBi— ()] < F(a)< t—s)l -

/ B (s >|dy>‘
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By (7.37) for ¢ < a — (1 — H) there exists a random variable . 7 with finite moments
of all orders such that

t
DB, (s)| < Canr ((t ) dy)

1
< Ca TH7871+04 1 -
= alleT +H—5—1+a ’
which yields clearly (7.38). O
Finally, let us give a version of the Gronwall lemma.
Lemma 7.6

Fix0<a<1,a,b>0. Let  : [0,00) — [0,00) be a continuous function such
that for each t

t
e <a+ bto‘/ (t—s)"%s “wgds. (7.39)
0
Then

zy <al'(1 — ) nz% S[fél+_1?()1t _C;)ﬂ < ad, exp [catbl/(l_o‘)} , (7.40)

where ¢, and d,, are positive constants depending only on « (as an example, one can
set o = 2(D(1 - )/ and do = 4e27¢=2) )

Proof. Define by an iteration procedure the sequences
Bo(t)=1 and Ry (t) =z,
t 1
Boin (1) = bt / (t— 5)=5~B, (s) ds = bi'—° / (1= r)=9=28, (rt) dr,
0 0
t
Ry (1) = bt / (1 — 5)=“s—R,, (s)ds.
0

It is easy to verify by induction that for all 0 <¢ < T

0< Ry(t) < ( sup |x5|> B, (t), and

s€[0,T
(br(1 — oz)tlfo‘)n
I(n+1)1—-a)]

Bn (t) = F(l - a)

Also by induction we have

N
2t <aY Ba(t) + Rysa(t). (7.41)
n=0
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Indeed for N = 0 the relation (7.41) reduce to (7.39). Supposing that (7.41) holds for
N, then

t
e <a-+ bto‘/ (t—s) s “xgds
0

t N
<a+ bt / (t—s) %™ [aZﬂn(s) + Rnt1(s)| ds
0 n=0
N+1

=a) Bu(t) + Ryia(t).
n=0

The estimates (7.40) follow clearly now setting x = bI'(1 — )t!=* and 8 = 1 — « in
the next lemma. [

Lemma 7.7
For all x > 0 and 3 > 0,

> " de 2/8-1 (1va)/® 4e* 178
S (x) := —— < —(1Vvzx e\tve < — e 7.42
@ =2 T <5 VY : (7.42)
Proof. Let « > 1. We split S () = S1 (z) + Ss (z) where
$'ﬂ
Sy (z) = L —
0= 2 Frs)
(n+1)8<2
S@= Y Foos
2 (z) = :
= T(ln+1)p)
(n+1)822
We have 4
Sy (z) < Fex?/ﬂ—l. (7.43)

Indeed if 8 > 2 then S; (z) = 0 and if § < 2 then

Sy () < 2?/P1 Z F;sz/ﬁ_l Z e(n+1)p

neN ((n + 1) ﬁ) neN
n<%—1 n<%—1
< A28
since
o0 1 1
F(a)—/ t“letdt>el/ todt = —.
0 0 ae
Denote

Ja,ﬁ,ko={neN:[nﬂ+a]:k0}:{neN: cne

ko—(s k0_6+1}
g g '
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To estimate Sy (z) remark that:

O Soo1< Lk, V6>0,8>0,k €N,

B
n€Js,g,kq

O ot = % (x1/;3)(n+1)5 < % (x1/5)[(n+1),8]+1 — 2/8-1 (961/5)[(7%1)5]—17

& ([a] — 1) < T (a) < [a]! for all a > 2.

Hence
x1/g)[("+1)5]—1
SQ (:L’) < x2/[3—1 (
; ([((n+1)8] = 1)!
(n+1)8>2
i k
<23 Y (ml/ﬁ) (k1)
k=1 \n€Jg g r+1
1 1/8
< 22/8-1 x _
<z 3 (e 1)
and then

4 1 1
S(z) =851 (z)+ S2(z) < gﬁ/ﬁ—l e’ < 4e/Be** ®ove>1
since 22971 < e** forall z > 1, a > 0.
For x € [0, 1] we have S (z) < S (1) < 45 , which completes the proof. [

Remark. The right-hand side of equality (7.40) can be expressed in terms of the
Mitag-Leffler function (see [17]):

1_an+1tn(1 )
b” I'l—a) (Fi—ai1—adl'(1 —a)t'™) - 1),
a+aZ T D= =TT =) (FraiabP(1 - )™ 1)

and the asymptotic behavior of the Mittag-Lefller function leads also to the estimate
(7.40).
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