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Abstract

Characterizations of various monotonicity properties (UM, LUM, STM) in the
sequential Orlicz spaces lφ hφ, for the Luxemburg norm ‖ · ‖φ, are considered
(cf. [23]). It follows that the strong monotonicity (STM) and the uniform mono-
tonicity (UM) do not coincide in general for the counting measure case. Some
applications to (dominated) best approximation are also given.

1. Preliminaries

Let lφ = lφ(µ) be a sequential Orlicz space for the counting measure µ ([16], [17],
[15], [27], [31], [11]). In [23] (Theorem 2.7), for µ nonatomic, it was proved that the
strict monotonicity (STM) and the uniform monotonicity (UM) (and hence all the
intermediate monotonicity properties) coincide for the Luxemburg norm (the case
of the Orlicz norm is considered in [14]). For the counting measure such equivalence
is not longer true. It is proved below for lφ that the monotonicity properties UM,
LUM, CWLUM, H+STM and STM (cf. [23]) fall into two groups and that within
these two groups they are equivalent each to other. We proceed by characterizations
of these properties. The methods we apply in this paper differ essentially from that
for the nonatomic case ([23]).

We begin with brief recalling of some basic definitions. A Banach lattice X,
with the positive cone X+, is called uniformly monotone (UM) (cf. [3], Chap. XV,
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[23], [14], [1], [4], [5], [6], [26]), if for each ε > 0 there exists a δ(ε) > 0, such that
‖f − g‖ ≤ 1 − δ(ε), whenever f ≥ g ≥ 0, ‖f‖ = 1 and ‖g‖ ≥ ε. Equivalently, for
all sequences (fn), (gn) in X+ with ‖fn‖ = 1 and fn ≥ gn there holds ‖gn‖ −→ 0
whenever ‖fn−gn‖ −→ 1. X is said to be a strictly monotone space (STM), if for all
f, g ∈ X+ such that f ≥ g there holds ‖f − g‖ < ‖f‖ whenever ‖g‖ > 0. The STM
and UM properties can be viewed as the rotundity (R) and the uniform rotundity
(UR) restricted to compatible elements in X+ ([23], [14]). If in the definition of
the UM property fn = f for all n, or we look for l(gn) −→ 0 as n −→ +∞
instead of ‖gn‖ −→ 0, for some positive functional l, we arrive to the concept of
the local uniform monotonicity (LUM), or to the the weak uniform monotonicity
(WUM), respectively. If both these properties take place simultaneously then we
get the weak local uniform property (WLUM). Further, if for all positive functionals
l ∈ S(X∗) (S - the unit sphere), fn ∈ S(X+) and gn ∈ X+ with fn ≥ gn, there
holds ‖gn‖ −→ 0 whenever l(fn − gn) −→ 1, then X is said to be a CWUM space
(i.e. weakly uniformly monotone in different sense; cf. [19] for an analogy with the
CWUR property studied originally under a different name in [8], [30]). If in this
definition f = fn for all n then X is said to be CWLUM space (localization of
CWUM). Finally, X is said to have a H+ property ([23]), if f ≥ gn ≥ 0, ‖f‖ = 1
and the weak-∗ convergence gn −→ f imply the norm convergence ‖f − gn‖φ −→ 0.
From the definitions it follows that UM ⇒ LUM ⇒ WLUM, LUM ⇒ CWLUM
⇒ H+ and STM, UM ⇒ WUM ⇒ WLUM ⇒ STM, UM ⇒ CWUM ⇒ CWLUM.
Let us point out that H+ always implies the order continuity in Banach lattice X

and that CWLUM is equivalent to H+STM (i.e. H+ and STM) (cf. [23], [14]). In
the paper, applying these implications, all the mentioned properties (except the
property WUM) are characterized directly in terms of the function φ for Musielak-
Orlicz spaces lφ.

Sequential Musielak-Orlicz spaces lφ consist of all (real) sequences f = (xn)
satisfying Iφ(αf) = Σ+∞

n=1φn(α|xn|) < +∞ for some α > 0 depending on f . By φ

we mean a function φ(·, ·) : R+ × N −→ R +, or a sequence φ = (φn(·)) of functions
φn(·) = φ(·, n) (n ∈ N), such that φn(0) = 0, φn(·) are nontrivial, convex, lsc and
continuous at zero. We will write φ < +∞ (resp. 0 < φ), if φn(r) < +∞ (resp.
0 < φn(r)) for all n ∈ N) and for all r > 0.

The space hφ consists of all sequences f = (xn) such that Iφ(αf) < +∞ for all
α > 0 (cf. [11] for different approach concerning the definition of hφ). Further, let laφ
be a subspace of lφ on which the Luxemburg norm ‖f‖φ = inf{α > 0 : Iφ(f/α) ≤ 1}
is absolutely continuous, i.e.

laφ = {f ∈ lφ : f ≥ fm ≥ 0, fm ↘ 0 ⇒ ‖fm‖φ → 0}.
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From the definitions it follows that hφ ⊂ laφ ⊂ lφ ([31], [16], [2]).
Following [16] φ is said to satisfy a δ0

2-condition, if there exist γ, δ > 0, a
nonnegative sequence (αn) and a natural number k, for which Σ+∞

n=kαn < +∞, such
that for all n ∈ N and r > 0 satisfying φn(r) ≤ δ there holds φn(2r) ≤ γ φn(r) + αn

(n ∈ N). We will then write φ ∈ δ0
2 or φ ∈ δ2 whenever in the above definition

we have k = 1. If φ < +∞, or φ does not depend on n, the δ0
2-condition and the

δ2-condition coincide. The role of the δ0
2-condition explain the following results: (a)

laφ = lφ if and only if φ ∈ δ0
2(see Theorem 2.6 below), (b) hφ = lφ if and only if φ ∈δ0

2

and φ < +∞, [17]). Let us point out that: (c) hφ = laφ if and only if φ < +∞ ([31]).
In [11] it was proved that laφ = cl‖·‖φ

{en} (- the closure in lφ). Thus the spaces hφ

and laφ are different in general except the case when φ < +∞.

Remark. It can be verified that supp(hφ) = N if and only if φ < +∞. If supp(hφ) �=
N, we can confine to all these functions φn with n in some subset N0 of N which are
finite. Therefore, without loss of generality, one can assume that φ < +∞ whenever
the space hφ is considered.

Following [16] φ is said to satisfy a (�)-condition, if for each ε > 0 there exists
δ ∈ (0, 1) such that for all x > 0 and n ∈ N there holds φn(x) > 1 − ε whenever
φn((1 + δ)x) > 1. Let us introduce a weaker condition then the (�)-condition. Let
(rn) be a positive sequence satisfying φn(rn) = 1 (n ∈ N). If such a sequence exists,
we will write 1 ∈ φn[R+] (n ∈ N). We say that φ satisfies a (��)-condition, if any of
the following (equivalent) conditions is satisfied:

1. For each sequence (θn) in (0, 1] converging to 1 there holds

φn(θnrn) −→ 1 whenever n −→ +∞.

2. For each ε ∈ (0, 1) there holds ηφ(ε) > 0, where

ηφ(ε) = inf
n

inf
r:φn(r)≤1−ε

(
1 − r

rn

)
.

We leave a simple proof of this equivalence. From 2 it follows that the condition (��)
means that all the values r > 0 such that y = φn(r) remain below the horizontal
line y = 1 − ε must be uniformly (with respect to n) far from the vertical lines at
x = rn in the sense that r/rn ≤ ηφ(ε). If φn(s) = s for all n then ηφ(ε) = ε.

Lemma 1.1

For the function φ the following statements are equivalent.

(a) φ satisfies the condition (�).

(b) (i) 1 ∈ φn[R+] (n ∈ N),
(ii) φ satisfies the condition (��).
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Proof. (a) ⇒ (b)(i). If 1 /∈ φn[R+] for some n ∈ N, then φn(r0) < 1 where
r0 = sup{r > 0 : φn(r) ≤ 1} and r0 > 0. Hence, for some ε > 0, we have φn(r0) ≤
1 − ε. From (a) it follows that there exists a δ > 0 such that φn((1 + δ)r0) ≤ 1, a
contradiction with the choice of r0.

(a) ⇒ (b)(ii). If this implication is not true then there exists a sequence (θn)
such that 0 < θn ≤ 1 and θn −→ 1 with φn(θnrn) ≤ 1 − ε for some ε ∈ (0, 1). Let n

be large enough such that θn > 1/(1 + δ), where δ ∈ (0, 1) is from the assumption
(a). Then, 1 < (1 + δ)θn ≤ φn((1 + δ)θnrn) ≤ 1 − ε, a contradiction.

(b) ⇒ (a). If not, there exist ε > 0, a subsequence (nm) and 0 < xm such that
φnm((1 + 1/m)xm) > 1 and φnm(xm) ≤ 1 − ε. We can confine ourselves to xm

satisfying 0 < xm < rnm where φnm(rnm) = 1. Then, xm < rnm < (1 + 1/m)xm.
Hence, δm = xm/rnm

−→ 1 with δm < 1, for m −→ +∞. From the assumption (b) it
follows that φnm(δmrnm) −→ 1. On the other hand φnm(δmrnm) = φnm(xm) ≤ 1−ε,
a contradiction. �

For the sake of completeness we recall some basic results concerning the sequential
Musielak-Orlicz spaces.

Lemma 1.2 ([15])

The following statements are equivalent.

(a) ‖f‖φ = 1 implies that Iφ(f) = 1, for all f ∈ lφ.

(b) (i) The function φ satisfies the δ0
2-condition,

(ii) 1 ∈ φn[R+] (n ∈ N).

Let us point out that (b)(ii) is automatically satisfied whenever φ < +∞, i.e.
φn(r) is finite for all r > 0 (n ∈ N).

We will write ξn ↑ 1 whenever ξn ≤ 1 and ξn −→ 1 for m −→ +∞. The following
lemma is essentially due to Kamińska ([16]) under the assumption that φ < +∞
and φ ∈ δ2.

Lemma 1.3

The following statements are equivalent.

(a) ‖fm‖φ ↑ 1 implies that Iφ(fm) ↑ 1, for sequences (fm) ∈ lφ.

(b) For each ε ∈ (0, 1) there exists δ ∈ (0, 1) such that for all f ∈ lφ satisfying

‖f‖φ ≥ 1 − δ there holds Iφ(f) ≥ 1 − ε.

(c) (i) φ satisfies the δ0
2-condition,

(ii) 1 ∈ φn[R+] (n ∈ N),
(iii) φ satisfies the condition (��).
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Remarks. The equivalence (a) ⇔ (b) is clear. The implications (a) ⇒ (c)(i),
(a) ⇒ (c)(ii) follow from Lemma 1.2. By virtue of Lemma 1.1 the conditions (c)(ii),
(c)(iii) are equivalent to the condition (�). Applying Lemma 9 from [16] we obtain
that (b) ⇐⇒ (�) under the δ2-condition. It can be verified that this lemma is
still true for φ ∈ δ0

2 . Thus the δ2-condition can be replaced by the δ0
2-condition and

(c) ⇒ (b) as desired.

Lemma 1.4

The following statements hold true for the space hφ.

(a) ‖fm‖φ ↑ 1 implies that Iφ(fm) ↑ 1, for sequences f = (fm) satisfying 0 ≤ |fm| ≤
f , where f ∈ hφ.

(b) hφ does not contain an isomorphic copy of l∞.

In particular, if ‖f‖φ = 1, then Iφ(f) = 1.

Proof. Since, by the definition, we have Iφ(·) < +∞ on hφ and moreover Iφ(f) ≤
‖f‖φ ≤ 1, we conclude that Iφ(·) is continuous at zero and consequently Iφ(·) is
continuous on hφ. Hence, the last assertion of the lemma follows.

Next, let ‖f‖φ ↑ 1 and αm = 1/‖fm‖φ. Then, 1 = Iφ(αmfm) = Iφ((αm−1)2fm+
(2 − αm)fm) ≤ (αm − 1) Iφ(2f) + (2 − αm) Iφ(fm). If for some subsequence we
have Iφ(fmk

) ≤ 1 − ε, for some ε ∈ (0, 1), then we arrive to a contradiction, since
Iφ(2f) < +∞. Thus Iφ(fm) ↑ 1 and (a) follows.

We have hφ ⊂ lφ as a closed sublattice. Thus hφ possess a lattice norm which is
order continuous. Therefore, by virtue of the well known result concerning general
Banach lattices, hφ does not contain an isomorphic copy of l∞ ([20]) which proves
(b) (cf. [11] and [17] for further results concerning copies of c0 and l∞ in lφ). �

Remark. In the above lemma as well as in Lemma 1.6 we need not assume that
φ < +∞.

Lemma 1.5 ([16])

The following statements are equivalent.

(a) For each ε > 0 there exists η(ε) > 0 such that for all f ∈ lφ satisfying ‖f‖φ ≥ ε

there holds Iφ(f) ≥ η(ε); in other words the norm and the modular convergence

coincide.

(b) φ satisfies the δ0
2-condition and φ > 0.

For the space hφ one can prove a similar result.
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Lemma 1.6
Let φ > 0. If f ≥ gm ≥ 0, where f , gm ∈ hφ, then Iφ(gm) −→ 0 implies

‖gm‖φ −→ 0.

Proof. Assume to the contrary, that αm = ‖gm‖φ ≥ ε for some ε ∈ (0, 1], where αm ≤
1 (for the sake of simplicity we do not pass to the subsequence). From Lemma 1.4
it follows that 1 = Iφ(gm/αm). Moreover, Iφ(gm/αm) ≤ (1/αm − 1) Iφ(2gm) +
(2 − 1/αm) Iφ(gm). Since Iφ(gm) −→ 0 and φ > 0, we obtain that gmk

−→ 0,
µ− coordinatewise, with 0 ≤ gmk

≤ f . Since Iφ(2f) < +∞, we conclude from the
Lebesgue convergence theorem that Iφ(2gmk

) −→ 0. Now, since αm ∈ (ε, ‖f‖φ], the
above inequalities lead to a contradiction which finishes the proof. �

We call the modular Iφ(·) φ−uniformly monotone (resp. uniformly monotone),
if for each ε > 0 there exists η(ε) > 0 such that f ≥ g ≥ 0 in lφ with Iφ(f) = 1
and Iφ(g) ≥ ε (resp. with ‖f‖φ = 1 and ‖g‖φ ≥ ε) imply that Iφ(f − g) ≤ 1 − η(ε).
Also Iφ(·) is said to be φ−strictly monotone (resp. strictly monotone), if f ≥ g ≥ 0
in lφ with Iφ(f) = 1 and Iφ(g) > 0 (resp. ‖f‖φ = 1 and ‖g‖φ > 0) imply that
Iφ(f − g) < 1. We will write shortly that Iφ(·) is a φ−UM, UM, φ−STM and STM
modular, respectively. Let us point out that all these properties can be considered
relatively to hφ as well. Clearly, each UM modular is φ−UM and therefore φ−STM.
Also, each STM modular Iφ(·) is φ−STM. However, thanks to the subadditivity of
Iφ(·) on the positive cone (lφ)+, we have the following lemma ([23]), Proposition 1.4).

Lemma 1.7
The modular Iφ(·) is always φ−UM with η(ε) = ε. Consequently, the notions of

φ−UM and φ−STM modulars coincide.

2. Main results

In the following it will be assumed that φ < +∞ whenever the subspace hφ of lφ is
considered (in this case hφ = laφ). We begin with the following lemma.

Lemma 2.1
Let lφ be an STM space. Then the following statements hold true.

(a) 1 ∈ φn[R+] (n ∈ N),
(b) φ > 0,
(c) φ satisfies the δ0

2-condition.
If hφ is an STM space (for hφ we assume that φ < +∞) then, φ satisfy the

conditions (a) and (b).
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Proof. To prove (a) let us assume for a moment that 1 /∈ φn[R+] for some n.
Applying the lsc of φ we get φn(ξ0x) < 1 and ξ0 > 0 where ξ0 = sup{r > 0 :
φn(rx) < 1} and x > 0 is fixed but arbitrary. For n �= m there exists y > 0 such
that φm(y) < 1 − φn(ξ0x). Then, define f = ξ0xen and g = yen. Clearly, f , g ≥ 0.
Since Iφ(f) < 1 and Iφ(f/λ) > 1 for λ > 1, we conclude that ‖f‖φ = 1. On the
other hand Iφ(f + g) = φn(ξ0x) +φn(y) < 1 and Iφ((f + g)/λ) > 1 whenever λ < 1.
Hence it follows that ‖f + g‖φ = ‖f‖φ = 1. Now, applying the STM of lφ we obtain
g = 0, a contradiction.

To prove (b) let us notice that if there exists n and x > 0 such that φn(x) = 0,
then choose a sequence h = (0, x2, ...) ∈ lφ with xi ≥ 0 and ‖h‖φ = 1 and a sequence
g = (x, 0, ...). Let f = h + g. Then, Iφ(f) = Iφ(f − g) = 1 where f ≥ g > 0, a
contradiction with the assumption that lφ is STM.

The same reasoning applies for the space hφ, so we omit the proof of (b) in this
case. Let us point out that (a) is a consequence of the assumption φ < +∞.

To get (c), we will prove first that ‖h‖φ = 1 implies Iφ(h) = 1 in lφ. Then,
the proof will be completed by virtue of lemma 1.2. For this do assume that there
exists h = (xn) ∈ lφ such that ‖h‖φ = 1 and Iφ(h) < 1. Without loss of generality
let h ≥ 0 and let xm > 0 for some m ∈ N. Applying (a) we have φm(ξxm) = 1
for some ξ > 0. Thus the following function t −→ φm(txm) is continuous on [0, ξ]
and therefore there exists t0 ∈ (0, ξ) such that φm(t0xm) + Σn �=mφn(xn) = 1 and
t0 > 0. Define g = (t0 − 1)xmem and let f = h + g. Then Iφ(f) = 1 and therefore
‖f‖φ = 1. Moreover ‖f − g‖φ = 1 with f ≥ g > 0. On the other hand, by our
assumption, g = 0, a contradiction with the choice of xm. Now, applying Lemma 1.2,
(c) follows. �

Remark. Since φ < +∞, in proof of (b), one can referee to Theorem 1.1 in [17]
concerning (order) isometric copies of l∞ in lφ in the case when φ /∈ δ0

2 .

Lemma 2.2
Let lφ be a UM space. Then, the condition (��) is satisfied.

Proof. By virtue of Lemma 2.1 there exists a positive sequence (rn) such that
φn(rn) = 1. If the condition (��) is not satisfied, then there exists ε ∈ (0, 1) and
a sequence (θn) in the interval (0, 1) such that θn −→ 1 and φn(θnrn) ≤ 1 − ε
(we omit passing to the subsequence). Choose (sn) such that 1 = φ2n(θ2nr2n) +
φ2n+1(s2n+1). Clearly φ2n+1(s2n+1) ≥ ε. Next, define sequences (fn), (gn) in lφ
where fn = θ2nr2ne2n + s2n+1e2n+1 and gn = (1 − θ2n)r2ne2n + s2n+1e2n+1. We
assume that n is large enough such that θn > 1/2. Then, Iφ(fn) = 1 and hence
‖fn‖φ = 1. Also, 0 ≤ gn ≤ fn for n large. Moreover, Iφ(fn − gn) = φ2n(r2n) = 1, so
that ‖fn − gn‖φ = 1. Finally, since Iφ(gn) = φ2n+1(s2n+1) ≥ ε, we have ‖gn‖φ ≥ ε,
a contradiction since lφ is a UM space. �
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The property STM (and hence the local properties LUM, WLUM, CWLUM; The-
orem 2.4 below) and the property UM for the space lφ can be expressed in terms of
the respective properties of the modular Iφ(·).

Theorem 2.3

The following, respective, pairs ((a), (b)) of statements are equivalent.

(a) lφ is an STM space (resp. lφ is an UM space).

(b) (i) Iφ(·) is an STM modular (resp. Iφ(·) is a UM modular),

(ii) ‖f‖φ = 1 implies Iφ(f) = 1 (resp. ‖fn‖φ ↑ 1 implies Iφ(fn) ↑ 1).

Proof. (The STM case). Implications (b) ⇒ (a) and (a) ⇒ (b)(i) follow from
the definitions. We will prove that (a) ⇒ (b)(ii). If lφ is STM then, by virtue of
Lemma 2.1, 1 ∈ φn[R+], φ > 0 and φ ∈ δ0

2 . In turn, applying Lemma 1.2, we get
that (b)(ii) is satisfied as desired.

(The UM case). The implication (b) ⇒ (a) follow immediately from the defini-
tions. To prove (a) ⇒ (b)(i) we apply the corresponding implication for the STM
case. Consequently, ‖f‖φ = 1 implies Iφ(f) = 1 and, by virtue of Lemma 2.1, φ > 0.
Thus, by Lemma 1.7, Iφ(·) is φ−UM and consequently UM. To prove (a) ⇒ (b)(ii)
we apply that by virtue of Lemma 2.2 φ satisfies the condition (��). Again, since
each UM space is an STM space we conclude that (Lemma 2.1) φ satisfies the δ0

2-
condition and 1 ∈ φn[R+] (n ∈ N). To finish the proof it suffices to apply Lemma 1.3
((c) ⇒ (a)). �

In theorems below characterizations of the STM, LUM, WLUM, CWLUM and
UM Musielak-Orlicz spaces lφin terms of the function φ are given.

Theorem 2.4

Let us consider the following statements (a), (b) and (c) (it is not necessary that

φ < +∞).

(a) lφ is a LUM space.

(b) lφ is an STM space.

(c) (i) φ > 0,

(ii) 1 ∈ φn[R+] (n ∈ N),
(iii) φ satisfies the δ0

2-condition.

Then, (a) ⇒ (b) and (b) ⇐⇒ (c). If φ < +∞ then also (b) ⇒ (a) and in this case

the properties LUM, WLUM, CWLUM, STM for lφ coincide.
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Proof. The implication (a) ⇒ (b) follows from the definitions. Next, the implications
(b) ⇒ (c)(i)(ii)(iii) follow from Lemma 2.1.

We will prove that (c) ⇒ (b). Let f ≥ g ≥ 0, ‖f‖φ = ‖f − g‖φ and let us
assume for a moment that ‖g‖φ > 0. From (c)(ii),(iii) and Lemma 1.2 it follows
that Iφ(f) = 1 and Iφ(f −g) = 1. To finish the proof we apply that each modular is
φ−STM (Lemma 1.7). Thus Iφ(g) = 0 and consequently, by virtue of the condition
(c)(i), g = 0, a contradiction.

To prove that in the case φ < +∞ (c) ⇒ (a), let us assume that (a) does not
hold true, i.e. there exist ε > 0, f ∈ lφ with ‖f‖φ = 1 and a sequence (gn) in lφ
satisfying f ≥ gn ≥ 0 with ‖gn‖φ ≥ ε, such that ‖f − gn‖φ −→ 1. First, we need
to prove that Iφ(f − gn) −→ 1. Since φ < +∞, and φ satisfies the δ0

2-condition,
we conclude that lφ coincide with hφ (see section 1). Therefore, we can apply
Lemma 1.4. Hence, it follows that Iφ(f − gn) −→ 1 as desired. Next, applying
Lemma 1.6 (cf. also Lemma 1.5), by virtue of (c)(i)(iii), we have Iφ(gn) ≥ η(ε) for
some η(ε) > 0. In hφ (cf. also Lemma 1.2), we always have Iφ(f) = 1. On the
other hand, from Lemma 1.7, we know that Iφ(·) is automatically φ-UM and hence
φ-LUM, i.e. Iφ(f) = 1, f ≥ gn ≥ 0 with Iφ(f − gn) −→ 1 imply that Iφ(gn) −→ 0.
Thus, we arrived to the contradiction. Thus (c) ⇒ (a) and the proof is finished. �

From Theorem 2.5 below it will be seen that the LUM and UM properties for
the Musielak-Orlicz spaces lφ does not coincide in general. In the case of nonatomic
measure space the situation is quite different (cf. [23], Theorem 2.7).

Theorem 2.5
The following statements are equivalent.

(a) lφ is a UM space.
(b) (i) φ > 0,

(ii) 1 ∈ φn[R+] (n ∈ N),
(iii) φ satisfies the condition (��),
(iv) φ satisfies the condition δ0

2 or, equivalently, the norm ‖ · ‖φ is σ-order conti-
nuous.

Proof. Since the UM property implies the STM property, the implications
(a) ⇒ (b)(i)(ii)(iii) follow in the same way as in the proof of Theorem 2.4, i.e.
we apply Lemma 2.1. Moreover, from Lemma 2.2 it follows that (a) ⇒ (b)(iii).
Thus (a) ⇒ (b).

To prove that (b) ⇒ (a) let fn ≥ gn ≥ 0, ‖fn‖φ = 1 and ‖fn − gn‖φ −→ 1
as n −→ +∞. From Lemma 1.2 and Lemma 1.3 it follows that Iφ(fn) = 1 and
Iφ(fn − gn) −→ 1. Since each modular Iφ(·) is φ−UM (Lemma 1.7) we obtain that
Iφ(gn) −→ 0. Applying Lemma 1.5, we conclude that ‖gn‖φ −→ 0, i.e. (a) follows
whenever φ satisfies the δ0

2-condition or, equivalently, ‖ · ‖φ is order continuous (cf.
Theorem 2.6 below). �
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Remark. From the above characterization and the nature of the (��)-condition it
follows that the STM and the UM property coincide for sequential Musielak-Orlicz
spaces lφ whenever φn(·) does not depend on n.

The following proposition seems to be well known, however we do not know
any reference to a complete proof in the case under consideration. We apply in the
proof (in essential way) ideas from [15].

Theorem 2.6

The following statements are equivalent.

(a) lφ= laφ, i.e. the norm ‖ · ‖φ is (σ−)order continuous.

(b) φ satisfies the δ0
2-condition.

Proof. (b) ⇒ (a). Let 0 ≤ fk ≤ f , (fk) ↓ 0 where f , fk = (xk
n) ∈ lφ. Without

loss of generality we can assume that Iφ(f) = 1. We will prove that Iφ(ξfk) −→ 0,
for k −→ +∞. Let ξ, ε > 0 be arbitrary. Let β, γ > 0, m ∈ N and (αn) be from
the δ0

2-condition. Then, given any k0 ∈ N there exists m large enough such that
Σn≥mφn(xk0

n ) < ε/(3γ), φn(xk0
n ) ≤ β, Σn≥mαn ≤ ε/3. Moreover, for k ≥ k0 large

enough there holds Σm
n=1φn(xk

n) < ε/3. Hence, for such k ≥ k0 we have

Iφ(ξfk) ≤ Σm−1
n=1 φn(ξxk

n) + γΣn≥mφn(xk
n) + Σn≥mαn ≤ ε.

Finally, since ξ is arbitrary (positive), we conclude that ‖fk‖φ −→ 0 as desired.
(a) ⇒ (b). Assume to the contrary that the δ0

2-condition is not satisfied. As
in [15] (pp. 142–143) one can prove the existence of disjoint partition (Nk) (k ∈ N), of
the set N of natural numbers and sequences (xn), (rk) of nonnegative numbers where
rk ↑ 1 such that Σn∈Nk

φn(xn/rk) ≥ 1 with φn(xn) ≤ bk = 1/ak and φn(xn/rk) −
akφn(xn) ≥ 0, where n ∈ Nk and ak = 2k+2. Let um = Σk≥mΣn∈Nk

xnen. Then,
um ↓ 0. On the other hand Iφ(um) = Σk≥mΣn∈Nk

φn(xn) ≤ Σk≥11/2k+1 < 1. Next,
let m be large enough such that if 0 < r < 1, then for k ≥ m there holds 1/rk ≤ 1/r.
Hence, it follows that Iφ(um) = Σk≥mΣn∈Nk

φn(xn/r) ≥ Σk≥mΣn∈Nk
φn(xn/rk) =

+∞. Therefore, ‖um‖φ = 1 for m large, a contradiction with (b) and the proof is
finished. �

Theorem 2.7

The following respective pairs ((a), (b)) of statements are equivalent (it is not

necessary that φ < +∞).

(a) hφ is an STM space (resp. hφ is a LUM space).

(b) Iφ(·) is an STM modular on hφ (resp. Iφ(·) is a LUM modular on the space hφ).
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Proof. (a) ⇒ (b). Since ‖u‖φ ≤ α ≤ 1 implies Iφ(u) ≤ α the implications follow by
virtue of the the corresponding definitions.

(b) ⇒ (a). Let Iφ(·) be an STM modular but let ‖f − g‖φ = 1 with 0 < g ≤
f, ‖f‖φ = 1. From Lemma 1.4 it follows that Iφ(f−g) = 1 so we get a contradiction
with the STM of Iφ(·).

If Iφ(·) is LUM but hφ is not LUM then, for some f ≥ 0 with ‖f‖φ = 1 and
ε > 0 there exists a sequence (gm) satisfying 0 ≤ gm ≤ f, ‖gm‖φ ≥ ε, ‖f−gm‖φ −→ 1
as m −→ +∞. From Lemma 1.4 we obtain that Iφ(f − gm) −→ 1, a contradiction
with the LUM property of Iφ(·) which finishes the proof. �

Theorem 2.8

The following statements are equivalent for the space hφ.

(a) hφ is a LUM space.

(b) hφ is an STM space.

(c) (i) 1 ∈ φn[R+] (n ∈ N),
(ii) φ > 0.

Proof. The implication (a) ⇒ (b) follows from the definitions. By virtue of
Lemma 2.1 (c) follows immediately. To prove that (c) ⇒ (a) we apply Lemma 1.7.
Next, by virtue of Lemma 1.4, we get that Iφ(·) is LUM. Now, applying Lemma 1.4
and Theorem 2.7 we conclude that hφ is LUM as desired. �

Remark. We cannot expect that hφ is UM in general since every UM space is
monotonically complete. Indeed, hφ cannot be monotonically complete since hφ is
order dense in lφ ([31]).

3. Monotonicity properties for Lφ(µ) and induced copies of lφ

To explain differences in characterizations of the UM property in the case of Lϕ(µ)
for µ nonatomic and µ purely atomic let us recall (cf. [23]) the following characteri-
zation.

Theorem 3.1

The following statements are equivalent for µ nonatomic.

(a) Lϕ(µ) is an STM space.

(b) Lϕ(µ) is a UM space.

(c) (i) ϕ > 0,

(ii) ϕ satisfies the ∆2-condition (i.e. ‖ · ‖φ is order continuous).
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Recall (eg. [27], [28], [31]) Lϕ(µ) consists of all µ-measurable functions on T such
that Iϕ(λu) =

∫
T
ϕ(λ|u(t)|, t)dµ < +∞ for some λ depending on u. Now, ϕ :

R+ × T −→ R+ is measurable and such that ϕ(·, t) is convex, lsc, continuous at
zero with ϕ(0, t) = 0 and nontrivial, for µ−a.e. t ∈ T . We write ϕ ∈ ∆2, if ϕ

satisfies a ∆2-condition, i.e. if there exist K > 0 and an integrable nonnegative and
measurable function h such that ϕ(2x, t) ≤ Kϕ(x, t)+h(t) for all x ∈ R+ and t ∈ T

except a set of zero measure.
Let us consider a sequential Musielak-Orlicz space lφfor φ given by the formula:

φn(x) =
∫
Tn

ϕ(|x|, t)dµ, (x ∈ R, n ∈ N),

where (Tn) is a partition of T satisfying 0 < µ(Tn) < +∞, T
µ
= ∪∞

n=1Tn, Tn

⋂
Tm

µ
= ∅

whenever n �= m. Such partition exists since ϕ(·, t) is continuous at zero (this
continuity is equivalent to the decomposability of Lϕ(µ) : L∞(Tn, µ) ⊂ Lϕ(µ) for all
n, see [24] for further bibliography). We endow lφ with the Luxemburg norm ‖ · ‖φ.
Let us consider the following mapping

j : lφ � f = (xn) −→ j(f) = Σ∞
n=1 xn1Tn

.

Clearly u = j(f) ∈ Lϕ(µ) and j defines an order isometry of lφ into Lϕ(µ). From
Theorem 3.1 we obtain

Corollary 3.2

If Lϕ(µ) is an STM space then the space lφ under consideration is a UM space.

In view of Theorem 2.5 this observation shows that the ∆2-condition must be
stronger than the δ0

2-condition with φ = (φn(·)) for φn(·) = ϕ(·, n). In fact, if ϕ ∈ ∆2

then φ ∈δ0
2 for γ = K, β = +∞, m = 1 and cn =

∫
Tn

h(t)dµ (see the definition of
the δ0

2-condition). In particular, we have φ < +∞.

Proposition 3.3

If ϕ ∈ ∆2, then for φ defined above we have φ ∈ δ2. Moreover, 1 ∈ φn[R+] (n ∈
N)and φ satisfies the condition (��).
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4. Applications to dominated best approximation

Some applications to dominated best approximation were given in [23] (see also [14]
for further results). In this section we complete results from [23] in the case of the
counting measure µ and for the Luxemburg norm. For the case of the Amemiya
norm see [14].

Let K be a subset of a normed lattice X. If f ∈ X then let PK(f) be the set of
all best approximations to f with respect to K. The problem of finding an element
g ∈ PK(f) where K ≤ f we call a dominated best approximation. As in the paper
[23], following to the identity (cf. [14], Lemma 4.1)

dist (f,K) = inf
g∈K≥f

‖f − g‖ = inf
v∈V≤f

‖f − v‖,

where V = 2f −K, the term “dominated” can be also applied in the case K ≥ f .
Recall, a subset K ⊂ X is called a sublattice, if x, y ∈ K implies that x∨ y ∈ X.

Proposition 4.1 ([23], Proposition 3.1)

The following statements are equivalent.

(a) X is an STM space.

(b) For all f ∈ X and all sublattices K ⊂ X such that K ≤ f there holds Card

(PK(f)) ≤ 1 (i.e. the dominated best approximation with respect to sublattice is

unique).
This equivalence is still true when one consider the order intervals [u, v] instead

of sublattices K.

The existence problem for the dominated best approximation is solved by virtue
of the following result (cf. also [23], Proposition 3.3 and [14], Theorem 4.3).

Theorem 4.2

The following are equivalent for any Banach lattice X.

(a) X has order continuous norm.

(b) All order intervals [g, h] are weakly compact (hence, P[g,h](f) �= ∅ whenever

f ≤ g or h ≤ f , for each order interval [g, h] and f ∈ X).
(c) PK(f) �= ∅ for every f ∈ X and each closed sublattice K such that K ≤ f .
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Proof. The equivalence (a) ⇐⇒ (b) is well known (cf. [20], section X4.1). In the
case (a) ⇒ (c) the proof is the same as the proof of the implication (a) ⇒ (b) of
Proposition 3.3 in [23] (c) ⇒ (a). We proceed as in the proof of Proposition 3.3 in
[23]. In this case, however, we must apply Dini’s theorem (cf. Theorem 4.3, [14]).
Namely, let for a contrary (a) does not hold true, i.e. fn ↓ 0 but infn{‖fn‖} = α for
some sequence (fn) and α > 0. Replacing fn by gn = (1 + 1/n)fn we obtain ‖gn+1‖
< ‖gn‖. Let K = {gn}. Then f = 0 ≤ K and PK(f) = ∅. Clearly K is a sublattice.
To prove that K is norm closed let for a moment ‖fnk

− g‖ −→ 0 with fnk
in K and

g /∈ K. Then, fnk
−→ g weakly with (fnk

) nonincreasing. Applying Dini’s theorem
we conclude that g = infnk

{fnk
} = 0, a contradiction. �

In [14] we have proved (Theorem 4.3) that X is CWLUM space, equivalently:
X is STM and order continuous, if and only if the dominated best approximation
problem is uniquely solvable for any closed sublattice of X.

By virtue of the Proposition 4.1 and Theorem 2.4, it follows the following result
for the Musielak-Orlicz sequence space lφ.

Theorem 4.3

The following statements are equivalent for lφ.

(a) The dominated best approximation problem with respect to closed sublattices

is unique.

(b) (i) φ > 0,

(ii) 1 ∈ φn[R+] (n ∈ N),
(iii) φ satisfies the δ0

2-condition.

By virtue of Theorem 4.2 and Theorem 2.6 we obtain a characterization of the
solvability in terms of the δ0

2-condition.

Theorem 4.4

The following statements are equivalent.

(a) The dominated best approximation problem with respect to closed sublattices

is solvable.

(b) φ satisfies the δ0
2-condition.

It is worth noticing that the solvability of the dominated best approximation
problem in lφ is a consequence of the unicity.

Finally, we will give a characterization theorem concerning best approximation for
the spaces lφ. We can apply a general characterization theorem (Theorem 3.6) from
[23] for ideal Banach function spaces E(µ). The characterization of STM property
for lφ (Theorem 2.4) enables us to prove more complete result.
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Theorem 4.5

Let φ satisfies the δ0
2-condition or, equivalently, lφ has an order continuous norm.

Let f = (xn) ∈ lφ\K, where K is a (nonempty) convex subset in lφ and let f0 = (x0
n).

The following statements are equivalent.

(a) f0 ∈ PK(f).
(b) There exists a sequence g = (ξn) ∈ lφ∗ (φ∗ - the Young conjugate to φ) with ξi
satisfying

(i) |ξi| ∈ ∂φ
(

|xi−x0
i |

‖f−f0‖φ

)
, for all i ∈ N,

(ii) sign(ξi) = sign(xi − x0
i ) for all i ∈ N such that ξi(xi − x0

i ) �= 0.

(iii) Σ+∞
i=1 ξi(xi − x0

i ) ≥ 0, for all h = (yn) ∈ K.

Moreover:

1. If lφ is STM, i.e. φ > 0 and 1 ∈ φn[R+], then for each i ∈ N either ξi = 0 or,

in the opposite case, sign(ξi) = sign(xi − x0
i ) whenever xi − x0

i �= 0 (in this case the

sign of ξi can be undefined for some i).
2. If φ is smooth at zero then for each i ∈ N either ξi = 0 or, in the opposite case,

sign(ξi) = sign(xi − x0
i ).

We omit the proof since we can proceed as in the proof of Theorem 3.7 in [23]
assuming that µ is the counting measure. Now, the role of the ∆2-condition is
replaced by the δ0

2 condition. This fact yields in particular that the dual (lφ)∗

to lφ can be identified with the associated space lφ∗ and that the formula l(x) =
Σ+∞

n=1xnsn, with s = (sn) ∈ lφ∗ , gives a general form of the linear and continuous
functional on lφ (cf. [17]). Moreover, the δ0

2-condition implies the continuity of the
modular Iφ(·). The rest of the proof runs in a standard way.
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12. H. Hudzik and A. Kamińska, Some remarks on convergence in Orlicz space, Comment. Math.
(Prace Mat.) 21 (1979), 81–88.

13. H. Hudzik and L. Maligranda, Orlicz spaces in which the Luxemburg norm and the Orlicz norm
are proportional are Lebesque spaces, (in preparation).

14. H. Hudzik and W. Kurc, Monotonicity properties of Musielak-Orlicz spaces and dominated best
approximation in Banach lattices, (to appear in J. Approx. Theory).
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