
Collect. Math. 51, 1 (2000), 59–81

c© 2000 Universitat de Barcelona

A characterization of Valdivia compact spaces
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Abstract

We characterize Valdivia compact spaces K in terms of C(K) endowed with a
topology introduced by M. Valdivia (1991). This generalizes R. Pol’s characte-
rization of Corson compact spaces. Further we study duality, products and open
continuous images of Valdivia compact spaces. We prove in particular that the
dual unit ball of C(K) is Valdivia wheneverK is Valdivia and that the converse
holds wheneverK has a dense set ofGδ points. Another result is that any open
continuous image of a Valdivia compact space with a dense set of Gδ points is
again Valdivia.

1. Introduction

The class of Valdivia compact spaces plays an important role in study of various
properties of Banach spaces. This class, which contains all Corson compact spaces,
was studied from the functional-analytic point of view for example in [2], [3], [7], [14]
and [15]. Topological properties of Valdivia compact spaces were investigated for
example in [16] and [10]. In the present paper we give a characterization of Valdivia
compact spaces which generalizes R. Pol’s characterization of Corson compact spaces
reproduced in [1, Chapter IV.3].
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First we give basic definitions and facts used in our paper. In Section 2 we
prove our main result, which is a characterization of Valdivia compact spaces using
a topology investigated in [15] and ideas of [1, Chapter IV.3]. An analogous theorem
is proved for Valdivia compact spaces which are the dual unit ball of a Banach space.

In Section 3 we prove a theorem on relations of the Valdivia property of K, the
dual unit ball of C(K), and the space of Radon probabilities on K, for K compact.

In Section 4 we study the class of those Valdivia compact spaces which have
a dense set of Gδ points. Within this class we prove several results which are not
known for general Valdivia compact spaces.

Let us start with basic definitions.

Definition 1.1. Let K be a compact Hausdorff space.

(1) If Γ is a set, we put

Σ(Γ) =
{
x ∈ R

Γ | {γ ∈ Γ | x(γ) �= 0} is countable
}
.

(2) We say that A ⊂ K is a Σ-subset of K if there is a homeomorphic injection
h of K into some R

Γ such that A = h−1(h(K) ∩ Σ(Γ)).
(3) K is called a Corson compact space if K is a Σ-subset of itself.
(4) K is called a Valdivia compact space if K has a dense Σ-subset.
(5) We say that K is a super-Valdivia compact space if each x ∈ K is contained

in some dense Σ-subset of K.

In the following definition we follow [1, Chapter IV.3], where the notion of
primarily Lindelöf spaces is used to characterize Corson compact spaces.

Definition 1.2.

(1) Let κ be an infinite cardinal. By Dκ we denote the discrete space of
cardinality κ and Lκ will mean the one-point Lindelöfication of Dκ, i.e.
Lκ = Dκ ∪ {∞} such that each point of Dκ is isolated and neighborhoods
of ∞ are formed by complements of countable subsets of Dκ.

(2) A topological space X is said to be primarily Lindelöf if X is a continuous
image of a closed subspace of (Lκ)ω for some infinite cardinal κ.

The following lemma is proved in [1, Proposition IV.3.4].

Lemma 1.3

(1) The class of primarily Lindelöf spaces is closed with respect to countable unions,

countable products, closed subspaces and continuous images.

(2) Every primarily Lindelöf space is Lindelöf.
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The following notation is inspired by [15], where a special case of these notions
is strongly used.

Notation 1.4. Let K and X be topological spaces and A ⊂ K be an arbitrary
subset.

(1) C(K,X) will denote the set of all continuous functions of K to X.
(2) By τA we mean the weakest topology on C(K,X) such that the mapping

f �→ f(a) is continuous for every a ∈ A. We will use the shorter notation
CA(K,X) instead of (C(K,X), τA).

(3) In case A = K we use the standard notation τp and Cp(K,X) instead of
τK and CK(K,X).

(4) In case X = R we write C(K), CA(K), Cp(K) instead of C(K,R), CA(K,R),
Cp(K,R), respectively.

It is clear that, in case X = R, τA is a locally convex topology and that it is
Hausdorff whenever A is dense in K. An analogous notion can be defined in case
that K is the dual unit ball of a Banach space X.

Definition 1.5. Let X be a Banach space and A ⊂ X∗ be arbitrary. By wA we
denote the weakest topology on X such that the mapping x �→ a(x) is continuous
for every a ∈ A.

Now let us sum up some results on Σ-subsets from [10] which we will use later.
To this end we recall some notions.

Definition 1.6.
(1) A topological space X is called a Fréchet-Urysohn space (or shortly an FU-

space) if, whenever A ⊂ X and x ∈ A, there exists a sequence of xn ∈ A
with xn → x.

(2) Let X be a topological space and A ⊂ X. We say that A is countably closed
in X if C

X ⊂ A for every C ⊂ A countable.

Lemma 1.7
(1) [12, Theorem 2.1] and [10, Proposition 2.2] The space Σ(Γ) is a Fréchet-Urysohn
space and is countably closed in R

Γ for every set Γ. In particular every Σ-subset of
a compact space K is Fréchet-Urysohn and is countably closed in K.
(2) [10, Proposition 2.5] If K is a compact Hausdorff space and A ⊂ K dense, then
A is a Σ-subset of K if and only if A is homeomorphic to a coordinatewise bounded
closed subset of some Σ(Γ) and K = βA.
(3) [10, Proposition 2.2] If K is a compact Hausdorff space and G ⊂ K a Gδ set,
then G ∩ A is dense in G for every dense countably compact subset (in particular
for every dense Σ-subset) A of K.
(4) [10, Proposition 4.2] Let Ai be a Σ-subset of Ki for i = 1, . . . , n. Then A1 ×
· · · ×An is a Σ-subset of K1 × · · · ×Kn.
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The referee has pointed out that the assertion in the point (3) of the previ-
ous lemma also follows from an argument from pseudocompact spaces. As A is
countably compact, it is also pseudocompact, and hence every zero set Z of any
compactification of A meets A, i.e. A ∩ Z �= ∅.

2. A Pol-like characterization of Valdivia compacta

Our main result is the following theorem which generalizes Theorem IV.3.1 of [1].

Theorem 2.1

Let K be a compact Hausdorff space and A be a dense subset of K. Then the

following two conditions are equivalent.

(1) A is a Σ-subset of K.

(2) A is countably compact and CA(K) is primarily Lindelöf.

As a corollary we get that Theorem IV.3.1 of [1] holds also for Hausdorff com-
pletely regular countably compact spaces.

Corollary 2.2

Let X be a Hausdorff completely regular countably compact space. Then X

is homeomorphic to a closed subset of some Σ(Γ) if and only if Cp(X) is primarily

Lindelöf.

Proof of Corollary 2.2. It suffices to observe that X is homeomorphic to a closed
subset of some Σ(Γ) if and only if X is a Σ-subset of βX (Lemma 1.7(2)), and that
Cp(X) is homeomorphic to CX(βX). Finally, use Theorem 2.1. �

An analogue of Theorem 2.1 holds also in the framework of Banach spaces.

Theorem 2.3

Let X be a Banach space and A be a weak*-dense subset of BX∗ . Then the

following two conditions are equivalent.

(1) A is a symmetric convex Σ-subset of (BX∗ , w∗).
(2) A is weak*-countably compact and (X,wA) is primarily Lindelöf.
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The rest of Section 2 is devoted to proofs of these results. To prove Theorem 2.1
we need several auxiliary results analogic to those used to prove Theorem IV.3.1
in [1].

We start with the following lemma which can be proved in the same way as [1,
Proposition IV.3.3].

Lemma 2.4

Let P be a class of topological spaces which is closed to continuous images and

finite products. If K is a compact Hausdorff space, A ⊂ K is arbitrary and there is

Y ⊂ CA(K, {0, 1}) which belongs to P and separates points of K, then CA(K, {0, 1})
belongs to Pσ (i.e., it can be represented as a countable union of spaces from P).

Lemma 2.5 (cf. [1, Lemma IV.3.7])

Let K be a zero-dimensional compact Hausdorff space and A ⊂ K be arbitrary.

Then CA(K, [0, 1]) is a continuous image of CA(K, {0, 1}ω).

Proof. By [1, Lemma IV.3.6] there is a continuous map ϕ : {0, 1}ω → [0, 1] such
that for every f ∈ C(K, [0, 1]) there exists gf ∈ C(K, {0, 1}ω) with f = ϕ ◦ gf . Let
us define F : C(K, {0, 1}ω) → C(K, [0, 1]) by putting F (g) = ϕ ◦ g. By the choice
of ϕ the mapping F is onto C(K, [0, 1]). Moreover, it is clear that F is τA → τA
continuous. �

Proposition 2.6

Let K ⊂ {0, 1}Γ be a compact Hausdorff space such that the set A = K ∩Σ(Γ)
is dense in K. Then CA(K) is primarily Lindelöf.

Proof. Let us denote by LΓ the ‘one-point Lindelöfication’ of the discrete space Γ
(cf. Definition 1.2), and define ψ : LΓ → C(K, {0, 1}) by putting

ψ(γ) =
{
πγ |K γ ∈ Γ,
0 γ = ∞,

where πγ is the projection of {0, 1}Γ onto the γ-th coordinate. It is clear that ψ
maps LΓ to C(K, {0, 1}). Let us show that ψ is continuous to τA. Suppose that
γν is a net in LΓ converging to some γ ∈ LΓ. If γ ∈ Γ, then there is ν0 such that
for every ν > ν0 we have γν = γ, and hence ψ(γν) = ψ(γ). If γ = ∞, we will
prove that ψ(γν) → 0 in τA. Indeed, if x ∈ A then suppx = {γ ∈ Γ | x(γ) �= 0}
is countable, thus U = LΓ \ suppx is a neighborhood of ∞. Hence there is some
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ν0 such that γν ∈ U for ν > ν0. Therefore we have, for ν > ν0, ψ(γν)(x) = 0, so
ψ(γν)(x) → 0 = ψ(γ)(x).

By the definition ψ(LΓ) is primarily Lindelöf, an it is clear that it separates
points of K. By Lemma 2.4 and Lemma 1.3 the space CA(K, {0, 1}) is primarily
Lindelöf, by Lemma 1.3 we get that (CA(K, {0, 1}))ω is primarily Lindelöf as well.
Now it follows from the definition of product topology that (CA(K, {0, 1}))ω is home-
omorphic to CA(K, {0, 1}ω). By Lemma 2.5 we get that CA(K, [0, 1]) is primarily
Lindelöf. Finally, the space CA(K) is the union of the sequence CA(K, [−n, n]) for
n ∈ N. Thus it follows from Lemma 1.3 that CA(K) is primarily Lindelöf. �

Definition 2.7. Let ϕ : K → L be a continuous surjection between compact
Hausdorff spaces. By Tϕ we denote the mapping Tϕ : C(L) → C(K) defined by the
formula Tϕ(g) = g ◦ ϕ.

It is well-known and easy to see that Tϕ is an isometric embedding of C(L) into
C(K).

Lemma 2.8

Let ϕ : K → L be a continuous surjection between two compact Hausdorff

spaces and f ∈ C(K). Then f ∈ Tϕ(C(L)) if and only if f is constant on ϕ−1(l) for

every l ∈ L.

Proof. The ‘only if’ part is obvious. Let us prove the ‘if’ part. Let f be constant
on each ϕ−1(l). Then we can define a real function on L by putting

g(l) = f(k) if ϕ(k) = l .

Due to the assumption on f this definition is correct and we have f = g ◦ ϕ. Now
g is continuous as f is continuous and ϕ is a quotient map. This completes the
proof. �

The formulation of the point (2) of the following lemma was suggested to the
author by P. Holický.

Lemma 2.9

Let ϕ : K → L be a continuous surjection between two compact Hausdorff

spaces, A ⊂ K be arbitrary and B = ϕ(A). Then the following assertions hold.

(1) Tϕ is a τB → τA homeomorphism.

(2) Put E = {(x, y) ∈ K ×K | ϕ(x) = ϕ(y)}. If E ∩ (A × A) is dense in E, then

Tϕ(C(L)) is τA-closed in C(K).
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Proof. (1) This is trivial.
(2) Let fν

τA−→f , where fν ∈ Tϕ(C(L)) and f ∈ C(K). By Lemma 2.8 it is enough
to show that f(x) = f(y) provided ϕ(x) = ϕ(y). So let ϕ(x) = ϕ(y), which means
(x, y) ∈ E. By the assumptions there is a net (xµ, yµ) ∈ E ∩ (A × A) converging
to (x, y). As fν ∈ Tϕ(C(L)), we have fν(xµ) = fν(yµ) for every ν and µ. Since
xµ, yµ ∈ A, we get fν(xµ) ν−→f(xµ) and fν(yµ) ν−→f(yµ), so f(xµ) = f(yµ) for every
µ. Now it follows from the continuity of f that f(x) = f(y) which completes the
proof. �

Proposition 2.10

Let K ⊂ [0, 1]Γ be compact such that the set A = K∩Σ(Γ) is dense in K. Then

there is a compact space L ⊂ {0, 1}Γ′
with B = L∩Σ(Γ′) dense in L and a continuous

surjection ϕ : L → K such that CA(K) is homeomorphic to (Tϕ(C(K)), τB) and the

latter set is τB-closed in C(L).

Proof. Let ψ : {0, 1}ω → [0, 1] be a continuous surjection such that ψ−1(0) = {0}.
Such a mapping exists, one can take for example ψ(x) =

∑
n∈ω

xn

2n+1 . We can define

the mapping Ψ : ({0, 1}ω)Γ → [0, 1]Γ by the formula Ψ(x)(γ) = ψ(x(γ)). It is clear
that Ψ is a continuous surjection satisfying the condition

(∗) x ∈ Σ(ω × Γ) ⇔ Ψ(x) ∈ Σ(Γ).

Put L = Ψ−1(K), B = L∩Σ(ω×Γ) and ϕ = Ψ|L. By (*) we get that A = ϕ(B), so
CA(K) is homeomorphic to (Tϕ(C(K)), τB) by Lemma 2.9(1). It remains to prove
that B is dense in L and (Tϕ(C(K)), τB) is τB-closed in C(L). This will be proved
when we show the following claim.

a, b ∈ L,ϕ(a) = ϕ(b) ⇒ ∃ a net (aν , bν) ∈ B ×B,

ϕ(aν) = ϕ(bν), (aν , bν) → (a, b).(∗∗)

Indeed, to show the density of B it suffices to take a = b, and to prove that Tϕ(C(K))
is τB-closed in C(L) it is enough to use Lemma 2.9(2). So let us prove (**).

Put c = ϕ(a) = ϕ(b). Let G denote the family of all Gδ subsets of K containing
c, ordered by the inverse inclusion. For any G ∈ G choose some cG ∈ A∩G. This is
possible due to Lemma 1.7(3). The net cG converges to c in a strong sense, i.e.

(∗ ∗ ∗) ∀γ ∈ Γ ∃G ∈ G ∀H ∈ G H ⊂ G cH(γ) = c(γ).
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Indeed, it suffices to take G = {x ∈ K | x(γ) = c(γ)}. Now we will construct aG and
bG in the following manner. If cG(γ) = c(γ) put aG(γ) = a(γ) and bG(γ) = b(γ),
otherwise choose aG(γ), bG(γ) ∈ ψ−1(cG(γ)) arbitrary. It is clear that ϕ(aG) =
ϕ(bG) = cG, by (*) we have aG, bG ∈ B and it follows easily from (***) that aG → a

and bG → b. This completes the proof of (**). �

Lemma 2.11

Let X be countably compact and f : X → Σ(Γ) be continuous. Then f(X) is

closed in Σ(Γ). In particular f is homeomorphism whenever it is one-to-one.

Proof. As X is countably compact and f continuous, f(X) is countably compact
as well. If x ∈ f(X) \ f(X), then by Lemma 1.7(1) there is a sequence xn ∈ f(X)
with xn → x. But then the infinite countable set {xn | n ∈ N} has no accumulation
point in f(X) which contradicts the countable compactness of f(X).

Now suppose that f is one-to-one. If F ⊂ X is closed, then F is countably
compact and hence, by the previous paragraph, f(F ) is closed in Σ(Γ). It follows
that f is a closed mapping, so it is a homeomorphism. �

Proposition 2.12

Let K be a Hausdorff completely regular topological space and A ⊂ K be such

that CA(K) is primarily Lindelöf. Then there is a one-to-one continuous mapping

of A into some Σ(Γ).

Proof. It is proved in [1, Proposition IV.3.10] that, whenever X is primarily Lindelöf,
there is a continuous linear one-to-one mapping of Cp(X) into some Σ(Γ). Therefore
under our assumptions there is T : Cp(CA(K)) → Σ(Γ) continuous, linear and one-
to-one. Consider the map e : A → Cp(CA(K)) defined by the formula e(a)(f) = f(a).
By the definition of τA we get that e(a) is τA-continuous for every a ∈ A. Moreover,
the mapping e is clearly continuous. Finally, e is one-to-one as K is Hausdorff
completely regular. Now it suffices to observe that T ◦ e is a one-to-one continuous
mapping of A into Σ(Γ). �

Proposition 2.13

Let K be a compact Hausdorff space and A ⊂ K be a countably closed dense

subset. If CA(K) is Lindelöf, then K = βA.



A characterization of Valdivia compact spaces 67

Proof. Put K ′ = βA and let ψ : K ′ → K be the continuous extension of the identity
mapping of A. It is enough to show that ψ(u) �= ψ(v) whenever u, v ∈ K ′ \ A are
distinct.

Suppose that u, v ∈ K ′ \ A are distinct such that ψ(u) = ψ(v) = p. Clearly
p ∈ K \ A. Denote by G the set of all Gδ subsets of K containing p, ordered by
the inverse inclusion. Choose U and V open neighborhoods of u and v, respectively,
such that U ∩ V = ∅. For every G ∈ G choose uG ∈ U ∩ ψ−1(G) ∩ A and vG ∈
V ∩ ψ−1(G) ∩A. This is possible by Lemma 1.7(3). Further put

WG =
{
f ∈ C(K) | |f(ψ(uG)) − f(ψ(vG))| < 1

}
, G ∈ G .

Clearly each WG is a τA-open set in C(K). Moreover these sets cover C(K). Indeed,
it is enough to observe that ψ(uG) → p and ψ(vG) → p as well. As CA(K) is Lindelöf,
there is a sequence Gn, n ∈ N such that C(K) =

⋃
n∈N

WGn
. Put H = {ψ(uGn

) |

n ∈ N} and L = {ψ(vGn
) | n ∈ N}. As A is countably closed, we have H ⊂ A and

L ⊂ A. Since ψ−1(H) ⊂ U , ψ−1(L) ⊂ V and ψ|A is a homeomorphism, we have
H ∩ L = ∅. So there is f ∈ C(K) with f |L = 0 and f |H = 1. Then f belongs to no
WGn

, which is a contradiction completing the proof. �

Proof of Theorem 2.1 (1) ⇒ (2) Suppose that A is a dense Σ-subset of K. By
Lemma 1.7(1) the set A is countably closed in K, and hence countably compact. It
remains to show that CA(K) is primarily Lindelöf. But it follows immediately from
Proposition 2.10 and Proposition 2.6.

(2) ⇒ (1) As K is Hausdorff completely regular, there is, by Proposition 2.12, a
continuous one-to-one mapping f : A → Σ(Γ) for some set Γ. Since A is countably
compact, it follows from Lemma 2.11 that f is a homeomorphism of A onto a closed
subset of Σ(Γ) which by countable compactness is coordinatewise bounded. By
Proposition 2.13 we get K = βA. Now it is enough to use Lemma 1.7(2) to get that
A is a Σ-subset of K. �

To prove Theorem 2.3 we need some more lemmas.

Lemma 2.14

Let X be a Banach space and A ⊂ BX∗ be a dense convex symmetric set. Then

(X,wA) is homeomorphic to a closed subset of CA(BX∗ , w∗).
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Proof. Consider the natural inclusion i of X into C(BX∗), i.e. i(x)(f) = f(x),
f ∈ BX∗ , x ∈ X. It is clear that i is wA → τA homeomorphism. Suppose that
xν ∈ X and h ∈ C(BX∗) such that i(xν)

τA−→h. As i(xν) is affine and A convex
symmetric, we get that h|A is affine (i.e., h(ta + (1 − t)b) = th(a) + (1 − t)h(b)
whenever a, b ∈ A and t ∈ [0, 1]). Since A is dense and h continuous, it follows that
h is affine on BX∗ (and, of course, h(0) = 0). And it is well-known that in this case
h ∈ i(X) (it follows from [5, Theorem V.5.6 and Theorem V.3.9]). This completes
the proof. �

Lemma 2.15

Let X be a Hausdorff topological space and M ⊂ X an arbitrary set. If A ⊂ X

and B ⊂ X are both homeomorphic to a coordinatewise bounded closed subset of

Σ(Γ) for some Γ and A ∩B ∩M is dense in M , then A ∩M = B ∩M .

Proof. Let x ∈ A ∩ M . Then x ∈ A ∩B ∩M , and hence there is a sequence
xn ∈ A ∩ B ∩M with xn → x (since A is an FU-space by Lemma 1.7(1)). Now,
xn ∈ B for each n, B is countably compact (by Lemma 1.7(1)), so x ∈ B. Thus
A ∩M ⊂ B ∩M . The inverse inclusion can be proved by interchanging the roles of
A and B. �

Lemma 2.16

Let X be a Banach space and A ⊂ BX∗ be weak*-dense and weak*-countably

compact. If (X,wA) is primarily Lindelöf, then A is a convex symmetric set which

is homeomorphic to a closed coordinatewise bounded subset of some Σ(Γ).

Proof. By [1, Proposition IV.3.10] there is a continuous one-to-one linear mapping
T : Cp(X,wA) → Σ(Γ) for some Γ. By the definition of wA we get that A ⊂
C(X,wA), and so by linearity of X it follows that spanA ⊂ C(X,wA). As the weak*
topology on spanA coincides with the τp topology inherited from Cp(X,wA), we
have a continuous one-to-one linear mapping of (spanA,w∗) into Σ(Γ). Further,
as A is countably compact, we get by Lemma 2.11 that A is homeomorphic to a
closed subset of Σ(Γ) which by countable compactness is coordinatewise bounded.
Now we are going to prove that A is symmetric and absolutely convex. In fact,
we show that A = spanA ∩ BX∗ . Suppose that g ∈ spanA ∩ BX∗ . Then A ∪ {g}
is countably compact, and so homeomorphic to a coordinatewise bounded closed
subset of Σ(Γ) by Lemma 2.11. Now, as A is dense in BX∗ , it follows by Lemma
2.15 that A ∪ {g} = A, i.e. g ∈ A, which was to be shown. �
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Lemma 2.17

Let E be a locally convex space and A ⊂ E be a convex symmetric set home-

omorphic to a closed coordinatewise bounded subset of some Σ(Γ). Then there is

a vector space F endowed with a topology τ , B ⊂ F convex symmetric, a linear

isomorphism L : spanB → spanA such that the following hold.

(i) L|B is a homeomorphism of B onto A.

(ii) βB = B and it is a convex symmetric set.

(iii) The vector operations (+ and ·) are continuous on nB for every n ∈ N.

(iv) Every point of B has a neighborhood basis (in B) consisting of convex sets.

Proof. Put An = nA for n ∈ N. Let m < n. By Lemma 1.7(2) we have that An is a
Σ-subset of βAn. It is clear that Am is a Σ-subset of Am

βAn , so βAm = Am
βAn by

Lemma 1.7(2). Hence we have βAm ⊂ βAn in the natural sense. Therefore we can
define

F =
⋃
n∈N

βAn .

We define a topology τ on F by the following formula.

U ∈ τ ⇔ ∀n ∈ N U ∩ βAn is open in βAn .

Now we are going to define operations on F .
By Lemma 1.7(4) we get that An × An is a dense Σ-subset of βAn × βAn,

so β(An × An) = βAn × βAn (this also follows directly from [8]). The mapping
An × An → A2n assigning to a pair (x, y) its sum x + y is continuous, hence we
can extend it to a continuous mapping βAn × βAn → βA2n. We shall denote this
mapping by ‘+n’. It is easy to check that ‘+n’ is an extension of ‘+m’ whenever
m < n, so we have a mapping + : F × F → F .

By Lemma 1.7(4) we get that An× [−n, n] is a dense Σ-subset of βAn× [−n, n],
so β(An × [−n, n]) = βAn × [−n, n]. The mapping An × [−n, n] → An2 assigning to
a pair (x, t) its product t · x is continuous, hence we can extend it to a continuous
mapping βAn × [−n, n] → βAn2 . We shall denote this mapping by ‘·n’. It is easy
to check that ‘·n’ is an extension of ‘·m’ whenever m < n, so we have a mapping
· : F × R → F .

It is clear that F together with just defined operations is a linear space. If we
put B = A and let L be the natural identity mapping, it is clear that conditions
(i)–(iii) are satisfied. It remains to prove the condition (iv).

First let us prove that the point 0 has a neighborhood basis (in nB = βAn)
consisting of convex sets for every n. It is clear that we can suppose without loss
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of generality that n = 1. Let U be a neighborhood of 0 in B. By regularity (notice
that B is compact) we can choose U ′, a neighborhood of 0 in B, such that U ′ ⊂ U .
As U ′ ∩ B = U ′ ∩ A is a neighborhood of 0 in A and E is locally convex, there is
W , an open convex neighborhood of 0 in A with W ⊂ U ′ ∩A. Let V be open in B

such that V ∩A = W . Then V = W is a convex neighborhood of 0 with V ⊂ U .
Now let x ∈ B be arbitrary and U be a neighborhood of x in B. There is U ′, a

neighborhood of x in 2B with U ′ ∩ B = U . It follows from the condition (iii) that
the set

W =
{
y ∈ 2B | y + x ∈ U ′}

is a neighborhood of 0 in the set

M =
{
y ∈ 2B | y + x ∈ 2B

}
,

so there is a neighborhood W ′ of 0 in 2B such that M ∩W ′ = W . By the previous
paragraph there is a convex neighborhood V ′ of 0 in 2B with V ′ ⊂ W ′. As M

is clearly convex, V ′ ∩M is convex as well. Moreover, x + (V ′ ∩M) ⊂ U ′, hence
G = (x+(V ′ ∩M))∩B ⊂ U . Clearly G is convex, so it remains to show that G is a
neighborhood of x in B. If it is not the case, there is a net xν ∈ B \G converging to
x. Then xν −x → 0 and xν −x /∈ V ′ ∩M . But we have xν −x ∈ M , so xν −x /∈ V ′.
But V ′ is a neighborhood of 0, so xν − x cannot converge to 0. This contradiction
completes the proof. �

Lemma 2.18

Let X be a Banach space and A ⊂ BX∗ be a convex symmetric weak*-dense set

homeomorphic to a closed coordinatewise bounded subset of some Σ(Γ). If (X,wA)
is Lindelöf, then BX∗ = βA.

Proof. Let F , B, L be as in Lemma 2.17, and ψ : B → BX∗ be the continuous
extension of L|B. It is clear that ψ is an affine mapping. We shall prove that ψ is
one-to-one.

We proceed similarly as in the proof of Proposition 2.13. Suppose that there
are u, v ∈ B \B distinct with ψ(u) = ψ(v) = p ∈ BX∗ \A. Let U and V be convex
neighborhoods of u and v, respectively, with U ∩ V = ∅. Denote by G the set of all
weak* Gδ subsets of BX∗ containing p, ordered by the inverse inclusion. For every
G ∈ G choose uG ∈ U ∩ ψ−1(G) ∩B and vG ∈ V ∩ ψ−1(G) ∩B. This is possible by
Lemma 1.7(3). Further put

WG =
{
x ∈ X | |ψ(uG)(x) − ψ(vG)(x)| < 1

}
, G ∈ G .
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Clearly each WG is a wA-open set in X. Moreover these sets cover X. Indeed, it is
enough to observe that ψ(uG) w∗

−→p and ψ(vG) w∗
−→p as well. As (X,wA) is Lindelöf,

there is a sequence Gn, n ∈ N such that X =
⋃

n∈N

WGn
. Put H1 = {ψ(uGn

) | n ∈ N}

and H2 = {ψ(vGn) | n ∈ N}. As A is convex and weak*-countably closed, we have
convH1

w∗

⊂ A and convH2
w∗

⊂ A. Since ψ−1(H1) ⊂ U , ψ−1(H2) ⊂ V and ψ|B is
an affine homeomorphism, we have convH1

w∗

∩ convH2
w∗

= ∅. It remains to use
Hahn-Banach theorem to get x ∈ X such that

sup
{
f(x) | f ∈ convH1

w∗}
+ 1 < inf

{
f(x) | f ∈ convH2

w∗}
.

Then x belongs to no WGn , which is a contradiction completing the proof. �

Proof of Theorem 2.3 (1) ⇒ (2) Let A ⊂ (BX∗ , w∗) be a convex symmetric dense Σ-
subset. By Lemma 1.7(1) we get that A is countably compact. By Theorem 2.1 the
space CA(BX∗ , w∗) is primarily Lindelöf. It follows from Lemma 2.14 that (X,wA)
is homeomorphic to a closed subset of CA(BX∗ , w∗), so it is primarily Lindelöf by
Lemma 1.3.

(2) ⇒ (1) By Lemma 2.16 we have that A is convex, symmetric and homeo-
morphic to a coordinatewise bounded closed subset of some Σ(Γ). It follows from
Lemma 2.18 that BX∗ = βA. It remains to use Lemma 1.7(2) to get that A is a
Σ-subset of BX∗ . �

Remarks 2.19. (1) It is easy to check that neither of the two assumptions in the
condition (2) of Theorem 2.1 (or Theorem 2.3) can be omitted. Indeed, notice that
CB(K) is primarily Lindelöf whenever CA(K) is primarily Lindelöf and B ⊂ A; and
that K is countably compact but need not be a Σ-subset of itself.

(2) In Theorem 2.1 we characterize dense Σ-subsets of K. It is natural to ask
whether we can characterize in a similar way dense sets which are contained in a Σ-
subset. Of course, CA(K) is primarily Lindelöf, whenever A is contained in a dense
Σ-subset of K. But the converse implication does not hold. Put K = βN and A = N.
Then CA(K) is homeomorphic to an Fσ subset of R

N. The latter space is a separable
completely metrizable space, and so it is primarily Lindelöf by a classical theorem
[11, Theorem 7.9]. Hence CA(K) is primarily Lindelöf by Lemma 1.3. However,
A is contained in no dense Σ-subset of K, as K is not Valdivia (it follows e.g.
from [4, Theorem II.7.10] and [14, Corollary], or it can be proved by an elementary
argument).

Theorem 2.1 has the following consequence on continuous images of Σ-subsets.
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Theorem 2.20

Let ϕ : K → L be a continuous surjection between compact Hausdorff spaces,

A ⊂ K be a dense Σ-subset and B = ϕ(A). Then the following assertions are

equivalent.

(1) B is a Σ-subset of L.

(2) Tϕ(C(L)) is τA-closed in C(K).
(3) L = βB and ϕ|A is a quotient mapping of A onto B.

Proof. (1) ⇒ (3) If B is a Σ-subset of L, then L = βB by Lemma 1.7(2). Moreover,
B is homeomorphic to a closed coordinatewise bounded subset of Σ(Γ) for some set
Γ, hence it follows from Lemma 2.11 that ϕ|A is closed, and therefore a quotient
mapping.

(3) ⇒ (2) Let fν ∈ Tϕ(C(L)) and f ∈ C(L) such that fν
τA−→f . We will prove that

f ∈ Tϕ(C(L)). It follows from the definition of τA that f is constant on ϕ−1(l) ∩ A

for every l ∈ L. Hence there is a function g : B → R such that f |A = g ◦ (ϕ|A). As
f is continuous and ϕ|A is a quotient mapping, we get that g is continuous as well.
Now, since L = βB, there is a continuous extension g̃ of g onto L. It follows that
f = g̃ ◦ ϕ which completes the argument.

(2) ⇒ (1) By Theorem 2.1 we have that A is countably compact and CA(K)
is primarily Lindelöf. Hence B is countably compact (as a continuous image of A).
Moreover, CB(L) is primarily Lindelöf by Lemma 1.3 and Lemma 2.9(1). It follows
from Theorem 2.1 that B is a dense Σ-subset of L. �
Remark. The implication (2) ⇒ (1) of the previous theorem can be proved also
using [15, Theorem 2].

3. The case of C(K) spaces

The aim of this section is to prove Theorem 3.2 on relations between K and the
dual unit ball of C(K). Let us recall that due to Riesz theorem we can identify
C(K)∗ with the space of all finite signed Radon measures on K. First let us fix some
notation.

Notation 3.1 Let K be a compact Hausdorff space.

(1) By P (K) we denote the space of all Radon probabilities on K, endowed
with the weak* topology. We consider P (K) as a subset of C(K)∗, by the
identification

P (K) =
{
µ ∈ C(K)∗ | ‖µ‖ ≤ 1 & (µ, 1K) = 1

}
.
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(2) If x ∈ K, we denote by δx the Dirac measure supported by the point x.
(3) If A ⊂ K, we denote by δ(A) the homeomorphic image of A by the mapping

δ : x �→ δx.

Theorem 3.2

Let K be a compact Hausdorff space. Then (1) ⇒ (2) ⇔ (3) ⇔ (4), where

(1) K is Valdivia.

(2) There is a dense convex symmetric Σ-subset of (BC(K)∗ , w
∗).

(3) There is a dense convex Σ-subset of (BC(K)∗ , w
∗).

(4) There is a dense convex Σ-subset of P (K).

Proof. (1) ⇒ (2) Let h : K → R
Γ be a homeomorphic injection with h(K) ∩ Σ(Γ)

dense in h(K). Put A = h−1(h(K) ∩ Σ(Γ)). For γ ∈ Γ let fγ = πγ ◦ h, where πγ
denotes the projection of R

Γ onto the γ-th coordinate. It is clear that the family
(fγ | γ ∈ Γ) separates points of K and that

A =
{
x ∈ k | {γ ∈ Γ | fγ(x) �= 0} is countable

}
.

Let Γ̃ be the set of all (possibly empty) finite sequences of elements of Γ. For γ̃ ∈ Γ̃
let us define

gγ̃ =
{

1 if γ̃ = ∅ ,
fγ1 · . . . · fγn if γ̃ = (γ1, . . . , γn).

It follows from Stone-Weierstrass theorem, that span {gγ̃ | γ̃ ∈ Γ̃} = C(K), hence the

family
(
gγ̃ | γ̃ ∈ Γ̃

)
separates points of C(K)∗. Therefore, if we define the mapping

h̃ : BC(K)∗ → R
Γ̃ by the formula

h̃(µ)(γ̃) = (µ, gγ̃) ,

it is a homeomorphic injection (BC(K)∗ is considered with the weak* topology). Put

Ã = h̃−1
(
h̃(BC(K)∗) ∩ Σ(Γ̃)

)
.

As h̃ is clearly affine, it follows that Ã is a convex symmetric set. Moreover, Ã
contains δ(A). Indeed, if x ∈ A and γ̃ ∈ Γ̃ with gγ̃(x) �= 0, then either γ̃ = ∅
or γ̃ = (γ1, . . . , γn) with γi(x) �= 0, i = 1, . . . , n. So clearly {γ̃ ∈ Γ̃ | gγ̃(x) �= 0}
is countable, and therefore δx ∈ Ã. So conv (δ(A) ∪ (−δ(A))) ⊂ Ã. Now it is a
standard fact that conv (δ(A) ∪ (−δ(A))) is weak* dense in BC(K)∗ whenever A is
dense in K.
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(2) ⇒ (3) This is trivial.
(3) ⇒ (4) This follows easily from Lemma 1.7(3) as P (K) is weak*-Gδ closed

convex subset of BC(K)∗ .
(4) ⇒ (2) Let A be a convex dense Σ-subset of P (K). Then CA(P (K)) is

primarily Lindelöf by Theorem 2.1. Let us consider the injection T : C(K) →
C(P (K)) defined by the formula T (f)(µ) = (µ, f), µ ∈ P (K), f ∈ C(K). We claim
that F ∈ C(P (K)) belongs to T (C(K)) if and only if F is affine.

The ‘only if’ part is obvious, so let us prove the ‘if’ part. Let F ∈ C(P (K)) be
affine. Put f = (F |δ(K)) ◦ δ. Then f ∈ C(K). And it easily follows from the facts
that F is continuous and affine that F = T (f).

Further let us notice that T (C(K)) is τA-closed in C(P (K)). Indeed, let Fν
τA−→F ,

where Fν ∈ T (C(K)) and F ∈ C(P (K)). Each Fν is affine and A is convex, so F |A is
affine. As A is dense and F continuous, we get that F is affine, hence F ∈ T (C(K)).

So T (C(K)) is τA-primarily Lindelöf, and clearly (C(K), wA) is homeomorphic to
(T (C(K)), τA), therefore (C(K), wA) is primarily Lindelöf. Put Ã = conv (A∪(−A)).
Then clearly wA = wÃ, so (C(K), wÃ) is primarily Lindelöf. In view of Theorem 2.3
it is enough to show that Ã is weak* countably compact and weak* dense in BC(K)∗ .

By Lemma 1.7(4) we have that A × A × [0, 1] is a dense Σ-subset of P (K) ×
P (K) × [0, 1], and hence it is countably compact by Lemma 1.7(1). Consider the
mapping

ψ : P (K) × P (K) × [0, 1] → BC(K)∗

defined by the formula
ψ(µ, ν, t) = tµ− (1 − t)ν.

Then ψ is continuous and onto, and Ã = ψ(A × A × [0, 1]), so clearly Ã is weak*
countably compact and weak* dense. This completes the proof. �

Remarks 3.3. (1) The implication (1) ⇒ (2) follows also from [15, Corollary 2.2]
together with a simple observation [9, Lemma 3]. But our proof is more simple and
direct, we use only Stone-Weierstrass theorem.

(2) We do not know whether the condition (2) of Theorem 3.2 is equivalent
to BC(K)∗ being Valdivia compact. Neither do we know whether the implication
(2) ⇒ (1) holds. However, both of these questions have positive answer when K has
a dense set of Gδ points, as proved in Theorem 4.10.

(3) In view of the implication (1) ⇒ (2) it is natural to ask whether BC(K)∗ is
super-Valdivia whenever K is super-Valdivia. This is answered in the negative by
Example 4.12.
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4. Valdivia compact spaces with a dense set of Gδ points

The class of compact Hausdorff spaces with a dense set of Gδ points contains several
important classes of spaces, as summed up in the following proposition. It turns out
that within this class some properties of Valdivia compacta are easier to describe.

Proposition 4.1

Let K be a compact Hausdorff space satisfying at least one of the following

conditions.

(1) K is scattered.

(2) K is a Radon-Nikodym compact (or even a continuous image of a Radon-

Nikodym compact).

(3) K is fragmentable.

(4) K belongs to the Stegall class S.

(5) C(K) is a weak Asplund space

(6) C(K) is a Gâteaux differentiability space.

(7) K is Corson.

Then K contains a dense subset of Gδ points.

Proof. The definitions and proofs of cases (1)–(6) can be found e.g. in [6]. For the
proof of the case (7) we refer to [13]. �
Remark. Let us notice that the conditions of the above proposition are not mutually
exclusive. On the contrary, many inclusions hold. But we would have liked to name
important classes of compacta for which the results of this section hold.

Due to the case (7), the results of this section contain as a special case some
known results on Corson compact spaces.

Lemma 4.2

Let K be a compact Hausdorff space. with a dense set of Gδ points. Then there

is at most one dense Σ-subset of K.

Proof. Let M be the set of all Gδ points of K, A and B be two dense Σ-subsets of
K. By Lemma 1.7(3) we have M ⊂ A∩B, hence A∩B is dense in K. Now A = B

by Lemma 2.15. �
The proof of the following lemma was shown to the author by L. Zaj́ıček.

Lemma 4.3

Let K be a compact Hausdorff space with a dense set of Gδ points. Then every

open continuous image of K has the same property.
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Proof. Let ϕ : K → L be a continuous open surjection. It is enough to prove that
ϕ(x) is a Gδ point in L whenever x is a Gδ point in K.

Let {x} =
⋂

n∈N

Un where each Un is open in K. As K is regular, we can suppose

without loss of generality that Un+1 ⊂ Un for every n. Then Un, n ∈ N, form a
neighborhood basis of x. To see it let V be an arbitrary open neighborhood of x.
If Un \ V �= ∅ for every n, then, by compactness,

⋂
n∈N

Un \ V �= ∅. This intersection

does not contain x (as it is contained in K \V ). But in the same time it is contained
in

⋂
n∈N

Un = {x}, a contradiction.

As ϕ is open, Vn = ϕ(Un) is open for every n. Let us show that {ϕ(x)} =
⋂

n∈N

Vn.

Choose an arbitrary y ∈ L \ {ϕ(x)}. The set L \ {y} is a neighborhood of ϕ(x), so,
by continuity of ϕ, there is n ∈ N with ϕ(Un) ⊂ L \ {y}. Therefore y /∈ Vn, which
completes the proof. �

Lemma 4.4

Let ϕ : K → L be a continuous open surjection between compact Hausdorff

spaces. If L contains a dense set of Gδ points and A is a dense Σ-subset of K, then

Tϕ(C(L)) is τA-closed in C(K).

Proof. We will use Lemma 2.9(2). Put E = {(x, y) ∈ K ×K | ϕ(x) = ϕ(y)}. We
will show that E ∩ (A×A) is dense in E.

Choose an arbitrary pair (u, v) ∈ E, and U , V open neighborhoods of u, v,
respectively. Put z = ϕ(u) = ϕ(v). Then ϕ(U) and ϕ(V ) are open neighborhoods
of z, since ϕ is open. Therefore W = ϕ(U)∩ ϕ(V ) is a nonempty open set, so there
is g ∈ W , a Gδ point of L. The set ϕ−1(g) is Gδ in K, and hence ϕ−1(g) ∩ A is
dense in ϕ−1(g) by Lemma 1.7(3). It follows that we can choose x ∈ ϕ−1(g)∩A∩U
and y ∈ ϕ−1(g)∩A∩ V . Then (x, y) ∈ (U × V )∩E ∩ (A×A), which completes the
proof. �

Theorem 4.5

Let ϕ : K → L be a continuous open surjection between compact Hausdorff

spaces. Suppose, moreover, that L has a dense set of Gδ points. Then the following

hold.

(1) If K is Valdivia, then so is L.

(2) If K is super-Valdivia, then L is Corson.
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Proof. (1) Let A be a dense Σ-subset of K. Then by Lemma 4.4 and Theorem 2.20
we get that ϕ(A) is a dense Σ-subset of L.

(2) Let y ∈ L be arbitrary. There is x ∈ K with ϕ(x) = y. As K is super-
Valdivia, there is a dense Σ-subset A ⊂ K which contains x. By Lemma 4.4 and
Theorem 2.20 we get that ϕ(A) is a dense Σ-subset of L. Moreover, clearly y ∈ ϕ(A).
So L is super-Valdivia. Now it follows from Lemma 4.2 that L is Corson. �
Remark. It is easy to see that Lemma 4.4 does not hold without assumption that
L has a dense set of Gδ points. Indeed, let L be a compact Hausdorff space such
that there are A,B ⊂ L two disjoint dense Σ-subsets. (One can take for example
L = [0, 1]Γ for Γ uncountable, A = L ∩ Σ(Γ) and B = {x ∈ L | {γ ∈ Γ | x(γ) �=
1} is countable}.) Then C = A×{0}∪B×{1} is a dense Σ-subset of K = L×{0, 1}.
The natural projection of K onto L is open and continuous, but the image of C is
A ∪ B which is not a Σ-subset of L (by Lemma 2.15). However, it seems not to be
clear whether the assumption on L is necessary in Theorem 4.5(1).

Corollary 4.6

Let K be a Valdivia compact space with a dense set of Gδ points. Then every

continuous open image of K is Valdivia.

Proof. This follows immediately from Theorem 4.5 and Lemma 4.3. �

Proposition 4.7

Let K and L be nonempty compact Hausdorff spaces such that K has a dense

set of Gδ points. Then the following hold.

(1) If K × L is Valdivia, then so are K and L.

(2) If K × L is super-Valdivia, then K is Corson and L super-Valdivia.

Proof. Let K × L be Valdivia (super-Valdivia). Then K is Valdivia (Corson) by
Theorem 4.5, as the projection of K × L onto K is open. Further, let x ∈ K be a
Gδ point. Then {x}×L is a Gδ set in K ×L which is homeomorphic to L. It easily
follows from Lemma 1.7(3) that L is Valdivia (super-Valdivia, respectively). �

Theorem 4.8

Let Ka, a ∈ Λ be an arbitrary family of nonempty compact Hausdorff spaces

such that each Ka has a dense subset of Gδ points. Then the following two conditions

are equivalent.

(1)
∏
α∈Λ

Kα is a Valdivia compact.

(2) Kα is a Valdivia compact for every α ∈ Λ.



78 Kalenda

Proof. (1) ⇒ (2) This follows immediately from Proposition 4.7(1).
(2) ⇒ (1) This follows from [10, Theorem 4.1]. �

Theorem 4.9

Let Ka, a ∈ Λ be an arbitrary family of nonempty compact Hausdorff spaces

such that each Ka has a dense subset of Gδ points. Then the following two conditions

are equivalent.

(1)
∏
α∈Λ

Kα is a super-Valdivia compact.

(2) Kα is a Corson compact for every α ∈ Λ.

Proof. (1) ⇒ (2) This follows easily from Proposition 4.7(2).
(2) ⇒ (1) This follows from [10, Theorem 4.1]. �

Next we will prove the following theorem strengthening, within compact spaces
with a dense set of Gδ points, our Theorem 3.2.

Theorem 4.10

Let K be a compact Hausdorff space with a dense set of Gδ points. Then the

following assertions are equivalent.

(1) K is a Valdivia compact.

(2) The space P (K) of all Radon probabilities on K, endowed with the weak*

topology, is a Valdivia compact.

(3) The dual unit ball BC(K)∗ , endowed with the weak* topology, is a Valdivia

compact.

(4) The dual unit ball BC(K)∗ , endowed with the weak* topology, has a convex

symmetric dense Σ-subset.

To prove this theorem we need a lemma.

Lemma 4.11

Let K be a compact Hausdorff space, x1,. . . ,xn be Gδ points of K and

t1, . . . , tn ≥ 0 with t1 + · · · + tn = 1. Then t1δx1 + · · · + tnδxn
is a Gδ point of

P (K).



A characterization of Valdivia compact spaces 79

Proof. At first let us show that the set of probability measures on K supported by
the set F = {x1, . . . , xn} is Gδ. As F is clearly Gδ, it is enough to show the following
assertion.

(∗) F ⊂ K is closed and Gδ ⇒ {µ ∈ P (K) | µ(F ) = 1} is Gδ in P (K).

Let f : K → [0, 1] be continuous with f−1(1) = F . Then it is clear that
µ(F ) = 1 if and only if (µ, f) = 1, which proves (*).

Finally observe, that {µ ∈ P (K) | µ(F ) = 1} is homeomorphic to P (F ), which
is metrizable whenever F is finite. So every point of P (F ) is Gδ in P (F ), and the
assertion of the lemma follows. �

Proof of Theorem 4.10 (1) ⇒ (4) This follows from Theorem 3.2.
(4) ⇒ (3) This is trivial.
(3) ⇒ (2) This follows easily from Lemma 1.7(3) as P (K) is weak*-Gδ closed

subset of BC(K)∗ .
(2) ⇒ (1) Let A be a dense Σ-subset of P (K). Let x be a Gδ point of K. By

Lemma 4.11 we get that δx is a Gδ point of P (K), so δx ∈ A by Lemma 1.7(3).
Hence δ(K) ∩A is dense in δ(K), and it easily follows that K is Valdivia. �

In view of Theorem 3.2 it is natural to ask whether BC(K)∗ is super-Valdivia
whenever K is super-Valdivia. But it easily follows from [2, Theorem 3.12] that it
is not the case.

Example 4.12: Under continuum hypothesis there is a Corson compact space K
such that BC(K)∗ is not super-Valdivia.

Proof. By [2, Theorem 3.12] there is, under continuum hypothesis, a Corson compact
space K such that BC(K)∗ is not Corson. We will prove that BC(K)∗ is not super-
Valdivia.

Suppose that BC(K)∗ is super-Valdivia. Then it follows from Lemma 1.7(3)
that P (K) is super-Valdivia as well (since P (K) is Gδ in BC(K)∗). But K has a
dense set of Gδ points (Lemma 4.1), so P (K) has a dense set of Gδ points, too, by
Lemma 4.11. Now it follows from Lemma 4.2 that P (K) is Corson, hence BC(K)∗ is
Corson as well (as a continuous image of P (K) × P (K) × [0, 1], using [1, Corollary
IV.3.15]). This is a contradiction which completes the proof. �

Finally we formulate several questions which are, up to our knowledge, open.

Questions 4.13
(1) Is every open continuous image of a Valdivia (super-Valdivia) compact

again Valdivia (super-Valdivia)?
(2) Suppose that K × L is Valdivia (super-Valdivia). Are both K and L Val-

divia (super-Valdivia)?
(3) Suppose that BC(K)∗ is Valdivia. Is K Valdivia as well?
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All these questions have positive answers within the class of spaces with a dense
set of Gδ points. We do not know whether this assumption is essential.
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Added in proof. The implication (3) ⇒ (1) of Theorem 2.20 follows also from a
result of S.P. Gul’ko (Properties of sets that lie in Σ-products, Dokl. Akad. Nauk
SSSR 237(3) (1977), 505–508 (in Russian)) together with our Lemma 1.7(2).

Another Lindelöf properties of Banach spaces with Valdivia dual unit ball were
studied by J. Orihuela (On weakly Lindelöf Banach spaces, Progress in Funct. Anal.,
Eds: K.D. Bierstedt, J. Bonet, J. Horváth, M. Maestre, Elsevier Sci. Publ. B.V.
(1992), 279–291). In the proof of Corollary 5 of the mentioned paper there is con-
tained the proof of the implication (1) ⇒ (2) of our Theorem 3.2.
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